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Abstract: Since Sir Osborne Reynolds presented the Reynolds-averaged Navier–Stokes (RANS) equa-
tions in 1895, the construction of complete closure for RANS equations has been regarded as extremely
challenging. Taking into account that the Navier–Stokes equations are not coherent for instantaneous
and mean flows, a body of knowledge outside the scope of classical mechanics may be amenable to the
closure problem. In this regard, the methodology of physics-to-geometry transformation, which is co-
herent for both flows, is applied to RANS equations to construct six additional equations. The proposed
equations stand out from existing RANS closure models and turbulence quantity transport equations
in two respects: they are mathematically exact and well-determined.
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1. Introduction

Since the Reynolds-averaged Navier–Stokes (RANS) equations were first introduced [1],
constructing a complete closure for them has remained an open problem. Causal relations
over time between mean momenta and stresses in turbulent flow are not generally describ-
able in terms of Navier–Stokes equations, so these are not coherent for instantaneous and
mean flows:

N (.) 6= N (〈.〉), (1)

where N is the Navier–Stokes operator and 〈.〉 denotes a time- or ensemble-averaging
operator. This suggests that mean flow is fundamentally different from instantaneous
flow in the scope of classical mechanics, which is a plausible reason why the physical
concepts and laws established for instantaneous flows cannot directly apply to mean flows.
The notorious difficulty of the closure problem may originate from this difference.

Mathematical approaches make it possible to understand mean flows via instanta-
neous flow physics, despite the above-described incoherence. For linear flow quantities
and operators, the numerical equality derived by the use of the Reynolds decomposition
and the fundamental properties of Reynolds-averaging allows for mathematical mimics;
examples of this include the mean rate of strain and rotation tensors. For nonlinear ones,
such a mimic is not possible since additional terms that require physical analysis arise from
the process of Reynolds averaging. In particular, for mathematical approaches to construct
a RANS closure, such an appearance of additional unclosed terms is definitely an obstacle
even though numerical equality is obtainable. On the other hand, it is also not easy to
mathematically derive an exact relation between the Reynolds stress tensor and mean flow
quantities without additional unclosed terms. This is a common dilemma encountered
whilst constructing a RANS closure.

Modeling has been widely adopted as an alternative methodology since it allows for
an explicit formulation of Reynolds stress tensor and is therefore tractable for numerical
simulation. However, it resorts to approaches in which mathematical exactness is not
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ensured a priori, such as physical intuition and empiricism, which inevitably lead to the
issue of universality. Examples include the linear stress–strain relation with the eddy-
viscosity, which was generalized from the Boussinesq hypothesis [2], and the mixing
length theory [3]. In particular, for the former, the isotropy eddy-viscosity assumption
has represented a key concept for constructing RANS closure models, but its scope of
application is limited; it is strictly correct under the condition of τ � S, where τ is the
turbulent time scale and S is the mean shear time scale [4], while otherwise the linear
relation between the Reynolds stress tensor and the mean rate-of-strain tensor is violated
in anisotropic turbulent flows (see, e.g., Ref. [5]). Correspondingly, the following efforts
were focused on the development of a RANS closure model to obtain high predictive
capability for anisotropic turbulent flows. Actually, advanced RANS closure models
were devised by incorporating anisotropy into an eddy-viscosity form or considering
higher-order stress–strain relations; examples of this include quadratic [6] and cubic k− ε
models [7], V2F model [8], and quadratic constitutive relation-based models [9,10]. Recently,
it was demonstrated that the above-described shortcoming of linear eddy-viscosity models
can be remedied by adopting data processing techniques into existing RANS closure
models (see, e.g., Refs. [11–13]). For a comprehensive review of the related literature on
data-driven RANS models, see the review by Duraisamy et al. [14]. Despite the continuous
development of RANS closure models to date, none of them ensure mathematical exactness
a priori. Therefore, their scope of application is not deterministic, but inevitably open to an
empirical study.

