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Abstract: An optimization model for traffic light control in an urban network of intersections is
derived. The model is based on store-and-forward analytic relations, which account for the length
of the queue of waiting vehicles in front of the traffic light intersection. The model is complicated
with probabilistic relations that formalize the requirements for maintaining short queues of vehicles.
Probabilistic inequalities apply to each intersection of the city network. Approximations of probability
inequalities are given in the article. Quadratic deterministic inequalities, which are part of the set
of the traffic flow control optimization problem, are derived. Numerical simulations are performed,
applying mean estimated data for real traffic in an urban area of Sofia. The model predictive approach
is applied to traffic light optimization and control. Empirical results give advantages of the obtained
model compared to the classical store-and-forward optimization model for the total number of
vehicles waiting in the considered urban network.
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1. Introduction

This study aims to derive an optimization model for traffic light control that takes
into account the stochastic behavior of traffic flows. The importance of the problem of
traffic control in an urban environment does not need a long argument. It is seen daily that
traffic needs to be regulated by reducing the inconvenience to city dwellers from delays,
traffic jams and heavy traffic that reduces traffic safety and the resulting inconveniences
of increased fuel costs, environmental and noise pollution, etc. The main control effects
that apply in traffic control are not so many: traffic light splitting, traffic light cycles and
phase sequences. In general, green light duration is the main control tool that must be
applied to control the intersection and network traffic. Quantitative traffic control models
are continuously developed, verified and evaluated.

Our particular interest in this paper is how to consider the stochastic behavior of traffic
flows in urban intersections in a straightforward manner. Our main goal is to incorporate
stochastic constraints into an analytically defined optimization problem for green light
duration estimation. Random constraints formalize the probabilistic requirements for
maintaining small queues or vehicle counts.

2. Overview of the Traffic Models with Stochastic Parameters

In [1,2] the classification of traffic control strategies is presented in three categories:
isolated intersection control; traffic light control through fixed time settings; coordinated
and adaptive traffic-dependent signal control. The main development-oriented strategy is
the latter, which must take into account the stochastic nature of vehicular traffic flows in an
urban environment.

The stochastic behavior of traffic flows was the reason why traffic light parameters
were estimated and evaluated by applying simulations in a software environment. An
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overview of the use of traffic simulation software can be found in [3,4]. In [5], the advantages
of a new generation of traffic simulators, which are used for dynamic traffic analysis and
the congestion prediction of interconnected road segments, are presented. The use of a
traffic simulator in a Web environment is a widely accepted solution that favors its repeated
access by a wider audience [6]. Twenty-nine simulation packages addressing microscopic,
macroscopic, mesoscopic, homogeneous, heterogeneous, discrete and continuous flows
and traffic models are evaluated in [7]. Traffic simulation is accepted as a universal tool for
evaluating traffic behavior by providing stochastic parameters of traffic flows.

The stochastic components in traffic management are considered through various
formal, quantitative and qualitative approaches: fuzzy logic and neural network formal-
izations [8–10]; the application of artificial intelligence solutions [11]; forecasting traffic
flows by time series [12]; by applying learning technologies [13,14]; by supporting meta
modeling [15].

In this work, we aim at the quantification of traffic management defined by analytical
models that formalize in a clear way the random nature of the components of traffic
behavior. These are mainly the flows that enter a city network and represent management
objects. The turning and parking of vehicles inside the roads are also random in nature.

In [16], the probability of the occurrence of a suitable traffic flow scenario and the delay
of a vehicle are calculated. For the set of scenarios, robust timing is estimated that gives the
minimum average delay per vehicle for the set of all the traffic scenarios. The optimization
problem has a nonlinear objective function that is minimized under a set of linear equalities.
The stochastic nature of transport flows is formalized by probabilistic relations for modeling
traffic dynamics. In [17], unknown demands and queuing uncertainty affect the control
decisions. In [18], stochastic travel demands are considered by minimizing the total travel
delay over successive time periods. In [19], a metaheuristic approach is applied to identify
a robust plan for fixed-time signals. A robust solution is found among several scenarios
of demands. In [20], a stochastic model predictive control is applied by defining and
sequentially solving an optimization problem. It contains chance components from turning
and parking vehicles. At each step of the predictive control, the values of the chance
parameters are given by algorithmic applications of random generators. The stochastic
predictive control model is presented in [21]. The uncertainty considered relates to the
volumes of the traffic flows and the turning ratios of the vehicles in the flow. The uncertainty
of traffic demands is formalized in a robust stochastic problem [22].

In this paper, we aim to quantify the traffic management performed in an optimization
problem that contains analytical random connections that describe the stochastic nature
of traffic processes in an urban network. The main feature of this research is that it
applies probabilistic relations to consider stochastic events in traffic behavior that occur
through turning, stopping and the parking of vehicles, events that cannot be formalized
in deterministic relations. To define the traffic management optimization problem, we
use the well-known store-and-forward model. We formalize the random nature of the
traffic through probabilistic inequalities. These inequalities are then approximated as
nonlinear algebraic relations. Numerical simulations and the evaluation of this model are
performed by applying the model predictive approach. In Section 3, we present an analysis
for analytically incorporating probabilistic relations into an optimization problem for green
light duration estimation.

3. Basic Formalization of Traffic Management

Traffic control is aimed at reducing congestion [23]. Additional goals can be pursued by
reducing vehicle emissions [24]. Mainly, traffic management is carried out through sections
of traffic signals. Additions to the supporting traffic light control solutions are used, such
as the use of waiting zones [25], variable speed limits and ramp metering [26]. The formal
model called “store-and-forward” is intensively used to define and solve optimization
problems. It originates from the works of [27]. The model is quite simple and formalizes
the analogy with fluid dynamics. The idea of the model is that the traffic of a given section



Mathematics 2023, 11, 496 3 of 25

is a linear result of the inflows and outflows. Therefore, it was time for its intensive use to
optimize the duration of green lights in urban networks [28–30]. The model is successively
complicated and applied to green wave optimization [31]; to the coordination of two-way
arterial routes [32]; to the application of model predictive control [33,34].

