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Abstract: This paper proposes and studies a discrete-time model for a sex-structured population with
non-overlapping generations under density-dependent regulation of survival. The population is
assumed to have genetic variety among individuals in terms of reproductive potential, controlled by
a single autosomal diallelic locus. We consider a panmictic population with Mendelian inheritance
rules. We examine the stability model and show that increasing the average value of reproductive
potential destabilizes the population dynamics. The scenario of stability loss in fixed points via
period doubling or Neimark—Sacker bifurcations depends on the intensity of the self-regulation.
The growth rate at which the population survives and develops is shown to depend on the fitness
of the genotypes and the secondary sex ratio. As a result, the asymptotic genetic composition of
the population is determined by the values of the reproductive potentials of the heterozygote and
homozygotes, the initial conditions, and the parameter describing the ratio of newborn females
to males. With disruptive selection, the influence of external factors changing the current genetic
composition of a population can alter the direction of evolution and lead to the extinction of a
successful developing population or a gradual population recovery due to evolutionary rescue after
a noticeable decline in its abundance.

Keywords: population dynamics; sex structure; genetic structure; density-dependent regulation;
dynamic modes; bistability; genetic variety; extinction
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1. Introduction

The fundamental principles of general biology that pertain to population evolution
and ecosystem dynamics were established under the assumption that ecological and evo-
lutionary processes are interconnected and that their interactions can be significant. In
particular, the author of the theory of evolution, Charles Darwin (Darwin, 1859), the cre-
ators of the synthetic “genetic” theory of evolution, R. Fisher (1930), S. Wright (1930), J.
Haldane (1932), and S.S. Chetverikov (1926), as well as the founders of theoretical ecology,
P. Verhulst (1847) and V. Volterra (1928) (as well as G.F. Gause (1935)) [1-8], considered
evolutionary and ecological processes as integral characteristics of a whole. Additionally,
the study of ecological and evolutionary dynamics assumes that organisms’ life cycle
features can evolve on a similar timescale as their population dynamics [9-11]. On the
one hand, changes in genetic structure occurring during the evolution of a population
(primarily under the influence of natural selection) affect the birth rate and, accordingly, its
dynamics. On the other hand, as a rule, fluctuations in abundance are caused by changes
in the population structure caused by the combined effects of environmental factors and
self-regulatory mechanisms [12-14]. Therefore, when modeling population dynamics, it is
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advisable to use an ecological-genetic approach that allows us to study the interconnected
changes in the abundance and genetic structure of a population [15-27].

Within the approach combining classic population genetic theory and ecological mod-
eling, the dynamics of genetic frequencies are studied depending on various inheritance
patterns and using the relative fitness values of genotypes, which allows for considering the
population abundance to be constant without analyzing its dynamics [2,28]. This approach
remains relevant today (e.g., [29-31]). A modification of unstructured ecological models by
including genotype fitness as a function of intra- and interspecies density [16] further devel-
ops this approach. In parallel, population genetics extends by considering both age [32-34]
and sex [35] structures. The concepts of density- and frequency-dependent components in
the action of natural selection have been developed [32-34], as have density-independent
forms of natural selection, whose action under ecological limitation can cause a change in
the nature of the population abundance dynamics [36-38]. Currently, research continues
to investigate the relationship between population genetics, stage (age) [23-26,39], and
sex [22] structures. The work [22] derives conditions for protected polymorphism in a
population characterized by age- or stage-dependent demography with two sexes.

Additionally, within the synthetic theory, there are studies using simplified models of
evolution that do not consider genetic dynamics in detail, i.e., they do not imply a detailed
description of the inheritance mechanism of the traits under consideration. In such studies,
as a rule, the evolution of polygenic and continuously distributed traits (or quantitative
traits [40]) is modeled (e.g., [41-46]), as is the evolution of clonal systems in which individ-
uals have separate discrete trait values and ideal inheritance of phenotypes, disturbed by
rare mutations [41,44,46—48]. In general, despite the large number of papers and diversity
of studied objects, unresolved issues remain related to the dynamics and evolutionary
features of structured populations and the study of their regulatory mechanisms.

On the other hand, combining classic population genetic theory and ecological model-
ing makes it possible to see the effects that are missed when using each of these approaches
in isolation, as well as to study the interconnected changes in the abundance and genetic
structure of a population under ecological limitation during the influence of natural se-
lection [20-27,49-52]. Examples include the effects of bottlenecks, evolutionary rescue, or
degeneration, in which genotype ratios determine the growth or decline of population
abundance. Note that sometimes there is a catastrophic decrease in population size up to
several reproductive pairs (individuals), which are subject to the threat of extinction. A
small population that is in danger of extinction still has two possible development options:
to become extinct or to adapt with a subsequent recovery of the population size after
passing through a “bottleneck” [53]. Note that massive non-selective mortality allows
only a few individuals to pass on their genes to subsequent generations. Consequently,
a temporary reduction in population size (bottlenecks in population size) can affect the
genetic variability, mutation load, and inbreeding levels in populations [53-56]. When en-
dangered species manage to adapt to changes in the environment within sufficiently short
time frames to prevent their extinction, this is referred to as evolutionary rescue [56-58].
Examples of natural populations that have temporarily passed through a bottleneck include
the following: Mexican and red wolfs [59], island gray Californian foxes [60], Mednyi arctic
fox [55], northern elephant seal [61], European bison [62], and cheetah [63]. The natural
interconnection of ecological and genetic processes and the discovered effects that are
observed in biological populations confirm the promise and importance of developing
eco-evolutionary approaches. Maintaining genetic polymorphism is a crucial issue in
population genetics [22-24,28,52,64—69], since a reduction in genetic variety combined with
genetic drift and inbreeding can lead to unpredictable and even catastrophic consequences
for the population. Thus, among the main results of population genetics are the criteria that
determine whether natural selection leads to the fixation of one genotype or the coexistence
of several genotypes with polymorphism [28,30,47,65-68,70]. For example, the lack of
genetic variety in cheetahs led to abnormalities in sperm formation, reduced fertility, high
infant mortality, and increased susceptibility to diseases [71].
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The present work is devoted to the development of an eco-genetic approach to model-
ing the dynamics of limited sex-structured populations with non-overlapping generations
within mathematical biology. We propose a dynamic model of a population that is struc-
tured by sex, which allows for studying evolutionary processes. Note that adding sex
structure to the model is important for understanding population abundance fluctua-
tions, since sexual reproduction is one of the essential mechanisms of microevolutionary
transformations and animal adaptation to the environment. The model assumes that
density-dependent factors limit the survival of females and males at different intensities.
In addition, we consider a population with genetic diversity in individuals’ reproductive
potentials, controlled by one autosomal diallelic locus. Note that mathematical models
rarely incorporate population genetic equations without simplifying Mendelian inheritance
principles. The unpopularity of single-locus models is related to the ingrained notion of
polygenic control of phenotypic traits. Increasing the number of loci that are considered
significantly complicates the models and quickly deprives them of the possibility of ade-
quately interpreting simulation results. However, using a single-locus diallelic inheritance
model is quite justified; in particular, one of the principal lifecycle traits of the arctic fox is
litter size, which is genetically determined by a single diallelic locus [72].

This paper aims to study the evolutionary dynamics of an ecologically limited popula-
tion that is structured by sex with seasonal reproduction and non-overlapping generations.
The reason for choosing populations with non-overlapping generations and a short life
cycle with a limited breeding period is the occurrence of significant fluctuations in the
abundance of such species [73-78]. An example of such a species is the larch bud moth, for
which genetic polymorphism is one of the main factors regulating its abundance [79,80].
At an excessively high density, the genetic structure of the insect population changes,
accompanied by the emergence of morphological forms that differ in several traits. In
particular, dark-colored ecotypes are more sensitive to food quality, and their predomi-
nance during defoliation accelerates the completion of the population abundance peak
phase [79]. Additionally, this species is affected by ecological limitations due to decreasing
food availability.