Mathematical exactness is a necessary condition for a complete closure of RANS
equations, but it is definitely not sufficient. In practice, the mathematically exact relations
associated with the Reynolds stress tensor and turbulence quantity transport equations,
which have been reported to date, suffer due to the appearance of additional unclosed terms.
The needs for modeling were thus inevitably evoked to resolve this under-determinedness.
A representative example is the Reynolds stress transport equations, which have unclosed
source terms with the exception of the production term. The under-determinedness of these
equations seems to have motivated the development of algebraic stress models. Rodi [15]
constructed an implicit algebraic stress model by applying an equilibrium hypothesis to
the modeled Reynolds stress transport equation of Launder et al. [16]. Since this implicit
model requires numerical iterations, it could not be computationally robust [17]. Pope [18]
derived an explicit relation for the Reynolds stress tensor by combining the tensorial
polynomial expansion thereof with the modeled Reynolds stress transport equation of
Rodi [15], but the proposed model is limited to two-dimensional turbulent flow. Gatski and
Speziale [19] extended the approach of Pope [18] to three-dimensional turbulent flow by
fully considering the ten integrity bases. Further developments were made by introducing
near-wall treatments [20] and considering streamline curvature effects [21]. In light of the
fundamental reason for the emergence of these algebraic stress models, one may know
that the non-appearance of additional unclosed terms is also a necessary condition for the
construction of a complete RANS closure.

Most recently, Ryu [22] constructed three identities between Reynolds stresses via
spatial mapping and application of the differential Gauss–Bonnet formula [23]. Their
methodology is noticeable in two respects: mathematical exactness is ensured by the
mathematically proven numerical equality, and the appearance of additional unclosed
terms can be prevented by a selective choice of the unit conversion function. However,
above all, it is only concerned to the analyticity of a physical scalar field in R3, which
suggests that the methodology can be coherent for both instantaneous and mean flow fields.

In the present paper, the objective is to construct a mathematically exact and well-
determined RANS closure. For this task, the incompressible RANS equations are developed
into six additional ones by means of the mathematical framework of Ryu [22].
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2. Physics-to-Geometry Transformation

We elaborate on the construction process of the mathematical framework of Ryu [22]
to help the reader better understand our application of it to RANS equations. Their
mathematical framework is constructed in two steps: (i) a physical scalar field of interest is
mapped into R3 and (ii) the differential version of the Gauss–Bonnet formula is applied to
the coordinate plane subfields of the mapped field.

In regard to the former, it is the key to convert the unit of the associated physical
quantity into that of length. Hereafter, let G(t, x) denote a time-dependent, physical scalar
field and D ⊆ R3 be a spatial domain for G(t, x), where t is time and x = (x1, x2, x3) are the
Cartesian coordinates. The unit of G(t, x) may be converted into that of length, as follows:

G̃(t, x) = G(t, x)σ(t, x), (2)

where σ is the unit-conversion function. Hereafter, we use the overtilde sign (̃.) to indicate
such a converted field. Then, the respective three subfields of G̃(t, x) are defined on the
three coordinate planes intersecting at each point of D. For example, the converted field
G̃ has three coordinate plane subfields at time to and po(xo, yo, zo) ⊂ D: G̃(to, x, y, zo),
G̃(to, x, yo, z), G̃(to, xo, y, z).

The differential version of the Gauss–Bonnet formula, which has been mathematically
proven in Ref. [23], yields three differential equations at po for the above-defined three
graphs, respectively. The geometric entities of each of those equations are then expanded
as introduced in Appendix A. Consequently, this affords three identities in terms only of G̃
at po:

G̃xxG̃yy − G̃2
xy(

1 + G̃2
x + G̃2

y

)3/2 +

 ∂

∂x

 −G̃yyG̃x(
1 + G̃2

y

)√
1 + G̃2

x + G̃2
y

− ∂

∂y

 G̃xxG̃y(
1 + G̃2

x

)√
1 + G̃2

x + G̃2
y




+
∂2

∂x∂y

arccos

 G̃xG̃y√
1 + G̃2

x

√
1 + G̃2

y


 = 0, (3)

G̃zzG̃xx − G̃2
zx(

1 + G̃2
z + G̃2

x

)3/2 +

 ∂

∂z

 −G̃xxG̃z(
1 + G̃2

x

)√
1 + G̃2

z + G̃2
x

− ∂

∂x

 G̃zzG̃x(
1 + G̃2

z

)√
1 + G̃2

z + G̃2
x




+
∂2

∂z∂x

arccos

 G̃zG̃x√
1 + G̃2

z

√
1 + G̃2

x

 = 0, (4)

