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Abstract: Binary codes have a special place in coding theory since they are one of the most commonly
used in practice. There are classes of codes specific only to the binary case. One such class is self-
complementary codes. Self-complementary linear codes are binary codes that, together with any
vector, contain its complement as well. This paper is about binary linear self-complementary codes.
A natural goal in coding theory is to find a linear code with a given length n and dimension k such
that the minimum distance d is maximal. Codes with these properties are called optimal. Another
important issue is classifying the optimal codes, i.e., finding exactly one representative of each equiv-
alence class. In some sense, the classification problem is more general than the minimum distance
bounds problem. In this work, we summarize the classification results for self-complementary codes
with the maximum possible minimum distance and a length of up to 20. For the classification, we
developed a new algorithm that is much more efficient compared to existing ones in some cases.

Keywords: binary self-complementary codes; optimal codes; classification
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1. Introduction

In our previous work [1], we studied binary linear self-complementary codes meeting
the Grey–Rankin bound. We considered the relations among six infinite families of binary
linear codes with two and three nonzero weights that are closely connected to these
self-complementary codes. Furthermore, a large part of our research is related to binary
self-dual codes, which are also self-complementary. Reed–Muller codes, which are related
to Boolean functions, are also self-complementary. This motivated us to take a closer look at
the class of self-complementary codes and determine when these codes for a given length
and dimension are optimal, i.e., when they have the largest minimum distance among all
binary linear [n, k] codes.

Classification is an important problem concerning many types of combinatorial objects.
Due to its complexity, it is possible only for structures with relatively small or very specific
parameters. Classification results have been obtained for different classes of linear codes:
self-dual, self-orthogonal, LCD, etc. For self-complementary codes, so far there have only
been partial results and no systematic classification.

A previous systematic study of self-complementary codes was presented in [2], but
the authors mainly dealt with the problem of bounds for the minimum distance. In our
study, we extend this research in two directions. One is presenting the exact number of
inequivalent optimal self-complementary codes with given parameters. The other is explor-
ing codes with larger lengths. We classify all self-complementary codes of length n ≤ 20.
As can be seen in the attached tables, in most cases, the constructed self-complementary
codes are optimal in general (as linear codes with the same length and dimension), but
there are exceptions.
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A binary linear code is self-complementary if it contains the all-ones vector 1 = (11 . . . 1).
Thus, for each codeword c ∈ C, the complementary vector c is also a codeword in C, where
c is obtained by replacing each 0 in c with 1 and each 1 with 0. For example, all self-dual
codes are also self-complementary. Furthermore, the special classes of self-complementary
codes that meet the Gray–Rankin bound and the two- and three-weight codes connected to
them are of great interest [1,3,4]. Such codes are connected to many combinatorial structures
such as SDP designs (a combinatorial design has the symmetric difference property, or
is an SDP design if the symmetric difference of any two blocks is either a block or the
complement of a block), bent functions, strongly regular graphs, and others. As seen in [5],
self-complementary codes are also important for error detection. The research in this area
is generally focused on codes meeting the Gray–Rankin bound.

Let d(n, k) be the maximum possible Hamming distance of a binary linear code for
given values of n and k. Codes with parameters [n, k, d(n, k)] are called optimal. An impor-
tant aspect of research in this field is the calculation of the number of inequivalent optimal
codes. The problems for bounds of minimum distance of codes and code classification have
been considered by many authors. Summary results for optimal binary self-orthogonal
and self-dual codes are presented in [6]. Classification results of binary linear codes can
be found in the research project in [7] and many others. A very accessible and important
source of information on minimum distance bounds for linear codes over fields of up to
nine elements is Code Tables: Bounds on the parameters of various types of codes [8].

In this work, we extend the existing results on the bounds for the maximum possi-
ble minimal distance of linear self-complementary codes presented in [2]. Let dSC(n, k)
be the maximum possible minimum distance among all self-complementary [n, k] codes. We
present the bounds for dSC(n, k) and the classification results for optimal self-complementary
codes with n ≤ 20. Some relations to known families of codes are also presented.