The theoretical basis of the store-and-forward model is the physical law of conserva-
tion: that the outflow in a network must equal the inflow [35,36]:

qout(t + 1) = qin(t) (1)

where qout(t + 1) and qin(t) are the incoming and outgoing flows of vehicles at two consec-
utive times t with dimensions (vehicles/time), Figure 1.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 26 
 

 

ysis for analytically incorporating probabilistic relations into an optimization problem for 

green light duration estimation. 

3. Basic Formalization of Traffic Management  

Traffic control is aimed at reducing congestion [23]. Additional goals can be pursued 

by reducing vehicle emissions [24]. Mainly, traffic management is carried out through 

sections of traffic signals. Additions to the supporting traffic light control solutions are 

used, such as the use of waiting zones [25], variable speed limits and ramp metering [26]. 

The formal model called “store-and-forward” is intensively used to define and solve op-

timization problems. It originates from the works of [27]. The model is quite simple and 

formalizes the analogy with fluid dynamics. The idea of the model is that the traffic of a 

given section is a linear result of the inflows and outflows. Therefore, it was time for its 

intensive use to optimize the duration of green lights in urban networks [28–30]. The 

model is successively complicated and applied to green wave optimization [31]; to the 

coordination of two-way arterial routes [32]; to the application of model predictive con-

trol [33,34].  

The theoretical basis of the store-and-forward model is the physical law of conser-

vation: that the outflow in a network must equal the inflow [35,36]: 

𝒒𝒐𝒖𝒕(𝑡 + 1) = 𝒒𝒊𝒏(𝑡), (1) 

where 𝒒𝒐𝒖𝒕(𝑡 + 1) and 𝒒𝒊𝒏(𝑡) are the incoming and outgoing flows of vehicles at two 

consecutive times t with dimensions (vehicles/time), Figure 1.  

 

Figure 1. Conservation law as formal background of the store-and-forward model. 

This model is derived from the traffic light optimization case of [27]. The formal 

derivation can be illustrated by applying the cellular transmission model [37]. The con-

tinuity of the flows from (1) formally insists on the fulfillment of the equality:  

𝜕𝑞

𝜕𝑥
+  

𝜕𝜌

𝜕𝑡
= 0 (2) 

where 𝜌(𝑡) is the traffic flow density at time t and quantified as vehicles per unit distance 

(vehicles/distance). Replacing the first derivatives by their approximation, it follows:  

ρ(𝑡+1)−ρ(𝑡) 

𝑇
  ≈ 

−𝑞(𝑡+1)+𝑞(𝑡) 

𝑙
 (3) 

Given that the density 𝜌 is equal to the number of vehicles x at a distance l, x = ρ 

(.)l and the flow q in a time period T gives the number of vehicles, x = Tq(), Relation (3) is 

modified in (4) and (6): 

𝒙(𝑡 + 1) =  𝒙(𝑡) +  𝑇 [𝒒(𝑡) − 𝒒(𝑡 + 1)] , (4) 

where T is the duration of the control cycle. Given (1), Equation (4) becomes  

𝒙(𝑡 + 1) =  𝒙(𝑡) +  𝑇 [𝒒𝑖𝑛(𝑡) − 𝒒𝒐𝒖𝒕(𝑡 + 1)]. (5) 

The product 𝑇 𝒒𝑖𝑛(𝑡) =  𝒙𝑖𝑛 represents the vehicles entering the network. Respec-

tively, 𝑇 𝒒𝑜𝑢𝑡(𝑡 + 1) =  𝒙𝑜𝑢𝑡 gives the number of vehicles that leave the transport net-
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This model is derived from the traffic light optimization case of [27]. The formal deriva-
tion can be illustrated by applying the cellular transmission model [37]. The continuity of
the flows from (1) formally insists on the fulfillment of the equality:

∂q
∂x

+
∂ρ

∂t
= 0 (2)

where ρ(t) is the traffic flow density at time t and quantified as vehicles per unit distance
(vehicles/distance). Replacing the first derivatives by their approximation, it follows:

ρ(t + 1)− ρ(t)
T

≈ −q(t + 1) + q(t)
l

(3)

Given that the density ρ is equal to the number of vehicles x at a distance l, x = ρ (.)l
and the flow q in a time period T gives the number of vehicles, x = Tq(), Relation (3) is
modified in (4) and (6):

x(t + 1) = x(t) + T[q(t)− q(t + 1)], (4)

where T is the duration of the control cycle. Given (1), Equation (4) becomes

x(t + 1) = x(t) + T
[
qin(t)− qout(t + 1)

]
. (5)

The product Tqin(t) = xin represents the vehicles entering the network. Respectively,
Tqout(t + 1) = xout gives the number of vehicles that leave the transport network for
the end of the control period T. The store-and-forward model thus reduces to a simple
algebraic equality:

x(t + 1) = x(t) + xin(t)− xout(t), (6)

saying that the resulting number of vehicles x(t + 1) in the transport network is obtained as
an algebraic summation of the current value x(t) and the difference between the incoming
and outgoing vehicles. In particular, the output flow is proportional to the duration of
the green light u (time) and depends on the geometric and structural configuration of the
network, denoted as s (vehicles/per time). Downscaling the network to a single section of
the road, the ratio (6) can be interpreted as the number of vehicles that are on a section of
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the street between two intersections and/or the waiting vehicles in front of a traffic light at
a junction, and in discrete form this relation is:

x(k + 1) = x(k) + xin(k)− su(k), k− discrete time. (7)

Between two consecutive intersections with traffic lights, there may be additional
uncontrolled areas where vehicles can enter/exit or stop/park. Accordingly, except xin(k)
additional vehicles can enter or leave the main controlled intersection, Figure 2.
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Thus, an additional number of outgoing ζ1 and incoming ζ2 as well as those of
parking and/or stopping η stochastically influence and affect the total value of vehicles
x. The influence of these factors ζ1, ζ2, η is random and the relation (7) can be formally
rewritten as:

x(k + 1) = x(k) + xin(k)− su(k) + ε(k), ε = (ζ1, ζ2,η) (8)

but the difference with (7) is that the value of x becomes stochastic. Accordingly, the control
problem that must estimate the duration of the green light u must take into account that
Relation (8) is stochastic. The motivation of this work is based on the existence of stochastic
events ζ1, ζ2, η, which cannot be evaluated and formalized with deterministic and formal
relations. This is the case of turning, stopping and the parking of vehicles in road sections
in an urban network, which are not taken into account for the control of traffic lights in the
deterministic case.

