Two Velichko-like Theorems for C(X) †
Abstract
:1. Preliminaries
2. Introduction
3. An Auxiliary Result
- 1.
- Every uniformly bounded pointwise eventually constant sequence converges in .
- 2.
- X is a P-space.
4. Proofs of Theorems 4 and 5
4.1. Proof of Theorem 4
4.2. Proof of Theorem 5
5. Conclusions
- Weakly relatively sequentially complete sets if and only if X is a P-space.
- Pointwise-bounded weakly relatively sequentially complete sets if and only if X is finite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrando, J.C.; Gabriyelyan, S.; Ka̧kol, J. Functional characterizations of countable Tychonoff spaces. J. Convex Anal. 2019, 26, 753–760. [Google Scholar]
- Ferrando, J.C.; Ka̧kol, J.; Saxon, S.A. Characterizing P-spaces X in terms of Cp(X). J. Convex Anal. 2015, 22, 905–915. [Google Scholar]
- Ka̧kol, J.; Kubiś, W.; López-Pellicer, M. Descriptive Topology in Selected Topics of Functional Analysis; Developments in Mathematics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Ferrando, J.C.; López-Pellicer, M. Covering properties of Cp(X) and Ck(X). Filomat 2020, 34, 3575–3599. [Google Scholar] [CrossRef]
- Tkachuk, V.V. The spaces Cp(X): Decomposition into a countable union of bounded subspaces and completeness properties. Topol. Appl. 1986, 22, 241–253. [Google Scholar] [CrossRef]
- Tkachuk, V.V. A space Cp(X) is dominated by the irrationals if and only if it is K-analytic. Acta Math. Hungar. 2005, 107, 253–265. [Google Scholar] [CrossRef]
- Ferrando, J.C.; Ka̧kol, J.; Saxon, S.A. Distinguished Cp(X) spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2021, 115, 27. [Google Scholar]
- Ferrando, J.C.; Saxon, S.A. Distinguished Cp(X) spaces and the strongest locally convex topology. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2023, 117, 166. [Google Scholar]
- Gabriyelyan, S. Local completeness of Ck(X). Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2023, 117, 152. [Google Scholar]
- Ka̧kol, J.; Leiderman, A. Basic properties of X for which the space Cp(X) is distinguished. Proc. Amer. Math. Soc. Ser. B 2021, 8, 267–280. [Google Scholar] [CrossRef]
- Arkhangel’skiĭ, A.V. Topological Function Spaces; Mathematics and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Tkachuk, V.V.; Shakhmatov, D.B. When the space Cp(X) is σ-countably compact? Vestnik Moskov. Univ. Ser. I Math. Mekh. 1986, 41, 70–72. [Google Scholar]
- Bogachev, V.I.; Smolyanov, O.G. Topological Vector Spaces and Their Applications; Springer Monographs in Mathematics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ferrando, J.C.; Ka̧kol, J. A note on spaces Cp(X) K-analytic-framed in . Bull. Austral. Math. Soc. 2008, 78, 141–146. [Google Scholar] [CrossRef]
- Gillman, L.; Jerison, M. Rings of Continuous Functions; D. Van Nostrand Company: Princeton, NJ, USA, 1960. [Google Scholar]
- Arkhangel’skiĭ, A.V.; Choban, M. The extension property of Tychonoff spaces and generalized retracts. C. R. Acad. Bulg. Sci. 1988, 41, 5–7. [Google Scholar]
- Ferrando, J.C.; López-Pellicer, M. Classifying topologies through -bases. Axioms 2022, 11, 744. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Alfonso, S.; López-Pellicer, M.; Moll-López, S. Two Velichko-like Theorems for C(X). Mathematics 2023, 11, 4930. https://doi.org/10.3390/math11244930
López-Alfonso S, López-Pellicer M, Moll-López S. Two Velichko-like Theorems for C(X). Mathematics. 2023; 11(24):4930. https://doi.org/10.3390/math11244930
Chicago/Turabian StyleLópez-Alfonso, Salvador, Manuel López-Pellicer, and Santiago Moll-López. 2023. "Two Velichko-like Theorems for C(X)" Mathematics 11, no. 24: 4930. https://doi.org/10.3390/math11244930
APA StyleLópez-Alfonso, S., López-Pellicer, M., & Moll-López, S. (2023). Two Velichko-like Theorems for C(X). Mathematics, 11(24), 4930. https://doi.org/10.3390/math11244930