To find both the bounds and the classification results, we mainly use two algorithms.
Both are of the isomorph-free generation type and are based on the concept of canonical
augmentation. However, there is a big difference between them. One algorithm is described
in detail in [9] and is implemented in the program GENERATION. The other algorithm is
new and much more effective in cases with a large number of inequivalent codes, and its
detailed description is given below.

This paper is organized as follows. Section 2 presents some basic notations. Section 3
gives information about the algorithm strategies that are used. Section 4 presents the main
algorithm. Section 5 presents the obtained results. A brief conclusion is given in Section 6.

2. Basic Notations

A binary linear [n, k, d] code C is a k-dimensional subspace of the vector space Fn
2 . The

Hamming weight of a binary vector is the number of its nonzero coordinates. The minimum
weight (or distance) d of a binary linear code is the smallest weight among all nonzero
codewords in the code. The elements of C are called codewords. All linear codes are defined
by a k × n matrix whose rows form a basis of C, called a generator matrix of the code. Two
binary linear codes, C1 and C2, are equivalent if the codewords of C2 can be obtained from
the codewords of C1 by permutation of the coordinates of C1. A permutation σ ∈ Sn is an
automorphism of C if C = σ(C), and the set of all automorphisms of C forms a group called
the automorphism group of C, which is denoted by Aut(C) in this paper. If C has length n,
then the number of codes equivalent to C is n!/|Aut(C)|.

The classification problem can be considered as finding the generator matrices of all
inequivalent [n, k, d] binary codes for given values of n, k, and d. The dual code of C is
C⊥ = {u ∈ Fn

2 : u · v = u1v1 + u2v2 + · · ·+ unvn = 0 for all v ∈ C}. If C is an [n, k, d] code,
then C⊥ is an [n, n − k, d⊥] code, and d⊥ is called the dual distance of C. A generator matrix
H for the dual code is called a parity check matrix of the code C. A linear code is self-dual if
C = C⊥. All self-dual codes have an even length. Codes consisting of codewords with only
even weights are called even, and if all codewords have weights divisible by 4, the code
is called doubly even. The polynomial W(y) = 1 + A1y + A2y2 + · · ·+ Anyn is called the
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weight enumerator of the linear [n, k] code C if Ai is equal to the number of codewords in
C of weight i.

The next proposition gives a connection between the weights of the rows of a generator
matrix and the columns of a parity check matrix.

Lemma 1. Any even linear code C has a parity check matrix whose columns have odd weights, and
its dual is a self-complimentary code.

Proof. Let G = [Ik P] be a generator matrix for C in systematic form. Then, each row of P
has an odd weight. And accordingly, the parity check matrix H =

[
PT In−k

]
has only odd

weight columns. The sum of all rows of H gives the all-ones vector.

A subcode of C is a linear subspace of the code. The residual code Res(C,c) with
respect to a codeword c ∈ C is the restriction of C to the zero coordinates of c. If C is
self-complementary, then its residual code with respect to a codeword c ̸= (1 . . . 1) is also
self-complementary. A lower bound on the minimum distance of the residual code is given
by the following theorem.

Theorem 1 ([10], Lemma 3.9). Suppose C is a binary [n, k, d] code and suppose c ∈ C has weight
w, where d > w/2. Then, Res(C, c) is an [n − w, k − 1, d′] code with d′ ≥ d − w + ⌈w/2⌉.

The following proposition gives a lower bound on the dual distance.

Lemma 2. Suppose C is a binary [n, k, d] code with dual distance d⊥, c ∈ C, and the dimension of
Res(C, c) is k − 1. Then, the dual distance of Res(C, c) is at least d⊥.

