A Mathematically Exact and Well-Determined System of Equations to Close Reynolds-Averaged Navier–Stokes Equations
Abstract
:1. Introduction
2. Physics-to-Geometry Transformation
3. Invariance Properties
4. Mathematical Formulation
4.1. Generic Formulation
4.2. Application to RANS Equations
5. Summary and Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Expansion of Geometric Entity
References
- Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. Ser. A 1895, 186, 123–164. [Google Scholar]
- Boussinesq, J.V. Essai sur la théorie des eaux courantes. In Mémoires Présentés par Divers Savants à I’Académie des Sciences; Imprimerie Nationale: Paris, France, 1877; Volume 23, pp. 1–680. [Google Scholar]
- Prandtl, L. 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 1925, 5, 136–139. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mompean, G.; Gavrilakis, S.; Machiels, L.; Deville, M.O. On predicting the turbulence-induced secondary flows using nonlinear k-ϵ models. Phys. Fluid 1996, 8, 1856–1868. [Google Scholar] [CrossRef]
- Speziale, C.G. On nonlinear k-l and k-ϵ models of turbulence. J. Fluid Mech. 1987, 178, 459–475. [Google Scholar] [CrossRef]
- Craft, T.J.; Launder, B.E.; Suga, K. Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat Fluid Flow 1996, 17, 108–115. [Google Scholar] [CrossRef]
- Durbin, P. Separated flow computations with the k − ϵ − v2 model. AIAA J. 1995, 33, 659–664. [Google Scholar] [CrossRef]
- Spalart, P.R. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Rumsey, C.L.; Carlson, J.R.; Pulliam, T.H.; Spalart, P.R. Improvements to the quadratic constitutive relation based on NASA juncture flow data. AIAA J. 2020, 58, 4374–4384. [Google Scholar] [CrossRef]
- Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 2016, 807, 155–166. [Google Scholar] [CrossRef]
- Xiao, H.; Wu, J.L.; Wang, J.X.; Sun, R.; Roy, C.J. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach. J. Comput. Phys. 2016, 324, 115–136. [Google Scholar] [CrossRef]
- Singh, A.P.; Medida, S.; Duraisamy, K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J. 2017, 55, 2215–2227. [Google Scholar] [CrossRef]
- Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 2019, 51, 357–377. [Google Scholar] [CrossRef]
- Rodi, W. The Prediction of Free Turbulent Boundary Layers by Use of a Two-Equation Model of Turbulence. Ph.D. Thesis, University of London, London, UK, 1972. [Google Scholar]
- Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 1975, 68, 537–566. [Google Scholar] [CrossRef]
- Gatski, T.B.; Jongen, T. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Prog. Aerosp. Sci. 2000, 36, 655–682. [Google Scholar] [CrossRef]
- Pope, S.B. A more general effective-viscosity hypothesis. J. Fluid Mech. 1975, 72, 331–340. [Google Scholar] [CrossRef]
- Gatski, T.B.; Speziale, C.G. On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 1993, 254, 59–78. [Google Scholar] [CrossRef]
- Wallin, S.; Johansson, A. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 2000, 403, 89–132. [Google Scholar] [CrossRef]
- Wallin, S.; Johansson, A. Modeling streamline curvature effects in explicit algebraic Reynolds stress turbulence models. Int. J. Heat Fluid Flow 2002, 23, 721–730. [Google Scholar] [CrossRef]
- Ryu, S. Physics-to-Geometry Transformation to Construct Identities between Reynolds Stresses. Mathematics 2023, 11, 3698. [Google Scholar] [CrossRef]
- Ryu, S. A differential relation of metric properties for orientable smooth surfaces in ℝ3. Mathematics 2023, 11, 2337. [Google Scholar] [CrossRef]
- Krantz, S.G.; Parks, H.R. A Primer of Real Analytic Functions, 2nd ed.; Academic Press: Boston, MA, USA, 2002. [Google Scholar]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces, 2nd ed.; Dover: New York, NY, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S. A Mathematically Exact and Well-Determined System of Equations to Close Reynolds-Averaged Navier–Stokes Equations. Mathematics 2023, 11, 4926. https://doi.org/10.3390/math11244926
Ryu S. A Mathematically Exact and Well-Determined System of Equations to Close Reynolds-Averaged Navier–Stokes Equations. Mathematics. 2023; 11(24):4926. https://doi.org/10.3390/math11244926
Chicago/Turabian StyleRyu, Sungmin. 2023. "A Mathematically Exact and Well-Determined System of Equations to Close Reynolds-Averaged Navier–Stokes Equations" Mathematics 11, no. 24: 4926. https://doi.org/10.3390/math11244926
APA StyleRyu, S. (2023). A Mathematically Exact and Well-Determined System of Equations to Close Reynolds-Averaged Navier–Stokes Equations. Mathematics, 11(24), 4926. https://doi.org/10.3390/math11244926