The present study continues a series of papers that is devoted to the dynamics of
a limited population with sex structure [81-84], focusing on ecological modeling. This
study considers changes in the reproductive potential of a population during evolution
under the influence of natural selection. Consequently, the proposed model combines an
ecological model of the dynamics of a limited population with non-overlapping generations
represented by females and males with a microevolutionary model of the dynamics of the
population’s genetic structure. We analyze the bistability of monomorphic solutions. We
deliberately make minimal assumptions about the ecological structure of the population. A
relatively simple model allows us to consider the influence of genotype reproductive poten-
tials, secondary sex ratio (proportion of newborn females), and intraspecific competition
on the dynamics of a sex-structured population and its genetic composition.

2. Model Assumptions

Let us consider a population with seasonal breeding, consisting of females and
males. The parental generation dies before the new breeding season starts, ensuring
non-overlapping population generations. Some species of plants, insects, fish, zooplankton,
and birds have non-overlapping generations.

We consider the time step in modeling 7 to be the interval between breeding sea-
sons. We assume that the number of females determines that of newborns, and the sur-
vival rates of females and males differ due to intraspecific competition and depend on
population abundance.

In addition, we assume that there is genetically determined variety among individuals
in the population, differing in reproductive potential (the maximum of their possible fecun-
dity). To understand the basic outcomes of natural selection in a considered population, we
can study a simple case where a single diallelic locus with alleles A and a encodes fitness.



Mathematics 2023, 11, 4971

4 0f 23

We assume that genes located on non-sex chromosomes (autosomes) control the reproduc-
tive potential, and there are three genotypic groups, AA, Aa, and ag, in the population, with
different reproductive potentials that are equal to 744, 74,4, and 7,,, respectively. Since the
gene is autosomal, these three genotypic groups exist in both sexes for this trait.

Let us assume that the population is panmictic, i.e., that there is free mating between
individuals with different genotypes, and Hardy-Weinberg equilibrium holds, linking
genotype frequencies and allele frequencies [35]. In this case, to describe the dynamics of
the population’s genetic structure, it is sufficient to consider the frequency dynamics of one
of the alleles; for certainty, it will be the dynamics of allele A. It is easy to show that for a
population with non-overlapping generations, after the first panmictic mating, the allele A
frequencies in females and males of the offspring equalize, and their further dynamics do
not differ (Appendix A).

As mentioned earlier, the ecological limitation of population growth is assumed by a
decreasing female and male survival with an increasing total abundance [18]. We consider
the linear decrease with different limitation (or competition) coefficients for females and
males. Moreover, the limitation is suggested to not depend on the genotype, i.e., the
survival of all female genotypic groups decreases with an increasing abundance according
to the same law, and the same is true for the male genetic groups. The difference in male
and female limitation coefficients does not lead to a difference in gene frequency dynamics
in either sex of the populations. Then, one equation can describe the dynamics of allele A
frequency in the population.

3. Model Description

The above assumptions are sufficient to obtain the following system of recurrent
equations to describe the dynamics of female and male abundances, as well as allele A
frequency in a population with non-overlapping generations and a genetic variety in
individuals in terms of reproductive potential (Appendix A):

F(n+1) = 87(n) F(n)(1 — B1(F(n) + M(n)))
M(n+1) = (1-8)7(n)F(n)(1 - Bo(F(n) + M(n))) , ¢))
pa(n+1) =pa(n)(raapa(n) +ra.(1—pa(n))/7(n)

where 7 is the breeding period number; F (F > 0) and M (M > 0) are female and male abun-
dances, respectively; pa(n) (0 < pa < 1) is the frequency of allele A in the n-th generation;
B1(B1 > 0)and B, (B, > 0) are limitation coefficients describing the intensity of intrapopu-
lation competition; and 6 (0 < § < 1) is the proportion of newborn females. Parameters r 4 4,
Y aq,and 744 (raa, ¥ Aq, Taa > 0) are the reproductive potentials of genotypes AA, Aa, and aa,

respectively; 7(1n) = rax(pa(n))? +2raapa(n)(1 — pa(n)) + raa(1 — pa(n))%, 7 > O is the
average reproductive potential of individuals in the population in the n-th breeding season.

After the transition to relative abundances (Ff3, — f,Mp, — m), we obtain equations
for the evolutionary dynamics of a population with two sexes in a simplified form:

f(n+1) =87(n) f(n)(1—p(f(n) +m(n)))
m(n+1) = (1-8)7(n)f(n)(1— (f(n)+ (”))) , )
pa(n+1) =pa(n)(raapa(n) +ra.(1—pa(n))/7(n)

where p = 31/, (p > 0) denotes a parameter that characterizes the relative contribution
of mature individuals to the limitation of the population survival process.

The first two equations of system (2) describe the dynamics of female and male
abundance when the average reproductive potential 7(1) changes during microevolution.
The third equation of system (2) corresponds to the dynamics of the A gene frequency,
which determines reproductive potential, i.e., the microevolution process itself.
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Apa=pa(n+1)—pa(n) =

4. Fixed Points and Their Stability

In the third equation of system (2), the change in allele A frequency under the influence
of natural selection does not depend on the first two equations. This means that the
frequency of allele A (value p,) in the model under consideration does not depend on
the numbers of females and males. The change in the frequency of allele A, i.e., for one
generation, equals

pa(n)(raapa(n) +ra,(1—pa(n))
TAA(PA(”))Z +2raapa(n)(1 = pa(n)) +rsa(1 - pa(n))

2 PA(W)-

We find the equilibrium values of the frequency of allele A by equating Ap4 = 0,
i _ PATAA=2T A+ Ta0) T Ag—Taa
Lo DAl = PA) G ) P ()2 a
It follows from the last equation that in system (2), three equilibrium genetic structures

are possible, in which the equilibrium frequency of allele A takes the values of either p, = 0,
orp, =1,0rp, = p*, where p* = (rsa —144a)/(raa —2raa +7aa), 0 < p* < 1, which is
the same as in the evolution model of a homogeneous population [38,66,85]. The first two
equilibrium states are monomorphic and correspond to the complete displacement of one
allele by another. The third equilibrium corresponds to the maintaining polymorphism
in the population, i.e., the population has both alleles A and 4, and in general, all three
genotypes are present: AA, Aa, and aa.

Substituting stationary values 7 into the first two equations of system (2) gives the
values of female and male population numbers. Let us present all the stationary states of
system (2).

System (2) has three fixed points with zero numbers of females and males, of which two
are monomorphic—E(0, 0, 0) (by allele a) and E{(0, 0, 1) (by allele A), and
one is polymorphic—E;(0, 0, p*). Fixed points Ey, E;, and E, correspond to
population extinction.