In the deterministic case, the optimization problem is defined by the minimization of
the objective function up to the green light duration u and/or x, given the deterministic
Equality (7):

minF(x, u)
u, x

, (9)

x(k + 1) ≤ x(k) + xin(k)− su(k),

umin ≤ u(k) ≤ umax, 0 ≤ x(k) ≤ xmax,

where x and u are vectors between the upper and lower bounds. The relation (7) transforms
into an inequality. The scale of the transport network and its controlled intersections determine
the size of the vectors u and x. The objective function F(x,u) can formalize the minimization
of the sum of the number of vehicles or the queue lengths for the entire considered network,
∑i=network xi [1], the Total Time Spent and/or the maximization of the output flows qout, which
formalization is also related to the sum value, ∑i=network xi, [1,38,39].

In reality, there is uncertainty not only about the driver’s decision about the formation
of the volume value x, but also from the traffic conditions that form the value of the
incoming vehicles xin. The formal description of (8) allows the stochastic component ε(k)
to take into account the stochastic and/or random nature of traffic demands.

As a consequence of (8), the values of x are also random variables. This insists that
the analytic constraint 0 ≤ x ≤ xmax takes a probabilistic form. This article applies a
probabilistic inequality of the form:

P(x ≤ xmax) ≥ γ or P(x(k) ≥ xmax) ≤ 1 − γ, (10)

which means that the probability that the number of vehicles x is less than the upper bound
xmax on a road section in the network must be higher than γ, where γ is a confidence level.
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The Relation (10) is applied in portfolio theory, saying that the probability of losses of an
investment x should be lower than the value xmax and higher than the level of γ [40]. This
relationship in portfolio theory is called Value at Risk (VaR), which is applied to assess the
risk of investment decisions.

For the case of traffic control, the probabilistic Relation (10) can be applied as a
constraint to the optimization problem or appropriately used as an objective function (this
is the case in this study). For the constraint case and considering (10), the optimization
problem has the following description:

minF(x, u)
u, x

, (11)

x(k + 1) ≤ x(k) + xin(k)− su(k),

umin ≤ u(k) ≤ umax,

P(x(k) ≥ xmax) ≤ 1 − γ.

Problem (11) contains probabilistic dependencies that make it difficult to solve. In [20],
such a class of problems is solved by stochastically generating values of the random
variable ε. Then, a predictive control model approach is applied to solve the discrete
dynamic problem (11). However, for actual implementation, only the first element of
the optimal solution is applied. Then, a new generation of ε and a solution of the new
problem (11) are performed. An alternative solution to (11) is also demonstrated by a
neural network approximation of the probabilistic Relation (10), which is given by training
a neural network with historical data.

In [41], such an optimization problem with probabilistic inequalities was solved by a
reduced gradient approach. The gradients are estimated as a combination of the probability
of univariate and bivariate normal distributions. The estimators simultaneously estimate
the probabilistic bounds and gradients of the objective function for each computational
iteration. This computational approach is quite complex and time-consuming.

In [42], the probabilistic constraint (10) is transformed into a deterministic one. Un-
fortunately, the applied way of approximating the initial probabilistic constraint to a
deterministic one contains many integral components. This makes the resulting nonlinear
optimization problem difficult to solve.

The approach taken here is to approximate the probability inequality with a deter-
ministic analytic relation. The approximation is made by using the VaR concept of risk
assessment in portfolio investment theory. This approximation allows the resulting de-
terministic relation to have a quadratic form. This approach allows adding analytical
relations that consider stochastic events in traffic behavior that cannot be formalized and
taken into account in a deterministic way. Stochastic relations after approximations can
be used as additional constraints and/or as an objective function. Our particular solution,
which differs from the analysis provided above, is to define a stochastic parameter as an
objective function in a traffic light control optimization problem. This allows traffic control
to explicitly take into account stochastic changes in traffic behavior.

4. Deterministic Approximation of the Probabilistic Inequality

Without a lack of generalization, we assume that the stochastic values of the number
of vehicles on road section i in the transport network are xi, which values have a normal
distribution. We assumed a normal distribution of xi for physical and engineering reasons.
In an urban network environment, the road sections are not that long (this is not the
case with the highway), which gives reason to assume that the variance of xi will not be
higher than the mean value of the xi of that section. The physical capacity of a given road
section gives us reason for this assumption. This assumption leads to the shapes of the
Probability Density Function (PDF) and the Cumulative Density Function (CDF) given
in Figures 3 and 4.
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The following relations are included in the following conclusions derived from the
relationship between the CDF and PDF functions.

F(x) = P(x < xmax) > γ or 1 − F(x) = P(x > xmax) ≤ 1 − γ, (12)

where P() is the PDF and F() is the CDF function. x is the set of all values that the stochastic
variable can take and xmax is one of those values; γ is the confidence level.