For any length n and minimal distance d, the Gray–Rankin bound [11–13] is an upper
bound for the cardinality of a binary self-complementary code C. It states that

|C| ≤ 8d(n − d)
n − (n − 2d)2 (1)

provided that the right-hand side is positive. The bound also holds for nonlinear codes,
but we only consider linear codes here. This bound gives a relation between the number
of codewords and the length and minimum distance of a code. Linear codes meeting the
bound exist only for specific parameters, as shown in [14]. Subcodes and residuals of codes
meeting the Gray–Rankin bound are of great research interest since they are connected to
many other combinatorial structures [15].

3. Strategy Used in the Algorithms

In this section, we present the main ideas we follow in developing the code classifi-
cation algorithm. This algorithm works for linear codes in general. In the beginning, we
note that linear codes have a good description in terms of generator matrices. A generator
matrix G defines a code C, which can be considered a representative of its equivalence class.
Therefore, for the classification of binary codes with parameters n and k, it is necessary to
construct exactly one generator matrix of a linear code from each equivalence class.

The algorithms for the classification of codes are characterized by the fact that ex-
haustive generation of all matrices that generate codes with the desired parameters and
properties must be carried out. The construction of the matrices can be carried out row by
row or column by column depending on whether we have more constraints on the weight
distribution and minimum distance or on the dual distance. In order for the algorithms
to be effective, it is necessary to consider as few sub-objects as possible in the generation
process, without losing non-equivalent solutions at the last step. We can consider that the
matrices we want to construct are in a systematic form. Then, the unknown part of the
matrix consists of n − k columns. If we want to construct only the set of these inequivalent
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[n, k, d] codes that have as a residual code, with respect to a codeword with weight d,
a given code Cr with parameters [n − d, k − 1, d′ ≥ d/2], then the number of unknown
columns is n − d − 1 because we consider a generator matrix G in the following form

G =

(
1 0 . . . 0 0 . . . 0 11 · · · 1
0 Ik−1 Gr X

)
(2)

where (Ik−1|Gr) generates the residual code Cr of C.
In the same notations, the following matrix is a parity check matrix of the code C.

G⊥ =


0 GT

r In−k−d+1 0
1
... XT 0 Id−1
1

. (3)

The use of residual codes, as seen in [16], has proven to be very effective. The problem
of finding the equivalent up to extension sub-objects (sub-matrices) in the generation
process is of great importance. In other words, the problem is how to construct a minimum
number of sub-matrices in the generation process without losing non-equivalent solutions.
The different approaches are described in the monograph in [17].

Here, we use the concept of canonical augmentation [18]. This method is very effective
for the classification of combinatorial structures. The construction is recursive; it consists of
steps in which inequivalent objects are obtained from smaller objects by extending them in
a special way. Canonical augmentation uses a canonical form to check the so-called “parent
test” and considers only objects that have passed the test. The main idea in our case is to
construct column by column only inequivalent linear codes using residual codes and in
this way, to have a classification of these objects. The technique of canonical augmentation
is used for the classification of different types of codes [9,19].

The second algorithm we use in our research is also based on canonical augmentation.
In this algorithm, the fixed part of the generator matrix is only the identity matrix. It is
presented in [9] and implemented in the program GENERATION, which is the first module
of the software package QEXTNEWEDITION (standard version 1.1 for Linux; author: Iliya
Bouyukliev; Veliko Tarnovo, Bulgaria). The program is available at http://www.moi.math.
bas.bg/moiuser/~data/Software/QextNewEdition (accessed on 13 November 2023).

4. About Canonical Form and Canonical Augmentation

Codes that are equivalent belong to the same equivalence class. Every code can
serve as a representative for its equivalence class. To construct all inequivalent codes
with given parameters means to have one representative of each equivalence class. To
accomplish this, we use the concept of a canonical representative, selected on the base of
some specific conditions.

Let G be a group acting on a set Ω. This action defines an equivalence relation such that
the equivalence classes are the G-orbits in Ω. We wish to find precisely one representative
of each G-orbit and, therefore, we use a so-called canonical representative map.