In addition, model (2) has three fixed points with a non-zero population size:

1. Monomorphic fixed point E3(f, 71, 0) with respect to allele a has the following
coordinates:
f=1—148)/(raa((p = 1)8(raa(8 = 1) = 1) = 1)),

= (1= 8)(1+ Faa(p— 1)8)/(50 F), B =0, ®

where 7, > 1/6. In this case, females and males in the population are represented
only by individuals with the aa genotype, while the AA and Aa genotypes are absent.
2. Monomorphic fixed point E4(f, 71, 1) with respect to allele A has the coordinates

F = (1 =rand)/(raa((p = 1)8(raa(s —1) = 1) = 1)), w
7= (1-8)(1+ ran(p—1)8)/(5p f), p = 1,
where 744 > 1/8. The fixed point E4(f, 7, 1) corresponds to the situation when the
population consists of indivigiuals from both sex groups with only the AA genotype.
3. Polymorphic fixed point Es(f, 71, p*) has the coordinates
f=-C(Bs—C)/(((p—1)B8*— (B+C)(p—1)5 - C)B), )
m=(1-8)((p—1)B8+C)C/(dp f), Pa =P",

where p* = (tga —740)/ (raa —2¥aq +Tag) and B = r g a¥aq — ria, C=14—2rpg+"aa
which has its meaning if the following conditions hold: f > 0, m > 0, and
0 < p* < 1. Therefore, equilibrium E5(f, 71, p*) exists when 74, > max(ra,7aa),
TAA > (ériu — 2% pq + Taa)/ (ragd — 1) or ra, < min(raa,te), and rag >
(61’31& —2rpq + taa)/ (raad — 1). In the case of polymorphism, females and males
in the population are represented by three genotypes: AA, Aa, and aa.
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To find the boundaries of the stability domains of the fixed points of system (2), we
use standard methods [86] based on the characteristic polynomial A + SA?> + HA + ] = 0
for the Jacobian matrix of system (2). This approach allows us to specify hypersurfaces
corresponding to different bifurcations of codimension 1: (1) transcritical (TC)
H = —-]—-1-S5atA =1, (2) period doubling (PD) H = -1+ S atA = —1, and
(3) Neimark-Sacker (NS) H = S] — J?> + 1 at A = ¢¥ and |A| = 1 [86].

Table 1 presents the bifurcation lines bounding the stability domains of the fixed points
of model (2).

Table 1. The boundaries of the stability domains of the fixed points of model (2).

Fixed Points

The Boundaries of Stability Domains

Transcritical bifurcation line (TC)

Ey, E3 TCY: 1aad — 1 =0; TC3: g — 74, = 0
Eq, E4 TClirand—1=0;TCi:rpn — 12, =0
E,, Es TC2: rap —Tpg =0; TCE: tag — raq = 0; TCy: 8(raataa — 13,) — (raa — 27 aq + 7aa) =0
Period doubling bifurcation line (PD) Neimark-Sacker bifurcation line (NS)
E v — _ (5-1)(ras8+3)(rasd-1) L (5—1)(rad—1)
3 PDs: p 5(r2,8%—(12,—27a0)8—7100—3) NSs: 0 = 6(rﬁ,,627(r,§,,+2rw)5+%raa+1)
E oy — _ (8-1)(raad+3)(raad-1) L (6=1)(raad-1)
4 PDy:p 8(r3 87— (154 —2raa)5—1aa—3) NSy p = 6(r%mézf(riAJrZrAA)6;»21’AA+1)
Lo (B5+3C)(5—1)(B5—C) o (5—1)(B5—C)
Es PDs: p 5(B25%—(B—2C)B5—(B+3C)C)’ NSs: p = 5(B282—(B+2C)B&+(2B+C)C)’

B=raataa — 15, C=7aa —2raq + raa B=rantaa — 1%, C=71aa —2raq + Taa
TC, NS, and PD are lines of transcritical, Neimark-Sacker, and period doubling bifurcations, respectively. The lines
of transcritical bifurcations for the following pairs of fixed points Ey and E3, E; and Ey4, and E; and Es coincide.
Subscripts 3-5 in lines NS and PD indicate the number of fixed points (E3—Es) that lose their stability.

Figure 1 shows the stability domains of monomorphic and polymorphic solutions
of system (2), with zero and non-zero numbers of females and males on the parameter
plane (p, r44).

@ry,=12,r,=05 ®)ry,=3,r,=05 ©)ryu=357r,=2 Stability domains

- Y » ; ¥4 1 of fixed points
i 1 1 =

. ok ol 4 P/ Eq(0,0,0)
PD4“ \ NS4 PD4> ‘\.ivS4 PD4‘ ‘\NS4 El (0’ 0’ 1)

e TC‘ 4l & ¢ 41 /@ E,(0,0,p"

‘ Wi’ © o lipp. © TG R E@MO0)

T 2 : @ i

0 0 0 P e ¢ m 1
0 2 4 p 0 g) 4 p 0 2 a(hm, 1)

4 p ¢ S
CHFATENS

Bistability domains
of fixed points

EOaEl
EO’E4
ElaE3

erp=12,r,=55

PD >

7C?

Es Ey

2 4 p 0

Figure 1. Stability domains of monomorphic and polymorphic fixed points of model (2) with 5 = 0.5
in the plane (p,744). TC, NS, and PD are lines of transcritical, Neimark—Sacker, and period doubling
bifurcations, respectively (Table 1).
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The presented parametric portraits demonstrate the possible dynamics of female and
male abundances in a population, depending on the ratio of reproductive potentials of
different genotypes and the intensity of ecological limitation (Figure 1). Note that the loss of
stability of equilibrium solutions with non-zero abundance (i.e., E3, E4, and Es) is realized
both according to the Neimark—Sacker scenario (NS) and the period doubling scenario
(PD) (Table 1, Figure 1). At the same time, the genetic composition will remain constant
and correspond either to monomorphism or polymorphism, depending on the ratio of
reproductive potentials of the heterozygote and homozygotes.

First, let us fix the parameters of system (2) so that the reproductive potential of the
heterozygote 4, takes intermediate or maximum values, i.e., during evolution with an
increasing reproductive potential of genotype AA (r44), overdominance is replaced by
directional selection (Figure la—). Atrg, > 14 and r4, < 1/§, the stability domain of
system (2) on the plane (p, ra4) consists of the stability regions of fixed points E, (at
TAA <Taq), E1 (@t ra, <raa <1/8),and E4 (atrga > 1/0), separated by bifurcation lines
TC% and TC% (Figure 1a). Atrga < ra, and ry; < 14,, there is overdominance, i.e., the
population is polymorphic, but due to insufficient reproduction, including due to the sex
ratio, the population becomes extinct. With a further increasing reproductive potential 74 4
atrg, < rag <raa <1/9, the most fecund and, therefore, the most successful genotype
is AA; it displaces all others; however, its level of reproduction and the current sex ratio
also lead to population extinction in the long run. If 744 > 1/§, then the reproductive
potential of genotype AA reaches a level at which a monomorphic A population survives
and successfully develops. At the same time, when crossing bifurcation boundary NSy, an
increase in the reproductive potential of the homozygote AA (74 4) leads to a loss of stability
of the solution E4 according to the Neimark-Sacker scenario: the dynamics of female and
male abundance switch to a quasiperiodic mode. When crossing the PD4 boundary with
increasing 144, the loss of stability of the fixed point E4 occurs according to the period
doubling scenario: stable oscillations of abundance arise, generated by a cascade of period
doubling bifurcations. Moreover, the loss of stability of the solution E4 according to the
period doubling scenario occurs at smaller values of the ecological limitation intensity p
and, according to the Neimark-Sacker scenario, at higher values of p.

An increase in the reproductive potential of the heterozygote r 4, (r4, > 1/5) leads
to the fact that the stability region of system (2) on the (p, r44) plane is formed by the
stability areas of solutions E, (at raa < (814, — 2raq + 7aa)/(raad — 1)), Es (at
(6;’124” — 2 pg + taa)/ (12ad — 1) < raa < ta,), and E4 (at raa > 1a,), separated by bi-
furcation lines TC} and TC? (Figure 1b). In this case, with the increasing reproductive
potential of genotype AA during evolution, monomorphism replaces polymorphism. More-
over,atrgq < (61'124 Q= 2 ant taa)/ (*aad — 1), the polymorphic population becomes extinct
due to insufficient reproduction.