G̃yyG̃zz − G̃2
yz(

1 + G̃2
y + G̃2

z

)3/2 +

 ∂

∂y

 −G̃zzG̃y(
1 + G̃2

z

)√
1 + G̃2

y + G̃2
z

− ∂

∂z

 G̃yyG̃z(
1 + G̃2

y

)√
1 + G̃2

y + G̃2
z




+
∂2

∂y∂z

arccos

 G̃yG̃z√
1 + G̃2

y

√
1 + G̃2

z


 = 0, (5)

where the subscripts denote the derivatives of G̃ with respect to x, y, and z, respectively.
Note that application of the differential Gauss–Bonnet formula is first considered only at a
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point of D. For convenience, the left-hand sides of these identities are briefly expressed as
the sum of the three budgets:

G
(

x, y; G̃(to, x, y, zo)
)
+ Π

(
x, y; G̃(to, x, y, zo)

)
+ Φ

(
x, y; G̃(to, x, y, zo)

)
= 0, (6)

G
(

z, x; G̃(to, x, yo, z)
)
+ Π

(
z, x; G̃(to, x, yo, z)

)
+ Φ

(
z, x; G̃(to, x, yo, z)

)
= 0, (7)

G
(

y, z; G̃(to, xo, y, z)
)
+ Π

(
y, z; G̃(to, xo, y, z)

)
+ Φ

(
y, z; G̃(to, xo, y, z)

)
= 0, (8)

where G, Π, and Φ are the respective differential operators in order. By adding up the
operators of the above equations, respectively, we obtain

Gs

(
x; G̃

)∣∣∣
(to ,po)

+ Πs

(
x; G̃

)∣∣∣
(to ,po)

+ Φs

(
x; G̃

)∣∣∣
(to ,po)

= 0. (9)

Extending the above-described application of the differential Gauss–Bonnet formula to
every point of D makes this combined identity applicable as a whole on D:

Gs

(
x; G̃(to, x)

)
+ Πs

(
x; G̃(to, x)

)
+ Φs

(
x; G̃(to, x)

)
= 0, ∀x ∈ D. (10)

3. Invariance Properties

The above-introduced identity of Equation (10) originates from the differential version
of the Gauss–Bonnet formula that concerns only the geometry of an orientable smooth
surface in R3. This implies intriguing invariance properties, which are not dealt with in
Ryu [22]. Hereafter, letRs denote the sum of Gs, Πs, and Φs.

Lemma 1. If the coordinate plane subfields of G̃ are orientable and smooth in R3 at every instant
in time, then the combined identity of Equation (10) is invariant under a shift in time:

Rs(x; G̃(t, x)) = Rs(x; G̃(t + ∆t, x)). (11)

Lemma 2. Let G∗(x) be a statistic of G(t, x) over time and let G̃∗(x) be the converted field of
G∗(x) by a time-independent unit conversion function σ(x). If the coordinate plane subfields of G̃∗
are orientable and smooth in R3, then the combined identity of Equation (10) is indifferent to taking
a statistic over time:

Rs(x; G̃(t, x)) = Rs(x; G̃∗(x)). (12)

Proof. These two lemmas are proven in Theorem A1.

Lemma 3. The combined identity of Equation (10) is invariant under Galilean coordinate transformation.

Proof. Let x′ = (x′, y′, z′) and t′ be spatial coordinates and time in the moving frame of
reference S′ with constant velocity V along the x-direction. Then, the coordinates of x′ and
time t′ are written in terms of the coordinates of x = (x, y, z) and time t in stationary frame
of reference S, as follows:

x′ = x−Vt, y′ = y, z′ = z, t′ = t. (13)

These relations give the respective expressions for x, y, and z. In substituting those into
Equation (10) and manipulating the derivatives therein, the differential operator Rs is
form-invariant.
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4. Mathematical Formulation
4.1. Generic Formulation

Prior to the construction of a system of equations as a RANS closure, we devise a
generic method to derive six additional equations from an established one. To elaborate on
this method, first let A = B be an equation with rank r ≤ 3 tensor fields A(t, x) and B(t, x)
in R3.

First, two scalar quantities A and B are defined consistently from A and B, respectively.
For example, in the case of a vector, its magnitude may be chosen as a scalar quantity, and,
in the case of a rank-2 tensor, its invariants may afford the scalar quantities. The original
equation is then developed into A = B.