Definition 1 ([17]). A canonical representative map for the action of the group G on the set Ω is a
function ρ : Ω → Ω that satisfies the following two properties:

1. For all X ∈ Ω, it holds that ρ(X) ∼= X;
2. For all X, Y ∈ Ω, it holds that X ∼= Y implies that ρ(X) = ρ(Y).

For X ∈ Ω, ρ(X) is the canonical form of X with respect to ρ. Analogously, X is
in canonical form if ρ(X) = X. The object ρ(X) is the canonical representative of its
equivalence class with respect to ρ. For a canonical representative of one equivalence
class, we can take a code that is more convenient for our purposes. The main advantage
of the canonical representation and the canonical form is reducing the object equivalence

http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition
http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition
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problem to the object comparison problem. Combined with information about the group of
automorphisms, the canonical form of objects is the basis of the most efficient algorithms of
the isomorph-free generation type.

In our case, Ω is the set of all binary linear [n, k, d] codes, G is the symmetric group Sn,
and ρ is a permutation of the coordinates of a linear code.

We use one more group action. The automorphism group of the code C acts on the set
of coordinate positions and partitions them into orbits. The canonical representative map ρ
induces an ordering of these orbits.

The orbits for the canonical representative code ρ(C) are ordered in the following way:
O1 contains the integer a such that ρ(a) = 1, O2 contains the integer b that is not in the orbit
O1, and ρ(b) is the smallest with this property, etc. So, the permutation ρ maps the orbits of
C into the orbits of ρ(C). In this way, we obtain an ordering of the orbits

O1 ≺ O2 ≺ · · · ≺ Om. (4)

Let D be the set of all codewords with minimum weight d. It is possible for some orbit
Os that all codewords of D have the value 0 for each of the coordinates of Os. Let us delete
all such orbits from the sequence (4). Then, we obtain the ordering of the remaining orbits,
Oj1 ≺ Oj2 ≺ · · · ≺ Ojs , where s ≤ m. We call the first orbit Oj1 the special orbit and denote
it by σ(C).

Note that every coordinate i of the special orbit σ(C) has the following property: there
is at least one codeword of D for which the coordinate in the i-th position is 1.

To find the canonical form of a code, we use the algorithm described in [20]. Similar
to NAUTY, in addition to the canonical form, this algorithm also provides the order and
generating elements of the automorphism group of the considered code.

Main Algorithm

Our problem is finding the set U of exactly one representative (given by a generator
matrix) of each equivalence class in the family of all binary linear codes with parameters
[n, k, d > 2] and proper dual distance (if necessary). Assume that we already know all
inequivalent codes that can be residuals of the codes of U with respect to a codeword of
weight d. It follows from Theorem 1 that they have the parameters [n − d, k − 1, d′ ≥ d/2].
Denote the set of these codes by R. The set R consists of codes of a smaller length and
dimension compared to the codes in U and, therefore, it is easier to construct. The presented
Algorithms 1 and 2 are used together to solve our problem of finding U by using each of
the codes from R. The generator matrix of a code from U has the following form:

G =

(
0 1

G0 X

)
where G0 generates a code Cres from R.

Algorithm 1 Canonical augmentation column by column from residual codes

Input: The set of residual codes R ;
Output: A set Un of linear self-complimentary [n, k, d] codes;

1: Obtain the set R′;
2: Un = ∅;
3: for all Ci ∈ R′, do
4: Augmentation(Ci);// Algorithm 2



Mathematics 2023, 11, 4950 6 of 11

Algorithm 2 Procedure: Augmentation (A: linear code)

1: if the length of A is equal to n then
2: Un := Un ∪ {A};
3: else
4: for all codes B ∈ Ch∗(A) do
5: if B passes the parent test then
6: Augmentation(B);
7: end if
8: end for
9: end if

The algorithm is a canonical augmentation based on column-by-column construction.