The probabilistic constraint (10) is considered in the form:

P(x ≤ xmax) ≥ γ. (13)

The inner inequality of the probability function P() is multiplied by (−1) to change the
direction of the inequality:

P(−x ≥ −xmax) ≥ γ. (14)

The relation (14) is normalized for a stochastic variable with zero mean Ex = 0 and
standard deviation equal to 1, σx = 1. The Relation (14) retains its form, but the values in
the PDF are normalized:

P(
−x− Ex

σ2
x

≥ −xmax − Ex

σ2
x

) ≥ γ. (15)

Using relation (12), (15) can be rewritten in the form:

P(
−x− Ex

σ2
x

≥ −xmax − Ex

σ2
x

) = 1− F(
−xmax − Ex

σ2
x

) ≥ γ

or
F(
−xmax − Ex

σ2
x

) ≤ 1− γ. (16)

By multiplying both sides of inequality (16) by the inverse function F−1, it follows:

− xmax −Ex ≤ σ2
X F−1(1− γ). (17)
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The value F−1(1− γ) is the Z-score of a normalized stochastic function with a normal
distribution. This value can be taken from tables [43]. Taking Relation (12), if the confidence
level is γ = 90%, it means that the probability that the number of vehicles x is lower than
the value xmax, is supported with a probability of 90%. Accordingly, the probability that
the number of vehicles is greater than x is the value 1−γ = 10%. From [43], the Z-score
value is F−1(1− γ) = −1.282. Using the notation δ = F−1(1− γ), relation (17) takes the
deterministic algebraic form

− Ex + δσ2
x ≤ xmax (18)

where xmax is the predefined value of the number of vehicles that can be accepted on this
road section and that participate in the upper bounds of the optimization problem (9),
or x = xmax. We substitute the probabilistic inequality (18) into (11) and the problem becomes
nonlinear deterministic. The graphical interpretation of the dependence (18) is given in
Figure 5. The difference between the mean value Ex and the normalized volatility δσ2

x of
the stochastic variable x must be greater than the value −xmax, or Ex − δσ2

x ≥ −xmax. This
means that the stochastic variable must be a value in the set −xmax ≤ x ≤ +xmax as shown
in Figure 5.
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The probability inequality can be incorporated into the optimization problem in the
constraint set as in (11) or in the objective function. The control problem that is defined
here uses relation (18) as the optimization objective function. The problem will estimate
the duration of green lights u, which will minimize the number of vehicles x at a suitable
intersection for the set of values −xmax ≤ x ≤ +xmax. Thus, the objective function of
the control problem will be the minimization to the arguments u of the sum of vehicles

∑
i∈junctions

xmaxi(u), where the value xmaxi(u) must be obtained for each junction according

to the relation (18).
To incorporate (18) as the objective function of an optimization problem such as (9),

the values EX and σ2
X values must be described as functions of the green light duration u.

Therefore, the optimization problem (11) is transformed into (19) with an objective function
according to the probability inequality (18). The optimization problem becomes:

min
u(k)

F(u) =
K

∑
k=1

[xmax(u(k)) = −Ex(x(k), u(k)) + δσ2
x(x(k), u(k))] (19)

x(k + 1) ≤ x(k) + xin(k)− su(k),

umin ≤ u(k) ≤ umax, K − horizon for optimization.

5. A model Predictive Framework for Traffic Light Control

The idea of the predictive control model is to predict the future state of the control
system and evaluate the appropriate control influence. In dynamic systems, control is
applied only to the first control step. The future state of the system is then estimated
again, leading to a new control influence for the next control step. For the optimization
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problem (19), we will predict the vehicle values at intersections by considering the previous
historical values of these vehicle queues. A graphical illustration of this sliding mode
control policy is presented in Figure 6. For this study, the historical period is truncated and
the predictions of the number of vehicles are based on their values, which are estimated at
the last control step. For the first control step, the predicted control value (uopt) is for k = 3,
Figure 6.
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Taking into account the historical data, the average values of the vehicles at the
intersection Ex and the corresponding volatility σ2

x are calculated. This makes problem
(19) well-defined according to the values of its parameters. The uopt solutions will be
implemented. The resulting values of vehicles will be taken into consideration for the new
estimations of Ex(u) and σ2

x(u). By keeping the same amount of data for the historical
period, a sliding policy is implemented to use the more recent historical data.

For this study, the historical period is truncated and the prediction of the number of
vehicles is based on their values, which are estimated at the last control step. Formally, this
control frame is analytically derived from the following relations:

- We assume that at the beginning of the control step, the value of vehicles at an
intersection is x0;

- For the start of the next control step (k = 1), the number of vehicles x1 will change
according to the store-and-forward relationship (7) or

x(k = 1) = x1 = x0 + xin − su.

We take the value of xin as deterministic, since the stochastic nature of x is considered
by relation (18).

The average value of x for these two data types is:

EX =
1
2
(X0 + X1) =

1
2
(X0 + X1 + Xin − su) = X0 +

1
2

Xin −
1
2

su. (20)

The volatility of x is calculated as:

Vx = σ2
x =

1
2
[(x0 − Ex)

2 + (x1 − Ex)
2] =

1
2
[(x0 − Ex)

2 + (x0+xin − su− Ex)
2]. (21)

After substituting Ex from (20) into (21), the analytical relation for the volatility is:

Vx = σ2
x =

1
4
(xin − su)2 (22)

Relations (20) and (22) analytically give the relations Ex = Ex(u) and σ2
x = σ2

x(u). After
substituting (20) and (22) into (18), which is the objective function of (19), the stochastic
approximation (18) takes the form of a quadratic function to u:

−
(

x0 +
1
2

xin −
1
2

su
)
+ δ

1
4
(xin − su)2 ≤ xmax (23)
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The optimization problem (19) becomes deterministic with an objective function that
formalizes the probabilistic requirement (18) or:

min
u

F(u) =
k=1

∑
k=0

xmax(u) = −
(

x0 +
1
2

xin −
1
2

su
)
+ δ

1
4
(xin − su)2 (24)

x(k = 1) = x1 ≤ x0 + xin − su,

umin ≤ u ≤ umax,

Relations (23) must be described analytically for each intersection of the transport
network, which adds additional components to the objective function F(u).

For this study, historical data for mean Ex and volatility Vx = σ2
x estimates are taken

for only one previous control step. This short time horizon allows the shortest impacts
and changes in traffic requirements to be taken into account. Increasing the history in the
control step will change the analytical definition of Ex and Vx = σ2

x against the governing
influences u and relations (20) and (21) will be modified accordingly.

Problem (23) can be modified by changing the store-and-forward constraints (7) in
such a way that the current number of vehicles at an intersection plus inbounds must be
less than the outbound. Thus, formally the control problem will preserve the presence of
congestion. The analytical definition of this problem will be modified from (23) as:

min
u
{F(u) =

k=1

∑
k=0

xmax(u) = −(x0 +
1
2

xin −
1
2

su) + δ
1
4
(xin − su)2}, (25)

su ≥ x0 + xin

umin ≤ u ≤ umax.