Second, A and B are converted into a quantity of length by the same unit conversion:

Ã = A(t, x)σr(t, x), (14)

B̃ = B(t, x)σr(t, x). (15)

Note that the numerical equality of the developed equation that A = B is retained due to
the same unit conversion function:

Ã(t, x) = B̃(t, x). (16)

Since there are many possible options about the determination of a unit conversion function,
a selective choice is possible for a specific purpose.

The mathematical framework of Equation (10) gives two identities in terms only of Ã
and B̃, respectively:

Gs

(
x; Ã

)
+ Πs

(
x; Ã

)
+ Φs

(
x; Ã

)
= 0, (17)

Gs

(
x; B̃

)
+ Πs

(
x; B̃

)
+ Φs

(
x; B̃

)
= 0. (18)

To derive additional relations between Ã and B̃, it may be a way to selectively substitute
Ã for B̃ and vice versa in Equations (17) and (18), respectively. Note that the numerical
equality in Equations (17) and (18) is not affected by these substitutions, owing to Ã = B̃.
In other words, the numerical equality of Ã = B̃ is a necessary condition for the selectively
substituted equations to hold true. The number of all possible cases for such a combinatorial
substitution is six. The resulting equations are written as follows:

Gs

(
x; B̃

)
+ Πs

(
x; Ã

)
+ Φs

(
x; Ã

)
= 0, (19)

Gs

(
x; Ã

)
+ Πs

(
x; B̃

)
+ Φs

(
x; Ã

)
= 0, (20)

Gs

(
x; Ã

)
+ Πs

(
x; Ã

)
+ Φs

(
x; B̃

)
= 0, (21)

Gs

(
x; Ã

)
+ Πs

(
x; B̃

)
+ Φs

(
x; B̃

)
= 0, (22)

Gs

(
x; B̃

)
+ Πs

(
x; Ã

)
+ Φs

(
x; B̃

)
= 0, (23)

Gs

(
x; B̃

)
+ Πs

(
x; B̃

)
+ Φs

(
x; Ã

)
= 0. (24)

The form of these six equations depends on a chosen unit conversion function. Nonetheless,
if it consists only of known variables or simply a constant, the appearance of additional
unclosed terms can be avoided. In addition, the mathematical exactness of these equations
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is ensured by the mathematically proven numerical equality of the differential Gauss–
Bonnet formula [23], if the coordinate plane subfields of Ã and B̃ are orientable and smooth
in R3.

4.2. Application to RANS Equations

Taking into consideration that the above-described method gives a total of six addi-
tional equations, it is most instructive to apply it to the governing equations for RANS or
large-eddy simulation. For the former, the incompressible RANS equations are considered
as a target of application in the Cartesian coordinate system:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − ∂P
∂xi

+ ν
∂2Ui

∂xj∂xj
−

∂τij

∂xj
, (25)

where Ui is the averaged velocity component along the xi direction; P is the averaged
pressure divided by the fluid density ρ; ν is the kinematic viscosity; and τij is the Reynolds
stress tensor. The incompressible RANS equations are then developed into a single one by
taking divergence on both sides of Equation (25):

∂2τij

∂xi∂xj
= −∂2P

∂x2
i
−

∂Uj

∂xi

∂Ui
∂xj

, (26)

The left- and right-hand sides of this reduced equation are briefly written as follows:

M(t, x) = F(t, x). (27)

Then, M and F are mapped into R3 by means of the same unit conversion function:

M̃(t, x) = M(t, x)σr(t, x), (28)

F̃(t, x) = F(t, x)σr(t, x). (29)

We choose σr = 1 to avoid appearances of additional unclosed terms and to make the two
conversions simplest. Accordingly,

M̃(t, x) = F̃(t, x). (30)

Then, this equation is developed into six additional ones through the above-described
combinatorial substitutions.

The two constraints for the differential Gauss–Bonnet formula, orientability and
smoothness, are not strong to over-constrain the system in question. Since a smooth real
scalar function has continuous derivatives of all orders [24] and a surface given by the
graph of a differentiable real function is orientable [25], any coordinate subfields of a
smooth scalar field in R3 must be orientable. Accordingly, smoothness is the key necessary
condition for the mathematical framework of Equations (3)–(5) to hold true. Taking into
consideration that smooth flow fields are common in turbulence, it is difficult to see that
the physical quantities described by the proposed equations are significantly distorted by
the smoothness constraint.