To obtain the codes, we use a recursive construction starting with the matrix
(

0
G0

)
.

In the i-th step, we add a column to the considered generator matrices of the obtained
[n − d + i − 1, k] codes, but we take only those columns that give codes of length n − d + i
with minimum distance di = i. In this way, the codes obtained from a code C by adding one
coordinate form the set Ch(C). They are called the children of C. The code C is called the
parent for the codes C ∈ Ch(C) and is denoted by C = CP. We say that the code C ∈ Ch(C)
passes the parent test if the added coordinate belongs to the special orbit σ(C). By Ch∗(C),
we denote a subset of the inequivalent elements of Ch(C).

In the first step of our algorithm, we perform the following: (1) we add a zero row (as
a first row) to all generator matrices used to define the codes in the set R, and (2) we add
the k-dimensional vector (10 . . . 0)T as the last column to all matrices from (1). In this way,
we obtain codes with minimum distance 1, and from the set R, we obtain the corresponding
set of codes R′ with dimension k and minimum distance 1.

The next lemma proves that the equivalence test for codes that pass the parent test
and are obtained from non-equivalent parent codes is not necessary.

Lemma 3. If B1 and B2 are two equivalent linear [n, k, d] codes that pass the parent test, their
parent codes are also equivalent.

Proof. Let B = ρ(B1) = ρ(B2) be the canonical representative of the equivalence class of
the considered codes. Since both codes pass the parent test, the added column is in the
special orbit of both codes, or n ∈ σ(Bi), i = 1, 2. This means that there is a permutation ψ
that maps B1 to B2 and fixes the n-th coordinate. Hence, ψ maps the parent code of B1 to
the parent code of B2. Hence, both parent codes are equivalent.

The correctness of the algorithm follows from the following theorem.

Theorem 2. The set Un obtained from Algorithm 1 consists of all inequivalent binary [n, k, d] codes.

Proof. Let C be a linear [n, k, d] code with a canonical representative B. If σ(C) is the
special orbit, we can reorder the coordinates of C such that one of the coordinates in σ(C)
is the last one. Recall that at least one codeword with minimum distance d must have 1
in this coordinate (up to the definition of the special orbit). So, we obtain a code C′ that is
equivalent to C and passes the parent test. By removing this coordinate, we obtain a parent
code C′

P of C′ with minimum distance d − 1. We can carry out the same procedure for the
parent code C′

P. From the choice of the special orbit, after d steps, one of the codewords of
the obtained code will have weight 0 and the corresponding code, which is the residual
code with respect to this codeword. So, if we start Algorithm 1 with Cr, the result will be
equivalent to the code C.

Since d > 2, R′ consists of inequivalent codes. Therefore, in the first step, we obtain
only inequivalent codes. Suppose that the algorithm gives only inequivalent codes when
n = k + i, which means that it really gives the set Uk+i. Suppose that n = k + i + 1 and the
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codes B1 and B2 are included in the set Uk+i+1 from the algorithm but at the same time,
they are equivalent. Since these two codes have passed the parent test, their parent codes
are also equivalent according to Lemma 3. These parent codes are linear codes from the set
Uk+i, which consists only of inequivalent codes. The only option for both codes is to have
the same parent. But as we take only one vector of each orbit under the considered group
action, we obtain only inequivalent children from one parent code (Lemma 3). Hence,
B1 and B2 cannot be equivalent. This proves, by induction, that the codes in the set Un
obtained from the algorithm, are inequivalent.

Hence, in the last step, we obtain all inequivalent [n, k, d] codes with the needed
dual distance.

We provide the following comments on the algorithm:

1. The algorithm is presented for simplicity for binary codes with known residual codes
with respect to a codeword with minimum weight. But it can be used in the same
way if all inequivalent residual codes with respect to a codeword with weight w for
each w < 2d are known. It also works effectively for self-complementary codes. We
would like to point out that the residual codes of the self-complementary codes are
also self-complementary. Therefore, at each step of the generation, the resulting codes
must also be self-complementary.