Problem (25) contains as an argument only the duration of green light u. The applica-
tion of the model predictive framework of the model allows the evaluation at each control
step the value of the existing vehicles in intersection x0 and a new problem (25) will define
the solutions of u for the next control step. The evaluation of x0 can be performed by using
the estimated uopt in the store-and-forward relation (7) in a recursive manner for each
control step.

6. Stochastic Optimization of Traffic Management in an Urban Environment

The aim of the study is to develop a traffic management model reducing the number
of vehicles in sections of the urban transport network, taking into account the stochastic
nature of the traffic. The optimization model (25) obtained in the previous Section 5 is used.
The objective function reflects the stochastic nature of the traffic flow and our objective is to
minimize the sum of all vehicles in the network and/or waiting at the traffic light at the
intersection as functions of the green traffic light duration u. We consider a real network of
intersections in an urban area in Sofia, which is a mixture of areas with residential, business
and commercial activities and buildings. The network consists of four intersections and
the number of vehicles in the main transport section is xi, i = 1, . . . ,15, Figure 7. Vehicles
can go straight or turn left or right at the intersection. The main traffic flow passes through
the horizontal street, while the traffic is not intense through the perpendicular streets. This
consideration is formalized by multiplying turning vehicles from/to the perpendicular
streets by coefficients l < 1. Right and left turning vehicles are multiplied by l1 and l2,
respectively. As initial and known values for the model, we use statistics on the street
capacity s, the number of initial vehicles x0 and the intersection entries xin.
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The objective function of (25) according to (18) can be briefly given as:
(

min
u

)
[xmax(u) = −EX(u) + δσ2

X(u)] (26)

and we need to determine the sum of all vehicles xi, i = 1, . . . ,15 as functions of u (uj, j = 1, . . . ,8).

6.1. Evaluation of the Number of Vehicles x1(u)

To model the stochastic nature of the traffic, we consider two control cycles for k = 0
and k = 1 at the beginning, Figure 6. When k = 0, the first value of vehicles is:

x1(k = 0) = x1(0) = x10 . (27)

The value of x10 is known (pre-measured). For the next control step: k = 1, the value
of the vehicles is determined according to the store-and-forward model and according to
(7) is:

x1(k = 1) = x1(k = 0) + x1in(k = 1) − s1u1(k = 1)

or
x1(1) = x1(0) + x1in(1) − s1u1(1) (28)

To formalize the outgoing flow, we divide it into straight-ahead direction by value
s1u1, right-turning vehicles by value l1s1u1 and the corresponding left-turning by value
l2s1u1. The total value of the outflow becomes (1 + l 1 + l2)s1u1. Then, the number of
vehicles for the second control cycle according to (28) becomes:

x1(1) = x1(0) + x1in(1) − (1 + l 1 + l2
)
s1u1(1) (29)

We replace the expression (1 + l 1 + l2) by L1 and for simplicity (29) can be represented as:

x1 = x10 + x1in − L1s1u1. (30)

We have to define both stochastic components of (26): Ex and σ2
x as functions of u.

Analytical definition of the mean value as a function of u Ex(u1): the mean value Ex
analytically for the case of one historical period is:

Ex =
1
2
[x1(0) + x1(1)]. (31)

The value of x1(0) is estimated from (27) and x1(1)—from (30). These two components of
(31) are given from (27) and (30) and the mean Ex(u1) analytically is:

Ex(u1) =
1
2
[x1(0) + x1(1)] =

1
2
(

x10 + x10 + x1in − L1s1u1
)
= x10 +

x1in

2
− L1s1u1

2
(32)

[xmax(u) = −EX(u) + δσ2
X(u)] (26)

and we need to determine the sum of all vehicles xi, i = 1, . . . ,15 as functions of u (uj, j = 1, . . . ,8).

6.1. Evaluation of the Number of Vehicles x1(u)

To model the stochastic nature of the traffic, we consider two control cycles for k = 0
and k = 1 at the beginning, Figure 6. When k = 0, the first value of vehicles is:

x1(k = 0) = x1(0) = x10 . (27)

The value of x10 is known (pre-measured). For the next control step: k = 1, the value
of the vehicles is determined according to the store-and-forward model and according to
(7) is:

x1(k = 1) = x1(k = 0) + x1in(k = 1) − s1u1(k = 1)

or
x1(1) = x1(0) + x1in(1) − s1u1(1) (28)

To formalize the outgoing flow, we divide it into straight-ahead direction by value
s1u1, right-turning vehicles by value l1s1u1 and the corresponding left-turning by value
l2s1u1. The total value of the outflow becomes (1 + l 1 + l2)s1u1. Then, the number of
vehicles for the second control cycle according to (28) becomes:

x1(1) = x1(0) + x1in(1) − (1 + l 1 + l2
)
s1u1(1) (29)

We replace the expression (1 + l 1 + l2) by L1 and for simplicity (29) can be represented as:

x1 = x10 + x1in − L1s1u1. (30)

We have to define both stochastic components of (26): Ex and σ2
x as functions of u.

Analytical definition of the mean value as a function of u Ex(u1): the mean value Ex
analytically for the case of one historical period is:

Ex =
1
2
[x1(0) + x1(1)]. (31)

The value of x1(0) is estimated from (27) and x1(1)—from (30). These two components of
(31) are given from (27) and (30) and the mean Ex(u1) analytically is:

Ex(u1) =
1
2
[x1(0) + x1(1)] =

1
2
(

x10 + x10 + x1in − L1s1u1
)
= x10 +

x1in

2
− L1s1u1

2
(32)



Mathematics 2023, 11, 496 11 of 25

Analytical definition of volatility σ2
x(u) as a function of u: the volatility σ2

x for the case of
one historical period is:

σ2
x(u1) =

1
2
[(x1(0)− Ex)

2 + (x1(1)− Ex)
2]. (33)

Next, substituting into (33) the values obtained from (27), (30) and (32) and applying a
set of transformations, it follows:

σ2
x(u1) =

1
4
(
x1in − L1s1u1

)2 (34)

Relations (33) and (34) have to be applied to any relation of the form (6) that will give
the analytic components included in the objective function (16). For illustration purposes,
these transformations are illustrated for the case of the number of vehicles x1(u1) as a
function of the estimated green light u1.