The numerical equality of the incompressible RANS equations is a necessary condition
for the proposed six equations to hold true, as mentioned earlier. Further, the mean continu-
ity equation is applied whilst deriving the mean Poisson equation from the incompressible
RANS equations. Therefore, mass and momentum conservation laws are involved in the
derivation process of the presented six equations. Moreover, those equations are supposed
to be coupled with the mean continuity equation and the incompressible RANS equations
in order to obtain ten unknown quantities: one averaged pressure, three averaged velocities,
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and six Reynolds stress components. Therefore, the proposed six equations are not isolated
from mass and momentum conservation laws in solving the ten simultaneous equations.

5. Summary and Concluding Remarks

Six equations have been constructed as a closure for the Reynolds stress tensor by
utilizing the mathematical framework of Ryu [22]. The target of application in the present
study is distinct from their one; the objects of interest are not Reynolds stresses but the
system of RANS equations. The proposed RANS closure is mathematically exact and well-
determined, in which it stands out from existing RANS closure models and the Reynolds
stress transport equations.

It is extremely challenging to analytically solve the incompressible RANS equations in
combination with the presented six equations and the mean continuity equation, owing to
their implicitness and double-embedded nonlinearity. By contrast, it seems more feasible
to numerically solve these simultaneous equations. Regarding the latter, it would be a first
step to set physical boundary conditions for Reynolds stresses in order to close the system
of equations. Then, we could aim to find a possibility for obtaining numerically stable and
accurate solutions for a benchmark turbulent flow. Despite such a barrier to entry, this is a
challenge worth taking on as it could be a pioneering attempt to essentially overcome the
inherent limitation of modeling.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Expansion of Geometric Entity

This Appendix describes the expansions of the geometric entities of the differen-
tial Gauss–Bonnet formula for an orientable smooth surface given by parametrization
r = (u, v, f (u, v)), (u, v) ∈ R2. First, we recall the differential Gauss–Bonnet theorem from
Ref. [23].

Theorem A1. Let S be an orientable smooth surface in R3, and let r : U → S be a parametrization
of S in an open set U ⊆ R2. Then for each (u, v) ∈ U

K
∣∣N∣∣+(∂Fb

∂u
− ∂Fa

∂v

)
− ∂2φ

∂u∂v
= 0, (A1)

where K is the Gaussian curvature over S, N is the normal to S, Fa, and Fb are the products of
the geodesic curvatures of the coordinate curves v = const and u = const and the speeds of those
curves, respectively, and φ is the positively oriented angle of intersection from the coordinate curve
v = const to u = const on S.

The differential Gauss–Bonnet formula consists of seven geometric entities: K, |N|,
κg,u=const, κg,v=const, |ru|, |rv|, and φ, where κg is the geodesic curvature over a coordinate
curve on the map of r and the subscripts u and v denote the first-order derivatives of r
with respect to u and v, respectively. In particular, for a surface given by parametrization
(u, v, f (u, v)), these are expanded in terms of the derivatives of the two-variable function
f (u, v), as follows [25]:

K =
fuu fvv − f 2

uv

(1 + f 2
u + f 2

v )
2 , (A2)

|N| =
√

1 + f 2
u + f 2

v , (A3)
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|ru| =
√

1 + f 2
u , (A4)

|rv| =
√

1 + f 2
v , (A5)

κg,v=const =
〈ruu, n ∧ ru〉
|ru|3

=
fuu fv

(1 + f 2
u)

3/2
√

1 + f 2
u + f 2

v
, (A6)

κg,u=const =
〈rvv, n ∧ rv〉
|rv|3

=
− fvv fu

(1 + f 2
v )

3/2
√

1 + f 2
u + f 2

v
, (A7)

φ = arccos
(
〈ru, rv〉
|ru||rv|

)
= arccos

(
fu fv√

1 + f 2
u
√

1 + f 2
v

)
, (A8)

where n is the unit normal to S. The geometric entities of the differential Gauss–Bonnet
formula are similarly expandable for the surface given by parametrization (g(u, v), u, v) or
(v, h(u, v), u).
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