Higher r4, values expand the stability domain of the polymorphic solution Es
(Figure 1c). At the same time, with increasing r4, values, the stability region of the
monomorphic fixed point E4 narrows due to the shift of the transcritical bifurcation line
(Figure 1a—c). The boundaries corresponding to the period doubling (PD,) and Neimark-
Sacker (NS4) bifurcations remain unchanged. In turn, changing the reproductive potential
values of the aa homozygote in the range of 0 < 74, < 74, does not affect the type and
shape of the E4 solution stability region (Figure 1).

With the reproductive potential of the heterozygote being smaller than that of both
homozygotes, the increase in the reproductive potential of genotype AA leads to the fact that
a “bistability trap” replaces directional selection. The second row of Figure 1 demonstrates
the bistability of monomorphic solutions. The stability region of system (2) consists of the
stability regions of solutions Ey, E1, and E4 (Figure 1d); E1, E3, and E, (Figure 1e); and E3
and E, (Figure 1f).

The bistability of monomorphic fixed points Ey and E; and Ey and E4 takes place
when the stability domains of the monomorphic A allele fixed points with zero (E1) and
non-zero (E4) abundances, separated by the line r44 = 1/6 (line TC%), overlap with the
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0

(a) Tha = 1

stability region of the monomorphic a allele solution with a zero population number (E)
(Figure 1d). If the stability domains of fixed points E; and E,4 intersect with the stability
region of equilibrium E; with non-zero abundance, the bistability of E3 with E; and E3
with Ey arises, respectively (Figure le). The stability domain of solution E3 in the parameter
plane (p, r44) is a strip parallel to the ordinate axis (Figure le,f). One can see that with
increasing values of the parameter p, characterizing ecological limitation, solution E3 can
lose stability according to the period doubling scenario (via PD3) and the Neimark—Sacker
scenario (NS3). Figure 1e,f show that the stability areas of fixed point E3 cover those of Ej.
One can see domains where both solutions E3 and E, are simultaneously stable or unstable,
or where one of them is attractive but the other is not. This indicates the bistability of
monomorphic solutions when the equilibrium dynamics of the population size with the aa
genotype can coexist with periodic or quasiperiodic fluctuations in the population with
genotype AA or vice versa.

Note that the picture of dynamic behavior on the parameter plane (p, 4,) is similar to
(p, Ta4), since the solutions of system (2) are symmetric to 744 and 7.

5. Type of Selection and Dynamics of System (2)

The type of selection and, accordingly, the dynamics of the genetic composition
in system (2) depend on the ratio of reproductive potentials of the heterozygote and
homozygotes ¥4 4, 7 44, and 74, (Figure 2). Let us consider this in more detail.

2 ®)r,=12 ©)r,,=12,r,y=25 Stability domains

of fixed points

Ey(0,0,0)
PD; 10,0, )
Bl £ 0,0, p")

ARIGARRRNRNY

R\ & (7; m, 0)

@) @ : @ EGm 1
\WER\ ; T IT7AG 0 o 5.2
122 4 6r, 02 2 4 6 ry 0 04 1Cl 083 8 o
(d) 7, =35 ©r,=35 () Foy = 3.5, 74 = 2.5
_________ Neoo Tda | Tda \ . Bistability domains
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Figure 2. Stability domains of monomorphic and polymorphic fixed points of system (2) with 6 = 0.5,
p = 1.5. TC, NS, and PD are lines of transcritical, Neimark-Sacker, and period doubling bifurcations,
respectively (Table 1).

5.1. Increased Reproductive Potential of Heterozygotes

With 74, > max(r44,%), the population maintains stable polymorphism at the
equilibrium allele A frequency, i.e., p, = p*. At the same time, the monomorphic solu-
tions p, = 0 and p, = 1 exist but are unstable. In this case, there is selection favoring
heterozygotes, known as a balancing selection (or heterozygote advantage) [87].

In system (2), there can be two polymorphic fixed points with zero (E;) and non-zero
(Es) female and male abundances. The polymorphic point with a non-zero population
abundance Es is stable if, in addition to the condition of a selective advantage of heterozy-

gotes, the following ratio holds: 74, > 1%, = (1 + /(raad —1)(raad — 1)) /& (region 6 in
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Figure 2). However, at 4, < r,,, the polymorphic fixed point with a zero population size
E; becomes stable (region 1 in Figure 2).

At low reproductive potential values of homozygotes compared with heterozygotes,
ie,raa < ta,and ry; < ra,, from any polimorphic initial condition, the allele A frequency
monotonically tends to the polymorphic equilibrium p, = p* with zero (at ra, < 1,
Figure 3a) or non-zero (at r 4, > 17, Figure 3b) female f and male m abundances. Note that
at 4, < r3,, the population maintains its genetic variety, but the growth rate is such that
it eventually goes extinct. Accordingly, the level of successful reproduction at which the
population survives depends not only on the genotype fitness but also on the secondary
sex ratio (9).

@ry=18r,=2,r,=12 ®ry=25r,=35r,=21
0.2 T T T T T T T 0.6
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A i m
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Figure 3. Trajectories of system (2) at 5 = 0.5, p = 1.5. (ab) fo = 0.2, mg = 0.15,pp = 0.1,
() fo=10.1, my = 0.14,pg = 0.99998, (d) fo = 0.1, mg = 0.12, py = 6.6 x 10~°.

Consider a situation where the initial allele A frequency in the population is close to
latry <raa < ra, (Figure 3c). This arises when genotype AA becomes predominant
in a population with two sexes due to an external factor’s influence and the number of
individuals of other genotypes is too small. However, over time, while maintaining the
increased reproductive potential of heterozygous individuals in the population, stable
polymorphism is established (Figure 3c). Consequently, the other genotypes differing from
AA can appear in the next generation under favorable conditions. A similar situation arises
when the initial A allele frequency is close to 0 and 44 < 744 < 7,4, as shown in Figure 3d.

5.2. Intermediate Values of the Reproductive Potential of Heterozygotes

0 < raa <tag <rpapor0 < rga < ra, < ra, corresponding to so-called driving
selection, lead to the establishment of monomorphism with more fitted alleles [87].

At 0 < 14 < 1, < raga, the selection results in allele A fixation with allele a displace-
ment. In this case, two monomorphic equilibria of the population genetic structure exist;
one of them, p, = 0, is unstable, and the other, p, = 1, is stable.

The bifurcation line r4 4 = 1/ separates the stability domains of monomorphic fixed
points with zero (E1) and non-zero (E;) densities of females and males with AA genotypes
(regions 2 and 4 in Figure 2). With rq4 < 1/§, the monomorphic allele A fixed point
with a zero population size is stable (region 2 in Figure 2). If r44 > 1/, then E4 with
non-zero density is stable (area 4 in Figure 2). For any p4 value in the range of 0 < p4 < 1,
the allele A frequency monotonically increases and tends to unity. Consequently, only
individuals with the AA genotype survive in the population, while individuals with the aa
and Aa genotypes become extinct. The population size tends to either zero withrgs < 1/0
(Figure 4a) or a non-zero value with r44 > 1/6 (Figure 4b).
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Figure 4. Trajectories of system (2) at &6 = 0.5, p = 1.5 with variation of initial condition.

@) fo = 0.3, mg = 0.15,po = 05, (b) fo = 0.1, mg = 0.1, po = 04, (c) fo = 0.3, mg = 0.15,po = 05,
(d) fo=0.1, mg=0.1,py = 0.6.