Determination of the components of the objective function given by x1( u1)
We substitute Equation (32) for Ex and (34) for σ2

x(u) in (26):

xmax1(u1) = x10 +
x1in

2
− L1s1u1

2
+

1
4

δ
(
x1in − L1s1u1

)2.

After processing the above equation, it follows:

xmax1(u1) =
δ

4
L2

1s2
1u2

1 +

(
L1s1

2
− δ

2
x1ins1L1

)
u1 (35)

Thus, the objective function must have quadratic components δ
4 L2

1s2
1u2

1 and linear

component
(

L1s1
2 − δ

2 x1ins1L1

)
u1.

6.2. Definition of the Objective Function Components for All Vehicles xi(u), i = 2, . . . ,15

Considering the urban network topology of Figure 7, the relations for x2(u2) following
the case of (35) are:

xmax2(u2) =
δ

4
L2

1s2
2u2

2 +

(
L1s2

2
− δ

2
x2ins2L1

)
u2 (36)

The value x3 depends on the outflows from the second junction, Figure 7. This
outflow from the second intersection depends on the duration of the green light u3 and
the corresponding street capacity s3 or s3u3, plus the turning flows from the perpendicular
street from the second intersection: (l1 + l2)s4u4. To simplify the notation, we replace the
sum of the turning coefficients by L2 = (l1 + l2). This means that the number of vehicles
x3 depends not only on the duration of the green light u1 at the first intersection, but also
on u3 and u4 from the second traffic light. The initial value for the control cycle k = 0 is
x3(u) = x30 , Figure 6.

Following the store-and-forward model, the vehicles x3 for the next control cycle k = 1
will have a value:

x3(u) = x30 + s3u3 + L2s4u4 − L1s1u1.

The mean value EX of vehicles x3 is given according to relation (32) or:

Ex(u) =
1
2
(x 30 + x30 + s3u3 + L2s4u4 − L1s1u1)

Ex(u) = x30 +
s3u3

2
+

L2s4u4

2
− L1s1u1

2
(37)
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The corresponding volatility σ2
x(u) of vehicles x3 is given according to (33):

σ2
x(u) =

1
2

[(
x3(0)− Ex)

2 +
(

x3(1)− Ex)
2
]

σ2
x(u) =

1
2 [(x30 − x30 − s3u3

2 −
L2s4u4

2 + L1s1u1
2 )2+

+(x30 + s3u3 + L2s4u4 − L1s1u1 − x30 − s3u3
2 −

L2s4u4
2 + L1s1u1

2 )2].

After a set of transformations, it follows:

σ2
x(u) =

1
4
(s3u3 + L2s4u4 − L1s1u1)

2 (38)

Using the relations for the mean Ex(u) from (37) and the volatility σ2
x(u) from (38), the

value of x3 takes the analytical form:

xmax3(u) = − s3u3
2 −

L2s4u4
2 + L1s1u1

2 + δ
4 (s

2
3u2

3 + L2
2s2

4u2
4 + L2

1s2
1u2

1+

2s3u3L2s4u4 −−2s3u3L1s1u1 − 2L2s4u4L1s1u1)
(39)

Relation (39) gives additional components for the objective function (26) of the optimization
problem with quadratic components δ

4 (s
2
3u2

3 + L2
2s2

4u2
4 + L2

1s2
1u2

1) and linear components
− s3u3

2 −
L2s4u4

2 + L1s1u1
2 + δ

4 (2s3u3L2s4u4 − 2s3u3L1s1u1 − 2L2s4u4L1s1). These components
come from the xmax3 vehicles.

Following the network topology in Figure 7, the expression for vehicles x4(u) is
analogous to that of x1(u) and is of the form:

xmax4(u2) =
δ

4
L2

1s2
2u2

2 +

(
L1s2

2
− δ

2
x4ins2L1

)
u2 (40)

Relation (40) gives the corresponding quadratic and linear components for the objective
function (26) from xmax4.

The length of the queue x5(u) depends not only on the duration of the second green
traffic light u3, but also on the traffic coming from the first intersection. At the start of the
control loop for k = 0, the value of x5 is x5(0) = x50 . For the next control loop, for k = 1 the
value of x5(u) is evaluated using the store-and-forward relation:

x5(u) = x50 + s1u1 + L2s2u2 − L1s3u3

For the case according to (31), the mean value EX of x5 is given by the ratio:

Ex(u) = x50 +
s1u1

2
+

L2s2u2

2
− L1s3u3

2
. (41)

According to (33), the corresponding volatility σ2
X(u) is:

σ2
x(u) =

1
4
(s1u1 + L2s2u2 − L1s3u3)

2. (42)

Using the relations for the mean Ex(u) from (41) and the volatility σ2
X(u) from (42), the

value of x5 takes the analytical form

xmax5(u) = − s1u1
2 − L2s2u2

2 + L1s3u3
2 + δ

4 (s
2
1u2

1 + L2
2s2

2u2
2 + L2

1s2
3u2

3

+2s1u1L2s2u2 − 2s1u1L1s3u3 − 2L2s2u2L1s3u3)
(43)

The relation (43) gives the corresponding additional quadratic and linear components for
the objective function coming from x5.
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Through the same formal approach, the relations for the subsequent values of the
vehicles are derived, which gives additional quadratic and linear components for the
objective function (26) of the optimization problem. The general set of the analytical
definition of the critical level of vehicles xmax(u) for each road section of the urban network
is given in the Appendix A.