2. Let us note that if we study a linear code with a given dual distance d⊥, then its
residual code with respect to any codeword has a dual distance d⊥1 such that d⊥1 ≥ d⊥.

3. The algorithm can easily be extended to non-binary cases.
4. This algorithm can be formulated as a row-by-row generation if we want to construct

a parity check matrix. Recall that any matrix H that generates an even binary code is
a parity check matrix for a self-complementary binary code (see (2) and (3)).

5. The overall complexity of the algorithm is difficult to determine because it contains
two backtracking algorithms as subalgorithms. One is for finding a canonical form
and the other is for the generation itself. The use of invariants has a big impact on the
efficiency of the algorithm. It is described in detail in [9]. The group of automorphisms
of the parent code can be used to find the inequivalent children (see [9]).

6. A similar idea for classifying linear codes based on their residuals is used in the
algorithm presented in [16]. But in that algorithm, the canonical form is used only
in the last step to verify whether a code of the same equivalence class has already
been obtained.

5. Results and Remarks

Recall that the function d(n, k) gives the maximum possible Hamming distance
of a binary linear code for given values of n and k. In this section, we consider the
function dSC(n, k) defined as the maximum possible minimum distance among all self-
complementary [n, k] codes. The value of dSC(n, k) for self-complementary codes with a
length of up to 15 has previously been calculated [2]. Here, we extend the research to
self-complementary codes with a length of up to 20 and give the number of inequivalent
codes for 9 ≤ n ≤ 20. The computations were executed on a Linux platform with an
Intel Xeon Gold 5118 CPU with a 2.30 GHz clock frequency. The results are presented
in Tables 1–3. In each table, there are four pairs of columns, where the first column of
each pair gives the parameters of the codes, and the next column gives the number of
inequivalent codes with these parameters (denoted by #). The cases k = 1 and k = 2 are
trivial for construction and calculation, as dSC(n, 1) = n and dSC(n, 2) = ⌊n/2⌋. Other
trivial cases are k = n and k = n − 1, where dSC(n, n) = 1, dSC(n, n − 1) = 2 for even n,
and dSC(n, n − 1) = 1 for odd n. Therefore, these cases are not presented in the tables. The
cases where dSC(n, k) = d(n, k) are marked with “*”.
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Table 1. Self-complementary codes for 9 ≤ n ≤ 12.

[n, k, dSC(n, k)] # [n, k, dSC(n, k)] # [n, k, dSC(n, k)] # [n, k, dSC(n, k)] #

[9, 3, 4]* 1 [10, 3, 4] 3 [11, 3, 5] 1 [12, 3, 6]* 1

[9, 4, 4]* 1 [10, 4, 4]* 3 [11, 4, 4] 5 [12, 4, 5] 1

[9, 5 ,3]* 1 [10, 5, 4]* 1 [11, 5, 4]* 2 [12, 5, 4]* 17

[9, 6, 2]* 9 [10, 6, 3]* 1 [11, 6, 3] 8 [12, 6, 4]* 7

[9, 7, 2]* 3 [10, 7, 2]* 17 [11, 7, 3]* 1 [12, 7, 4]* 1

- - [10, 8, 2]* 4 [11, 8, 2]* 20 [12, 8, 3]* 1

- - [10, 9, 2]* 1 [11, 9, 2]* 4 [12, 9, 2]* 34

- - - - - - [12, 10, 2]* 6

- - - - - - [12, 11, 2]* 1

* marks the cases where dSC(n, k) = d(n, k).

Table 2. Self-complementary codes for 13 ≤ n ≤ 16.