With 0 < r44 < raq < taq, allele a is fixed, and allele A is eliminated for any
polymorphic initial condition. In the case of r,; < 1/5, the point Ey, corresponding to the
zero monomorphic fixed point with respect to allele g, is attractive (region 3 in Figure 2). If
aqg > 1/, then point Ej3 is stable, which corresponds to a monomorphic allele 2 population
with non-zero size (area 5 in Figure 2). Consequently, at 0 < 144 < ra, < 744, for any
non-zero initial condition, the frequency of allele A monotonically decreases to 0, and the
population size tends to either zero with r,, < 1/8 (Figure 4c) or a non-zero value with
tag > 1/6 (Figure 4d).

5.3. Reduced Reproductive Potential of Heterozygotes

Taqa < min(ra4,7.q) leads to the bistability of monomorphic states when two extreme
genetic structures in the population are stable. Disruptive selection, also known as de-
structive selection, promotes the survival of extreme genotypes and the elimination of
intermediate ones from generation to generation [87].

With a disruptive type of selection, a non-trivial polymorphic fixed point p, = p*
exists, but it is unstable. There are two stable states in which the allele frequency is either
P4 = 0orp, = 1. Which fixed point is attractive depends on the initial genetic structure
of the population. If the allele A frequency is smaller than p* in the initial generation, then
itdrops to 0 (pa — 0). If the initial value p4(0) is in the range of p* < p4(0) < 1, then the
allele A frequency increases to 1 (p4 — 1). Consequently, with a reduced reproductive
potential in heterozygotes, the result of selection is determined by the values of the repro-
ductive potentials of homozygotes and heterozygotes and by the initial genetic structure
of populations.

System (2) reveals four variants of bistability for fixed points.

Variant 1: The bistability of fixed points Ey and Ej, corresponding to monomorphic
populations with aa and AA genotypes, respectively, with zero group sizes of females
and males. The simultaneous coexistence of these stable fixed points occurs when the
following conditions hold: 0 < 74, <7aa <74 <1/80r0 <714, <t <rpa <1/8for
system (2) parameters (area 7 in Figure 2). Consequently, depending on the allele A fre-
quency in the initial generation, selection leads to either allele A fixation with
p* < pa(0) < 1 or its displacement with 0 < p4(0) < p*. In both cases, the popula-
tion size decreases until it becomes extinct.

Variant 2: The bistability of fixed point E, corresponding to a zero monomorphic aa
population and E4 with an AA genotype population of non-zero size. The bistability of
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these solutions exists at 0 < r4, < 140 < 1/8 < 144 (region 8 in Figure 2a—c). For example,
Figure 5 shows a trajectory and surface p4(f,m) = p* in the phase space of system (2).
The surface pa(f, m) = p*, denoted as p4 = p* in Figure 5a, is self-mapped, because all
trajectories whose initial points are on this surface belong to it. Obviously, polymorphic
fixed points E»(0, 0, p*) and E5(f, m, p*), where 0 < p* < 1, belong to this surface.
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Figure 5. Phase portrait (a) and examples of system (2) dynamics with different values of initial
conditions (b-e). The blue and green circles in the phase portrait of system (2) correspond to stable
(E4 and Ey) and unstable (E; and Ej) fixed points, respectively. B1—By are the initial points. Arrows
indicate the direction of the trajectory. Planes p4 = 0, pg4 = p*, and p4 = 1 define the areas of
attraction for fixed points. Vertical dotted lines separate ranges that correspond to neighborhoods of
stable (E4 and Ej) and unstable (E; and E;) fixed points.

With the reduced reproductive potential of heterozygotes, pa(f,m) = p* is a sepa-
ratrix surface dividing the phase space of system (2) into two attraction basins of stable
monomorphic fixed points. If the initial frequency of allele A p4(0) is in the range of
p* < pa(0) < 1 (point B; in Figure 5a), then all trajectories move away from this sur-
face and tend to the monomorphic allele A fixed point with a non-zero population size
(Figure 5a,b). At0 < p4(0) < p* (the initial point B, in Figure 5a), the trajectories tend to
the monomorphic allele a solution with a zero population size (Figure 5a,c). The allele A
frequency monotonically changes and corresponds to logistic growth (Figure 5b) or decline
(Figure 5c).

In the case of the presence of unstable fixed points E; and E,, the transition process
to one of the monomorphic states E,; or Eg changes if the allele A frequency in the initial
generation is close to the polymorphic equilibrium value p*.

When the value p4(0) is within the range of p* < p4(0) < 1 and close to the
separatrix surface pa(f,m) = p*, for example, the initial point B3 in Figure 5a, the
system (2) trajectory, initially approaches a polymorphic fixed point E; and then tends
to a zero monomorphic solution E; and subsequently achieves a monomorphic state E4
with a non-zero population size (Figure 5a,d). Such dynamic behavior is the so-called
“bottleneck effect”, when a catastrophic decrease in population size is caused by various
reasons and, following its recovery, is accompanied by a reduction in genetic variety [53,56].
Figure 5d demonstrates that initially, the population is polymorphic; over time, its size
decreases to a very small number of individuals. Because r44 > 742 > 744, the genotype
AA with the highest fitness fixes due to driving selection [85]. As a result, genetic variety
diminishes, and the population will present only individuals with the genotype AA. Over
time, the population size increases again, but genetic variety is not restored. As depicted in
Figure 5d, due to passing through a population bottleneck, the population loses genotypes
Aa and aa, which have lower reproductive potential and, in this case, result in extinction
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(b) B, fy=0.1,my=0.1, p, = 0.3

in the future. This type of system behavior can be considered and interpreted as an effect
of evolutionary rescue. A U-shaped curve of population size over time characterizes the
process of evolutionary rescue. Initially, the population size decreases due to poor adap-
tation to environmental conditions, and fitness increases as adaptive alleles spread in the
population [56,58].

If the allele A frequency in the initial generation is close to p4(f,m) = p* but smaller
than the value p* (the initial point B in Figure 5a, 0 < p4(0) < p*), then all trajectories
moving away from this surface tend to allele 2 monomorphic solution Ey with a zero
population size (Figure 5a,e). This transition is initially accompanied by a reduction
in population size but without a loss of genetic variety. Over time, however, genetic
impoverishment occurs in the population, resulting in the survival of only homozygous aa
individuals. Such processes are critical for the population’s development, and because the
reproductive potential of homozygote aa is insufficient for survival, its value is in the range
tag < 1/8 < rpa and leads to population extinction.

Variant 3: The bistability of fixed points E; and E3 when a monomorphic AA stable
state with a zero population abundance coexists with a monomorphic aa solution with a
non-zero population size. This bistability exists if the condition 0 < 74, < rg44 < 1/8 < r4q
holds (region 9 in Figure 2a,e,f).

In the phase space of system (2), the attraction basins of fixed points E; and E3 are
bounded by surfaces p4 =1, pa(f, m) = p*, and p4 = 0 (Figure 6).
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Figure 6. Phase portrait (a) and examples of dynamics for system (2) with different initial conditions
(b—e). The blue and green circles in the phase portrait of system (2) correspond to stable (E3 and E)
and unstable (Ey and E;) fixed points, respectively. Bj—B, are the initial points. Arrows indicate the
direction of the trajectory. Planes py = 0, pg = p*, and p4 = 1 define the areas of attraction planes
for fixed points. Vertical dotted lines separate ranges that correspond to neighborhoods of stable (E3
and E;) and unstable (Ey and Ej) fixed points.

If the frequency of allele A in the initial generation p,4(0) is in the range of
0 < pa(0) < p*, such as point B; in Figure 6a, then all trajectories tend to the monomorphic
aa solution with a non-zero population size E3 (Figure 6a,b). With p4(0) from the range of
p* < pa(0) < 1, for example, the starting point By in Figure 6a, which is the monomorphic
AA fixed point with zero abundance Ej, is attractive (Figure 6a,c).