6.3. Analytical Description of the Traffic Light Optimization Problem

The objective function of the task is given in the form (25). This refers to the mini-
mization of the sum of all vehicles xi, i = 1, . . . , 15 in the urban network. The values of the
number of vehicles are derived analytically, following the ratios (35), (36), (39), (40), (43)
and the corresponding ones from the Appendix A. The sum of the number of vehicles is a
non-linear quadratic function, which is represented in (45) in vector form. The constraints
of the optimization problem mean that the outgoing traffic flows are required to be greater
than the incoming traffic flows for each network junction. The constraints of the optimiza-
tion problem according to the store-and-forward model are given by following the network
topology of Figure 7 and this gives a set of inequalities:

L1s1u1 ≥ x10 + x1in

L1s2u2 ≥ x20 + x2in

L1s1u1 − s3u3 − L2s4u4 ≥ x30

L1s2u2 ≥ x40 + x4in

L1s3u3 − s1u1 − L2s2u2≥ x50

L1s4u4 ≥ x60 + x6in

L1s3u3 − s5u5 − L2s6u6 ≥ x70

L1s4u4 ≥ x80 + x8in

L1s5u5 − s3u3 − L2s4u4≥ x90

L1s6u6 ≥ x100 + x10in

L1s5u5 − s7u7 − l1s8u8 ≥ x110

L1s6u6 ≥ x120 + x12in

L3s7u7 − s5u5 − L2s6u6≥ x130

L2s8u8 ≥ x140 + x14in

L4s7u7 ≥ x150 + x15in

u1 + u2 ≤ 0.9c1

u3 + u4 ≤ 0.9c2

u5 + u6 ≤ 0.9c3

u7 + u8 ≤ 0.9c4

(44)

The last four constraints are relationships between the duration of the green light cycle
and the traffic light, where c1, . . . , c4 are the durations of the traffic light cycle on the control
intersections. The yellow light is assumed to have a fixed length of 1/10th of a cycle.

The values of the duration of the green light ui, i = 1, . . . , 8 according to the stochastic
nature of the traffic are estimated from the ratios (35), (36), (39), (40), (44).

The optimization problem can be represented in vector form:

min
u

1
2
(
uTQu + RTu

)

Au ≥ b
(45)
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Both the objective function matrices of (45), Q and R, have descriptions, given in the
Appendix A. The matrix Q has eight rows and eight columns, since the control variables of
the considered network are uj, j = 1, . . . , 8, Figure 7:

Q =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

q11 q12 q13

q21 q22 q23

q31 q31 q33

q14 q15 q16

q24 q25 q26

q34 q35 q36

q17 q18

q27 q28

q37 q38

q41 q42 q43

q51 q52 q53

q61 q62 q63

q44 q45 q46

q54 q55 q56

q64 q65 q66

q47 q48

q57 q58

q67 q68

q71 q72

q81 q82

q73 q74

q83 q84

q75 q76

q85 q86

q77 q78

q87 q88

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(46)

The matrix elements of (46) are given in the Appendix A.
The matrix R from (45) consists of factors of the linear components of u:

RT =
∥∥r1 r2 r3r4 r5 r6r7 r8

∥∥.

The relevant elements of the RT matrix are given in the Appendix A.
The elements of the matrices A and b for problem (45) are given in the Appendix A.

7. Numerical Simulations and Results

The optimization problem (45) is solved in a MATLAB environment with statistical
data from a real urban area in Sofia. The solution of this linear-quadratic optimization
problem shows a decrease in the values of the vehicles along the sections of the urban
network. The dynamic behavior x1, x2, x3 and x4 for the first junction is given in Figure 8.
The values of x1, x2 and x4 after applying uopt control solutions for the first control cycle
decrease to zero values. The internal transport flow x3, coming from the second intersection,
decreases. Applying this control strategy for several control cycles, the value of x3 tends to
decrease to a zero value, Figure 8.
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Figure 8. Traffic dynamics at the first intersection.

Applying the estimated optimal durations of the green lights uopt for the first control
cycle, the corresponding vehicle values for the second and third sections of the network
give a further reduction to a zero level of the number of vehicles x5, x6, x7 and x8, Figure 9
and x9, x10, x11 and x12, Figure 10.
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Figure 10. Traffic dynamics at the third intersection.

The only car flow that does not support decreasing dynamics is x13, Figure 11. How-
ever, this control keeps its value at a constant level, which is good for minimizing congestion.
The traffic authorities should take measures to increase road capacity s7 to reduce x13. The
remaining vehicle flows x14 and x15 also maintain a decreasing character and decrease to
zero after the first control cycle, Figure 11.
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The decreasing character of the transport flows for the internal sections of the transport
network x3, x9 and x13 are given in Figure 12, where the control cycles applying task (45)
are successively performed.
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Figure 12. Dynamics of interconnected flows.

To evaluate the benefits of the control problem (45), the dynamics of the total number
of vehicles in the transport network are also evaluated. The vehicle totals after each control
cycle are illustrated in Figure 13.
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Figure 13. Change of the sum of all vehicles in the network.

It is obvious that this control policy of sequentially applying the solutions to problem
(45) leads to a significant reduction of the sum of all queues. This is a useful result
for the application of the developed optimization model, which considers probabilistic
approximations in its objective function. To evaluate the results obtained from the resulting
optimization model for traffic management with probabilistic demands, comparisons
are made with the corresponding deterministic optimization problem. The numerical
evaluations and comparisons are illustrated in the next section.
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8. Comparisons between the Developed Probabilistic Control Model and the
Corresponding Deterministic Model

The deterministic traffic management problem is applied to the same transport net-
work presented in Figure 7. The deterministic optimization problem has the same set of
constraints as (44). Since here the green light duration values do not take into account the
random nature of the traffic, the objective function aims to minimize the sum of the number
of vehicles x and green light duration u:

min
x,u

(
x2+u2)

xouti ≥ x0i + xini , i = 1, . . . , 15

u1 + u2 ≤ 0.9c1

u3 + u4 ≤ 0.9c2

u5 + u6 ≤ 0.9c3

u7 + u8 ≤ 0.9c4.

(47)

This optimization problem is solved in a MATLAB environment, and a comparison
between the traffic flows of the respective urban sections is given in Figures 13–15. In
these figures, the deterministic model gives the dynamic changes of the vehicles as a
result of the solution of the problem (47) and the successive application of the duration
of the green light u. The probabilistic problem gives the dynamic changes of the vehicles
by successively estimating the duration of the green light u through the solution of the
resulting problem (45). This problem considers probabilistic requirements for the number
of vehicles. The dynamic changes of vehicles x3 for the two optimization problems are
illustrated in Figure 14.
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Figure 14. Comparison of the change in the number of vehicles x3 in the network.