[n, k, dSC(n, k)] # [n, k, dSC(n, k)] # [n, k, dSC(n, k)] # [n, k, dSC(n, k)] #

[13, 3, 6] 1 [14, 3, 6] 3 [15, 3, 7] 1 [16, 3, 8]* 1

[13, 4, 5] 4 [14, 4, 6] 3 [15, 4, 7] 1 [16, 4, 8]* 1

[13, 5, 5]* 2 [14, 5, 6]* 2 [15, 5, 7]* 1 [16, 5, 8]* 1

[13, 6, 4]* 24 [14, 6, 5]* 1 [15, 6, 5] 11 [16, 6, 6]* 6

[13, 7, 4]* 4 [14, 7, 4]* 64 [15, 7, 5]* 1 [16, 7, 6]* 1

[13, 8, 3] 12 [14, 8, 4]* 6 [15, 8, 4]* 79 [16, 8, 4] 2427

[13, 9, 2] 202 [14, 9, 3] 12 [15, 9, 4]* 1 [16, 9, 4]* 221

[13, 10, 2]* 39 [14, 10, 2] 366 [15, 10, 3] 17 [16, 10, 4]* 10

[13, 11, 2]* 5 [14, 11, 2]* 61 [15, 11, 3]* 1 [16, 11, 4]* 1

- - [14, 12, 2]* 7 [15, 12, 2]* 72 [16, 12, 2]* 1038

- - [14, 13, 2]* 1 [15, 13, 2]* 7 [16, 13, 2]* 106

- - - - - - [16, 14, 2]* 9

- - - - - - [16, 15, 2]* 1

* marks the cases where dSC(n, k) = d(n, k).

Table 3. Self-complementary codes for 17 ≤ n ≤ 20.

[n, k, dSC(n, k)] # [n, k, dSC(n, k)] # [n, k, dSC(n, k)] # [n, k, dSC(n, k)] #

[17, 3, 8] 1 [18, 3, 8] 3 [19, 3, 9] 1 [20, 3, 10] 1

[17, 4, 8]* 1 [18, 4, 8]* 3 [19, 4, 8] 5 [20, 4, 9] 1

[17, 5, 8]* 1 [18, 5, 8]* 3 [19, 5, 8]* 5 [20, 5, 8] 28

[17, 6, 6] 25 [18, 6, 7] 2 [19, 6, 7] 28 [20, 6, 8]* 12

[17, 7, 6]* 2 [18, 7, 6] 161 [19, 7, 7] 2 [20, 7, 8]* 1

[17, 8, 5] 41 [18, 8, 6]* 8 [19, 8, 6] 288 [20, 8, 6] 102,870

[17, 9, 5]* 1 [18, 9, 6]* 1 [19, 9, 6]* 3 [20, 9, 6] 7043

[17, 10 ,4]* 252 [18, 10, 4]* 59,714 [19, 10, 5]* 75 [20, 10, 6]* 11

[17, 11, 4]* 3 [18, 11, 4]* 577 [19, 11, 4]* 311,161 [20, 11, 5]* 25

[17, 12, 3]* 12 [18, 12, 4]* 4 [19, 12, 4]* 470 [20, 12, 4]* 1,599,385

[17, 13, 2]* 1671 [18, 13, 3]* 12 [19, 13, 3] 7610 [20, 13, 4]* 1258

[17, 14, 2]* 123 [18, 14, 2]* 2785 [19, 14, 3]* 12 [20, 14, 4]* 7

[17, 15, 2]* 8 [18, 15, 2]* 174 [19, 15, 2]* 4411 [20, 15, 3]* 9

- - [18, 16, 2]* 11 [19, 16, 2]* 204 [20, 16, 2]* 7122

- - [18, 17, 2]* 1 [19, 17, 2]* 10 [20, 17, 2]* 277

- - - - - - [20, 18, 2]* 13

- - - - - - [20, 19, 2]* 1

* marks the cases where dSC(n, k) = d(n, k).
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We give some remarks on the self-complementary codes:

1. Many of the self-complementary codes in the tables have the maximum possible
minimum distance d for a linear code of the given parameters. The known maximum
values of the function d(n, k) for given n and k can be found in [8].