Similar to the previous case, if the initial allele A frequency is close to the value p* for
the polymorphic fixed point, then the presence of unstable solutions Ey and E; leads to
non-monotonic transition processes in the system dynamics.

Figure 6a shows an example with an initial point B at p4(0) = p* + 10-® when
the initial allele A frequency p4(0) is slightly higher than the polymorphic equilibrium
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frequency p*. We can see that at the beginning, p4 tends to a value that is close to the
fixed point E; while maintaining polymorphism (Figure 6d). Then, during evolution,
allele A accumulates and displaces allele g, i.e., the population becomes monomorphic in
allele A. However, the reproductive potential of AA genotype individuals is insufficient for
population survival, since rq 4 < 1/0 < 1,4, (Figure 6a,d).

With the allele A frequency in the initial generation p 4 (0) being slightly smaller than
p*, as an example, for the starting point By at p4(0) = p* — 10~° in Figure 6a, system (2)
trajectories tend firstly to solution Ej, then to point Ey, and only after that, they reach
equilibrium Ej3. Consequently, during evolution, allele 2 accumulates in the polymorphic
population, which leads to allele A elimination (Figure 6a,e). At the same time, the numbers
of females and males in the population initially decrease to a critical level, then slowly
grow and reach equilibrium Ej.

Figure 6e illustrates a U-shaped curve of the changes in the group sizes of females
and males over time. Initially, the population size decreases due to the low reproductive
potential of individuals with genotypes Aa and AA. During evolution, the more adaptive
allele 2 accumulates, which leads to population size growth caused by selection and the
survival of homozygous individuals with the most suitable genotype aa. Here, as in the
previous cases, a temporary sharp decline in population size can be considered as passing
through a bottleneck. Evolutionary rescue of the population is achieved by increasing
the frequency of the existing allele a, which was initially rare. Note that if allele a was
not rare, then a catastrophic reduction in population size would not have been observed
(Figure 6b).

Variant 4: The bistability of fixed points E3 and E4, corresponding to the coexis-
tence of two monomorphic equilibria with non-zero group sizes of females and males.
System (2) reveals this bistability if the conditions 0 < 74, < *4a < r44, Yaa > 1/6 (domain
10 in Figure 2a,c,d), or 0 < 4, < ta4 < aa, ¥aa > 1/8 (domain 10 in Figure 2a,d,f) hold.

Similar to the previous cases, in the system (2) phase space, the attraction basins of
fixed points E3 and E, are bounded by the surfaces p4 =0, pa(f,m) = p*,and p4 =1, as
shown in Figure 7a.
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Figure 7. Phase portrait (a) and examples of dynamics for system (2) with different initial conditions
(b—e). The blue and green circles in the phase portrait of system (2) correspond to stable (E4 and E3)
and unstable (E5) fixed points, respectively. Bj—By are the initial points. Arrows indicate the direction
of the trajectory. Planes p4 =0, p4 = p*, and p4 = 1 define the areas of attraction planes for fixed
points. Vertical dotted lines separate ranges that correspond to neighborhoods of stable (E4 and E3)
and unstable (Es) fixed points.
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As in the case of the previous variant, with the initial point lying above the separatrix
surface p4(f,m) = p* (point By in Figure 7a), the population becomes monomorphic with
the AA genotype during evolution (Figure 7b). If the starting point is below p*, such as
B, in Figure 7a, then the evolution outcome is a monomorphic aa population (Figure 7c).
However, if the allele A frequency in the initial generation p 4 (0) is close to its value p* for
the polymorphic solution, such as for example the initial points B3 and B, in Figure 7a, then
the population can maintain polymorphism for a long time during the transition process
(Figure 7d,e). Here, we observe the fixation of one of the alleles and the elimination of the
other, which results in a monomorphic population (Figure 7d,e).

Thus, in this case, the outcome of evolution depends on the initial frequencies of allele
A at the initial stage of population development. With p < p*, allele A will be displaced; at
p > p*, it will fix. Consequently, the current genetic structure of the population determines
the outcome of evolution due to occurrences of the so-called “bistability trap”, when a
more promising genotype may be displaced by one with less fitness [25,26].

Above, we have considered various types of bistability of stable monomorphic solu-
tions of system (2). Note that at higher values of the reproductive potential of geno-
types, monomorphic fixed points with non-zero numbers lose stability according to
the period doubling bifurcation or Neimark-Sacker scenario (Figure 1). As a result,
we can observe the bistability of trivial/non-trivial stable solutions with periodic or
quasiperiodic dynamics.

6. Dynamics of the Genetic Composition of the Population with Changes in the
Reproductive Potential of Genotypes

This section considers the dynamics of the genetic composition of the population and
the group sizes of females and males with the changing reproductive potential of individu-
als of different genotypes during evolution. An increase in reproductive potential can be
caused, for example, by mutations when alleles with higher fitness appear. Accordingly,
we assume that in a hypothetical monomorphic aa population, as a result of mutation,
a new adaptive allele Ay with a higher reproductive potential arises, and its frequency
gradually increases. Initially, the ratio of the reproductive potentials of homozygotes
and heterozygotes is chosen so that system (2) trajectories converge to the monomorphic
ApAy solution with a zero population size (range I in Figure 8a). After 200 iterations of
a monotonous increase in the allele Ay frequency and nearly fixing it in the population,
a new allele A; with a higher reproductive potential appears due to another mutation
while maintaining a near-zero population size. During driving selection, the A; allele
frequency in the population monotonically grows, and allele A; displaces the A allele. At
the same time, the population size slowly increases, which corresponds to the tendency of
the trajectory to a non-zero stationary state (range II in Figure 8a).

The population size curves for females and males are U-shaped (intervals I and II
in Figure 8a), which corresponds to the evolutionary rescue of the population due to the
increase in the frequency of a new allele A; with a higher reproductive potential that
appears due to a mutation.

Furthermore, when the “good” allele A; becomes almost fixed and its frequency
is close to pa, = 0.99, a new better allele A, with a higher reproductive potential of
homozygote 74,4, appears. With the emergence of this superior allele A, the current
equilibrium population sizes of females and males approach a higher level (interval III
in Figure 8a). As allele A, becomes more prevalent, it replaces allele A1, and a new allele
Aj emerges, which has even higher fitness (interval IV in Figure 8a). Thus, the mutations
and driving selection lead to a series of transitions, resulting in the growth of the average
reproductive potential of the population over time (Figure 8a).
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Figure 8. Dynamics of allele frequencies p4,, average reproductive potential 7, and group sizes
of females f and males m at 8 = 0.5, p = 1.5, and initial conditions fo = 0.1, my = 0.1 with
@) Py (0) = pa,(200) = pa,(450) = ps,(700) = 0.01, (b) pay(0) = pa,(100) = py,(200) =
pa,(350) = 0.01.

Figure 8b illustrates the process of the emergence of “good” alleles with reproductive
potential whose values do not result in population extinction. Similar to the previous case,
the arising mutants (alleles) compared with the wild species are assumed to have adaptive
superiority. At driving natural selection, new alleles with higher fitness become fixed.
If individuals with a new allele are superior in fitness to those with the wild allele, the
new allele frequency in the population will gradually increase (Figure 8b). This process
corresponds to the mechanism of allele fixation [87]. If the emergence of new alleles
continues, this leads to fluctuations in population size over time due to the increase in the
average reproductive potential of genotypes and density-dependent survival regulation
(Figure 8b).

Consequently, genotypes with a higher reproductive potential become gradually fixed
in the population, which leads to an evolutionary increase in their average reproductive
potential. This results in an increase in the stationary numbers of females and males, as
well as in bifurcations of the stability loss for current population equilibrium with an
oscillation emergence.