This result demonstrates a preference for the deterministic model only at the beginning
of traffic management, as its influence causes x3 to decrease to zero. Figures 15–17 show
the changes in traffic flows x5, x9 and x13 for the two cases: deterministic and probabilistic.
For all three vehicle flows, the deterministic values of x5, x9 and x13 have larger values than
the probabilistic ones, which favors the developed probabilistic optimization model.
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Therefore, this comparison provides advantages for the derived optimization problem
that considers additional probabilistic requirements. The most representative comparison
of the total number of vehicles in the urban network is given in Figure 18.
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The graphical results in Figure 18 further prove that the derived optimization problem
that considers probabilistic demands gives better results in reducing traffic flows in the
transport network compared to the corresponding deterministic optimization problem.
It is obvious that the developed model leads to a lower number of vehicles through the
appropriately defined durations of the green traffic lights.

9. Discussion

Optimization shows better probabilistic results compared to deterministic ones. The
comparison is illustrated for traffic flows between adjacent intersections of the main direc-
tion of travel. There is one exception regarding the dynamics of the queue length x3. Its
value also decreases to zero after several control iterations, but the deterministic approach
reaches zero values of x3 at the beginning, Figure 14. This means that both the deterministic
and probabilistic approaches give a positive result with a slight preference to the deter-
ministic one for x3, since after the first control loop, the deterministic optimization gives
zero queue length x3. This small exception cannot detract from the results obtained, as it
can be seen that the sum of all queue lengths is significantly smaller when applying the
probabilistic optimization compared to the deterministic one.

The results, numerically obtained by using the developed model and defining and
solving an appropriate optimization problem, provide useful and practically applicable
results. Comparisons of the obtained results with the classical use of the store-and-forward
model give advantages to the derived task. Our explanations for these advantages are due
to the case that some of the stochastic events in traffic behavior are explicitly reflected in the
control task. This is not the case for the classic store-and-forward model. Our experiments
were conducted for a real part of the network in the city of Sofia. In practice, it is not
easy to make comparisons if urban networks have different infrastructures, as the traffic
behavior will be completely different. For comparison, we performed experiments with
an optimization problem based on a classical deterministic store-and-forward model of
the form (9). Our results, given the stochastic requirements, outperform the deterministic
optimization case. Because a predefined infrastructure and previous traffic data collection
were used, we were able to quantify the results of the derived stochastic model and the
corresponding deterministic model.
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10. Conclusions

The paper presents a model for optimizing traffic management considering the random
nature of traffic flows. The objective function aims to minimize the green light duration
of the considered urban area. The novelty of the model is that the green light duration of
the model reflects the dynamic changes in traffic by formalizing through some statistical
variables such as mean and standard deviation. Two historical intervals are considered for
probabilistic approximations of traffic behavior. The derived optimization problem applies
the well-known store-and-forward model but is complicated by probabilistic requirements
for traffic behavior. The applied control strategy is based on the model predictive control
approach, where a sliding procedure is applied for each control cycle. The completed task
was empirically verified with real data from an urban part of Sofia. The obtained results
are evaluated and compared with traffic optimization with a corresponding deterministic
problem. Numerical results give an advantage and better potential to the probabilistic
model as the traffic flows decrease significantly. Our assessment of the limitations of
the developed model refers to the workload that must be performed in defining the
optimization problem. The set of constraints defining the critical value for the throughput
of a road section xmax must be obtained analytically for each road section of the urban
network. Thus, if the network structure changes or the problem has to be applied to a
different network, additional off-line workload must be allocated. From the point of view
of control applications, this is not a critical issue since it is performed in the off-line stages
of control design. However, the solution in the model predictive approach insists on the
centralized collection of all data on the current traffic behavior: respectively, the number of
vehicles for each road section. For a large-scale network, this raises technical issues for the
engineering design and implementation of such a centralized technical system. However,
this difficulty is common to all centralized control systems. From an algorithmic point of
view, which relates to the inferred model and task, such constraints are not so restrictive.
We see the potential and future development of the resulting model in the simultaneous
optimization of both n of green light duration and traffic light cycle duration. This increases
the control space of the problem, which is a prerequisite for satisfying additional traffic
management objectives and/or constraints. A potential approach for this extension of
the control domain is to apply bi-level hierarchical optimization to the control task. Our
intention in future work is to use bi-level optimization to be able to optimize not only the
green light but also the cycle time of the traffic light. Such a hierarchical formalization
approach allows the extension of the optimization by including more variables, objective
functions and constraints. The developed optimization task allows the automation of the
necessary evaluations through suitable software for managing transport flows.
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Appendix A

Notation Used

x—Number of vehicles in the road sections of the urban network, (vehicles)
xin—Incoming vehicles for the start of the control cycle, (vehicles)
xout—Outgoing vehicles at the end of the control cycle, (vehicles)
u¯The set of the green light durations, (time)
s¯Capacity of a road junction, (vehicle/time)
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ε = (ζ1, ζ2,η)—Random variable for describing stopping, turning, parking vehicles
xmax—Critical value about the capacity of a road section, (vehicle)
γ—Confidence level of probability, (%)
Ex—Mean value of vehicles on a corresponding road section
Vx = σ2

x—Volatility and standard deviation of the vehicles on a corresponding road section
δ = F−1(1− γ)—Z-score of normalized stochastic function with normal distribution for
the value of γ
x0, x1—Number of vehicles for the previous and current control cycle in the road sections,
applied for the model predictive framework for traffic light control
l1, l2—Proportion of the turning right, left vehicles on a crossroad junction
ci , i = 1, . . . ,4—durations of the traffic lights cycles for the fourth junctions
Analytical definition of the critical level of vehicles xmax(u) for each road section of the urban network
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where L4 = 1 + l1.

The matrix elements of the optimization problem
Element of matrix Q of (45)
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Elements of matrices A and b of the constraints of (45)
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