2. There is a unique [16, 5, 8] self-complementary code, and this is the Reed–Muller
code RM(1, 4). The self-complementary [16, 4, 8] and [16, 3, 8] codes are subcodes of
RM(1, 4).

3. There are six self-complementary codes with parameters [16, 6, 6]. Three of these codes
have the weight enumerator W(y) = 1+ 16y6 + 30y8 + 16y10 + y16. These three codes
have the Reed–Muller code RM(1, 4) as a subcode and define bent functions.

4. The unique [16, 7, 6] self-complementary code defines a vectorial bent function, as
seen in [21].

5. The number of even self-complementary codes with parameters [16, 8, 4] is 30. Seven
of them are self-dual codes, as two of them are doubly even (all their weights are
divisible by 4) [22,23].

6. The unique self-complementary [16, 11, 4] code is a residual of the extended binary
Golay code.

7. The unique self-complementary [15, 11, 3] code is the well-known Hamming code.
8. The number of even self-complementary [14, 7, 4] codes is four, and all of them are

self-dual [22,23].
9. There is a unique [18, 9, 6] code, and it is self-complementary but not self-dual [24].

This example shows that there are cases (length n and dimension k) in which all
optimal linear codes are self-complementary.

10. The self-complementary [10, 5, 4] code meets the Gray–Rankin bound. It is an even
code with the weight enumerator W(y) = 1+ 15y4 + 15y6 + y10, and it is not self-dual.

11. The weight enumerators of the self-complimentary [20, 10, 6] codes are:

• Seven codes with W(y) = 1 + 90y6 + 255y8 + 332y10 + 255y12 + 90y14 + y20;
• Three codes with W(y) = 1 + 94y6 + 239y8 + 356y10 + 239y12 + 94y14 + y20;
• One code with W(y) = 1 + 98y6 + 223y8 + 380y10 + 223y12 + 98y14 + y20.

The seven codes with the first weight enumerator are formally self-dual, i.e.,
they have the same weight enumerator as their duals. The four other self-
complementary codes are not formally self-dual. For completeness, we present
the generator matrices of these four codes. None of these codes is self-dual.

G1 =



00011111111000000000
11100011110100000000
00100101110010000000
00101010110001000000
01000110110000100000
10001100110000010000
10000111010000001000
11110000100000000100
11001111100000000010
01111110100000000001


, G2 =



01111111111000000000
10000011110100000000
00001101110010000000
00110010110001000000
00111100010000100000
00010111100000010000
11000101010000001000
10100110010000000100
10011000110000000010
11101100110000000001
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G3 =



01111111111000000000
10000011110100000000
00001101110010000000
00011110010001000000
00110010110000100000
11001100010000010000
11100010100000001000
01011100100000000100
10100101100000000010
11110101010000000001


and G4 =



01111111111000000000
10000011110100000000
00001101110010000000
00110010110001000000
00111100010000100000
00010111100000010000
01001010110000001000
10011000110000000100
10101001100000000010
01101100100000000001


12. All generator matrices and weight spectra of the considered codes are available on the

Internet at https://zenodo.org/records/10122985 (accessed on 14 November 2023).

6. Conclusions

This paper presents a complete study of optimal self-complementary codes of lengths
of up to 20. Moreover, a new effective algorithm for classifying linear codes is described
and applied. This algorithm is suitable for self-complementary codes. As seen in the results,
there are some cases in which the optimal self-complementary codes with a given length
and dimension are unique. Furthermore, many of the most important codes in theory and
practice are self-complementary, such as Reed–Muller codes, the extended binary Golay
code, Hamming codes, and others. For many values of the length n and dimension k, the
functions D(n, k) and dSC(n, k) are equal. Therefore, the study of self-complementary codes
is relevant for both finding optimal linear codes and studying different families of binary
linear codes and their related combinatorial objects.
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