7. Discussion

This study proposed and investigated the evolutionary dynamics model of a limited
population that is structured by sex. We assumed genetic variety in the population con-
cerning reproductive potential, controlled by a single autosomal diallelic locus. For the
proposed model, we found monomorphic and polymorphic fixed points with conditions
for their existence and stability (Table 1). The system is shown to reveal periodic and
quasiperiodic oscillations, caused by the occurrence of a period doubling bifurcation and a
Neimark-Sacker one (Figure 1). The scenario of system stability loss depends on the inten-
sity of ecological limitations. However, the evolutionary results are always the same: with
increasing genotypes’ reproductive potentials 74 4, 7 4,4, and r4,, the population dynamics
become more irregular and complex.

We classified regions with different dynamics of population size and genetic composi-
tion (Figure 2). The outcomes of selection by reproductive potential values (F-selection) in
ecologically limited populations with sex or stage structure [20,21] are shown to have no
difference from those of Fishers’ fitnesses in unlimited ones. As expected, the condition
for maintaining a stable polymorphism in a population is r4, > max(¥44, %), which
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corresponds to the highest value of the heterozygote reproductive potential (Figure 3).
Whenrg, < ra; <1aa0rras < ra; < rag, intermediate values of heterozygote fitness lead
to a monomorphism for alleles with greater reproductive potential (Figure 4). The level
of successful reproduction at which a population with two sexes can survive and grow
depends on the ratio of reproductive potentials of the genotypes and the secondary sex
ratio §, which determines the proportion of female newborns.

With the reduced reproductive potential of heterozygotes r4, < min(raa, ), the
proposed model reveals bistability (Figures 5-7). This bistability corresponds to the coexis-
tence of both monomorphic fixed points, when the initial sex ratio and allele frequencies
determine the genotype that will be fixed in the population. This scenario is a so-called
“bistability trap”, which means that a higher-fitness genotype cannot displace those with
lower fitness. However, a drop in population size due to external environmental factors
leads to random processes, known as “passage through a bottleneck”, that can result in fluc-
tuations in the genetic composition and a “shift” of the population from one monomorphic
state to another one with more fitness, for which population dynamics destabilize.

In contrast to previously studied eco-evolutionary population models with a stage
structure [20,21], the proposed model can show several types of bistability due to consider-
ing sexual dimorphism and, as a result, the secondary sex ratio. Depending on the initial
allele frequencies and the sex ratio, the population may either become extinct or survive
with the fixation of one of the alleles, as different monomorphic fixed points may coexist
(Figures 5 and 6). For example, one fixed point has a zero population size, while the other
has non-zero numbers of males and females. This means that some initial conditions can
increase the frequency of lower-fitness alleles, leading to population extinction due to a
decrease in the growth rate (Figure 5c,e and Figure 6¢,d). There are also initial conditions
that can increase the frequency of an allele with a higher reproductive potential, for which,
depending on the values of specific demographic parameters, the population size may
show an equilibrium tendency or fluctuations (Figure 5b,d and Figure 6b,e). In this case,
the variation in the current genetic composition of the population due to the influence
of unaccounted environmental factors can change the “initial conditions” and, thus, the
direction of evolution. Consequently, some external factors may lead to the extinction of
a successfully developing population or its gradual recovery after a significant decline in
its number.

The model study shows that, in the case of bottlenecks in population size, its genetic
variety decreases, and if an allele with a higher reproductive potential is fixed, then the
other one is eliminated (Figures 5d and 6e). As a result, the population recovers because
the genotype is cleared due to the removal of the low-fitness allele.

The population recovery in the proposed system illustrates so-called “evolutionary res-
cue” [56-58], where a population facing the threat of extinction is capable of adapting by in-
creasing the frequency of alleles with higher fitness to prevent extinction. Figures 5d and 6e
demonstrate the case of evolutionary rescue when the population recovers due to the accu-
mulation of initially rare alleles with a higher reproductive potential. The example of the
regeneration of the natural population of the northern elephant seal, Mirounga angustirostris,
allows us to suggest that this population has survived without fundamental changes, de-
spite significant genetic diversity loss due to passing through a bottleneck [88]. However,
strategies for population conservation and management require careful consideration of
the possible consequences of the application of the developed measures.

Theoretical studies of the dynamics of structured populations with density-dependent
regulation have shown that an increase in birth rate and survival parameters leads to more
complex population dynamics [81-83,89]. Considering a genetic structure in the model of
an ecologically limited sex-structured population, similar to those with a stage structure,
allows us to investigate the possibilities of an evolutionary transition from equilibrium
to fluctuations when an increase in the fertility of individuals occurs during evolution
under the influence of natural selection. We have shown that the appearance of new alleles
with a higher reproductive potential in individuals, for example due to mutations, leads to
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natural selection of these alleles and an evolutionary increase in the average birth rate of the
population (Figure 8). However, density-dependent survival regulation with the growth of
the average reproductive potential destabilizes the dynamics of the size of the female and
male groups. We have shown that another scenario of evolutionary rescue occurs when
the population recovers due to new alleles with a higher reproductive potential whose
appearance is caused, for example, by mutations (Figure 8a). Note that the possibility
of evolutionary rescue [22,23] and fluctuation emergence in limited populations [24-26]
due to fixation of the alleles with higher fitness, whose appearance is caused by muta-
tions, was expected, since this was previously demonstrated in dynamic models of stage-
structured populations.

8. Conclusions

This study showed that an increase in the average value of the reproductive potential
in a population with density-dependent regulation of survival destabilizes the dynamics of
abundance of females and males. In this case, the scenario of stability loss of equilibrium
via the period doubling or Neimark—-Sacker bifurcations depends on the intensity of self-
regulation. The genetic composition of the population, namely, monomorphic genotype
fixation or coexistence of all genotypes in polymorphism, is shown to be determined by the
values of the reproductive potentials of heterozygotes and homozygotes, initial conditions,
and a parameter describing the ratio of newborn females to males. In particular, we found
that the increased reproductive potential of heterozygotes leads to a stable polymorphism
within a population. The intermediate value of the reproductive potential of heterozygotes
results in a monomorphism with an allele with greater fitness. The reduced reproductive
potential of heterozygotes induces bistable dynamics when the different monomorphic
fixed points with zero and non-zero population sizes coexist. Thus, depending on the
values of the initial allele frequencies and the parameter describing the ratio of newborn
females to males, the population either becomes extinct or survives by fixing one of the
alleles during evolution. In this scenario, the polymorphic state is unstable and is part of
a transitional process in the dynamics to achieve one of the monomorphic states. With
the coexistence of two monomorphic equilibria with zero and non-zero population sizes,
the model of a population with two sexes proposed in this study reveals the possibility
of bottleneck effects and evolutionary rescue. With the reduced reproductive potential
of heterozygotes, the influence of environmental factors that are not considered in the
model can alter the current genetic composition of the population, which can change the
direction of evolution. This scenario corresponds to a situation in which a genotype with
less fitness may displace a more promising form, and these processes are accompanied
by passage through a bottleneck and evolutionary rescue. As a result, external factor
influence can lead to the extinction of a successful developing population or a gradual
population recovery after a noticeable decline in its abundance. This model reveals two
variants of evolutionary rescue: when the population recovers due to rare alleles with
higher fitness in disruptive selection or the emergence of new alleles caused by mutations in
driving selection.
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Appendix A

Appendix A.1. Dynamic Equations of Allele Frequencies in a Population with a Sex Structure and
Non-Overlapping Generations under Natural Selection

1. For deriving such a model, let us consider a breeding scheme with the following
assumptions [35]: The trait is located on an autosome, which means that both parents
determine the genotype of the offspring.

2. The production of gametes of all genotypes is assumed to be equal in the male
(gfij = g2) and female (g™;; = g1) part of the population, i.e., males and females
may have different production gametes, but within one sex, all genotypes have the
same one.

3. Gene frequencies in the male and female parts of the population may differ.

Table Al. Breeding scheme in a two-sex population that is subject to natural selection, panmixia, and
Mendelian inheritance.

The n-th Generation

Females Males
Genotypes AA Aa aa AA Aa aa
Genotype frequencies PAA PAa Paa gaAA JAa Jaa
The (1 + 1)th Generation
Gametes A a A a
Gamete frequencies pa~ Pa~ qa~ fa~
d PAA* PAa/2 Paa+ PAa/2 gaa+ Gaa/2 Gaa+t Gaa/2

Zygotes AA Aa aa

Fitnesses WAA WAq Waa UAA UAa Uaa

Zygote frequencies

PAA,GAA ~ PAGA PAas GAa ~ PAGa + PadA Paa, Gaa ~ Pada

Here, w; is the fitness of female genotype ij (i and j can take values A or 4), defined as
the average number of eggs produced per newborn female of the corresponding genotype
to later become the next generation of zygotes; v;; is the fitness of male genotype ij, defined
as the average number of spermatozoids produced per newborn male of the corresponding
genotype to later become the next generation of zygotes.

The breeding scheme (Table A1) allows us to derive dynamic equations considering
natural selection. The frequency (or share) of living offspring with AA genotypes from
mothers with AA or Aa genotypes (and fathers with the same genotypes) is as follows:

W(n)paa(n +1) = waa (paa(n) + paa(n)/2)(aa(n) + qa.(n)/2), (A1)

where W(n) is a multiplier that maintains the following equality: pas(n + 1) + paa(n + 1) +
Paa(n+1)=1.
By analogy, for males:

H(m)gaa(n +1) = vaa (paa(n) + paa(n)/2)(qaa(m) + qaq(1)/2), (A2)

where H(n) is a multiplier that maintains the following equality: ga4(n + 1) + gaa(n + 1) +
Gaa(n +1) = 1.

Similarly, the frequency (or share) of living offspring with Aa genotypes that received
an A allele from the mother and an a allele from the father and vice versa is as follows:

W(m)paa(n + 1) = waa(paa(n) + paa(n)/2)(Gaa(n) + qaa(n)/2) + wag (Paa(n) + paa(n)/2)(qaa(n) + aa(n)/2), (A3)

H(n)gas(n +1) = vpa(paa(n) + pAu(n)/z)(%a(n) + QAa(n)/z) + Waq (Paa(n) + pAa(”)/z)(QAA(n) + QAa(n)/2)~ (A4)
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Finally, the frequency (or share) of living offspring with aa genotype from mothers
with Aa or aa genotypes (and fathers with the same genotypes) is as follows:

W(n)paa(nn +1) = Waa(Paa(1) + paa(n)/2)(Gaa(1) + 44a(11)/2) (A5)

H(n)gaa(n + 1) = 03a(paa() + paa(n)/2)(Gaa(n) + qaa(n)/2) (A6)

Summing three equations for the female and male parts of the population sepa-
rately and taking into account the equalities paa(n + 1) + paa(n + 1) + paa(n + 1) =1 and
gaam +1) + gaa(n + 1) + gaa(n + 1) = 1, as well as those connecting the frequencies of genes
and genotypes {p;(n) = pii(n) + p;i(n)/2, 9,(n) = g;(n) + q;;(n)/ 2}, we obtain the multipliers or
the mean fitnesses for each sex:

W(n) = waapa(m)qa(n) + waa(pa(n)qa(n) + pa(n)qa(n)) + Waapa(n)qa(n),

H(n) = vaapa(m)qa(n) + vaa(pa(n)qa(n) + pa(n)qa(n)) + vaapa(n)qa(n).

Then, summing Equations (Al) and (A3) and Equations (A3) and (A5), we obtain the
following dynamic equations for the allele frequencies:

pam +1) =(waa pa(m)ga(n) + wapa(m)ga(n)/2 + wagpa(n)qa(n)/2)/ Win), (A7)

qa(n +1) = (©aa pa(m)qa(n) + vaapa(1)4a() /2 + Vaapa(n)ga(n)/2)/H(n).  (A8)

F(F > 0) and M (M > 0) are female and male abundances, respectively; p(n)
(0 < pa < 1)is the frequency of allele A in the n-th generation.

Let F(n) and M(n) denote female and male abundances in the n-th breeding season,
respectively; then, F(n + 1) = W(n)F(n) and M(n + 1) = H(n)M(n).

Appendix A.2. Population Dynamics in a Case When the Birth Rate of a Population Is Determined
Genetically: A Trait Is Not Sex-Limited

Let us consider a dynamic model for a population with sex and age structures [83]. Let
F(n) and M(n) denote female and male abundances in the n-th breeding season, respectively,
while P(n) is the progeny abundance; then, the dynamic equations are the following:

P(n + 1) = ac(F(n), M(n)),

F(n+1)=d51P(n) +s F(n),

M(n+1)=(1 — dWrP(n) + v M(n),

where a is the birth rate (average number of offspring per single mating pair), c(F(n), M(n))
is the mating function (the pair formation function), 4 is the proportion of newborn females,
VP71 and 1, are survival rates of immature individuals, and s and v are survival rates of
mature males and females, respectively. Survival rates linearly depend on the progeny and
abundances of mature males and females: 1 =1 (P, F, M), by = o (P, F, M).

We assume that the birth rate is only determined by female abundance, because male
abundance is enough for breeding. Therefore, the mating function has the following form:
c(F(n), M(n)) = F(n). In female dominance, offspring of both sexes are born in a fixed
proportion to the number of females at time 7.

Therefore, for a population with non-overlapping generations, the model takes the
following form:

F(n + 1) =6 r F(n) wi(F(n), M(n))

M(n + 1) =(1 — 8) r F(n) wy(F(n), M(n)).
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The w;; and vj; coefficients are expected to be functions of female and male abundances.
Let wj; = rjj-8-w1(M(n), F(n)), v = r;j-(1 — 8)-wa(M(n), F(n)), where r;; are the coefficients
equivalent to the relative fertility rates of females and males, respectively, and functions w;
and w, are equal for all genotypes, which holds for F selection.

Taking this into account, one can note that the genetic composition is the same in the
male and female parts of the population:

W(n) = 8 (raapa(mqa(n) + raa(pa(m)qa(n) + pa(n)qa(n) + raapa(n)ga(n)),

H(n) = (1 = 8)(raapa(m)qa(m) + raa(pa(m)ga(n) + pa(n)ga(n)) + raapa(n)qa(n)),
W(n)/6=H(n)/(1 - 9),
pa(n +1) =8 (raa pa(m)qa(n) + raapa(n)ga(n) /2 + raapa(n)qa(n)/2)/ W(n),
qa(n+1) = (1 = 8)(raa pa(m)qa(n) + raapa()a(n)/ 2 + raapa(n)qa(n)/2)/H(n),

pa(m+1)=qa(n +1).

Note that even when in the initial state the genetic composition in the male and female
parts of the population differs g(0) # p(0), after the first crossing, it will equalize in both
parts of the population (this can be seen from the equations above when substituting n = 0).

Therefore, one can use a single equation to describe the dynamics of allele frequency
in a population (pa(n)). Let us write the dynamic equations in their final form:

F(n + 1) = 6 r(n) F(n) wy(F(n), M(n)),
M(n +1) =(1 = 6) r(n) F(n) wa(F(n), M(n)),

pam + 1) =pa(n) (raa pa(n) + raa(1 — pa(n))/r(n),
where r(n) = rAApAZ(n) +2rpapaA(M)(1 — pa(n)) + 1aa(1 — pA(n))z(n).
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