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Abstract: The proportion of the inventory range associated with spare parts is often considered in the
industrial context. Therefore, even minor improvements in forecasting the demand for spare parts
can lead to substantial cost savings. Despite notable research efforts, demand forecasting remains
challenging, especially in areas with irregular demand patterns, such as military logistics. Thus, an
advanced model for accurately forecasting this demand was developed in this study. The K-X tank
is one of the Republic of Korea Army’s third generation main battle tanks. Data about the spare
part consumption of 1,053,422 transactional data points stored in a military logistics management
system were obtained. Demand forecasting classification models were developed to exploit machine
learning, stacked generalization, and time series as baseline methods. Additionally, various stacked
generalizations were established in spare part demand forecasting. The results demonstrated that
a suitable selection of methods could help enhance the performance of the forecasting models in
this domain.
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1. Introduction

Demand forecasting is widely performed in various fields, such as electric power, fi-
nance, and service. Forecast models associated with spare part consumption are significant,
especially in the equipment management and sustainment industry [1]. In general, the cost
of spare parts occupies a considerable proportion of the equipment maintenance cost [2].
Demand forecasting for spare parts in the military is an essential factor in equipment utiliza-
tion. High demand forecasting accuracy for spare parts can improve equipment utilization
and cost efficiency [3]. Therefore, big-data-based methods to forecast the demand for spare
parts have received considerable attention in the fourth industrial revolution [4]. Securing
adequate spare parts is crucial for ensuring the uninterrupted operation of different types
of equipment, reducing budgets, and efficiently managing the munitions field. Thus, con-
siderable research has been conducted to forecast the demand for spare parts [5]. Many
countries pursue an increased operating rate of new and existing weapon systems to ensure
national security and reasonable defense budgeting. Thus, in the event of equipment
failure, timely and prompt acquisition and replacement of spare parts are required [6]. It
is necessary to forecast the demand for consumable spare parts at least one year before
their total consumption. Through such forecasting frameworks, a country can obtain the
necessary amounts of spare parts for year X in the year X-1. Therefore, the forecasting
accuracy for the demand for spare parts is a critical factor in ensuring the equipment’s
operating rate, reducing the procurement and maintenance periods, and enhancing budget
efficiency [3].
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Notably, as modern weapon systems become more technologically and cost-intensive,
the asset value of the equipment and the budget for repairing accessories are continuously
increasing. Generally, the demand for spare parts differs according to the type of equipment
and is intermittent and irregular. Moreover, the lifetime of spare parts introduced for
equipment is often more significant than that of the equipment [7]. These aspects can
increase the maintenance cost of modern weapon systems. Therefore, a scientific and
accurate demand forecasting model must be developed to optimize equipment utilization
and inventory costs. Consequently, the accuracy of the demand forecasting models for
spare parts must be increased [8]. Many researchers have attempted to increase demand
forecasting accuracy for spare parts. The most commonly used technique is the time series.
Three to eight technologies, such as the moving average method and the exponential
smoothing method, can be combined to increase efficiency.

In contrast to the existing time series techniques, this study applied artificial intelli-
gence (AI) techniques to enhance the forecasting accuracy of the demand for spare parts
for the K-X tank, which is the first domestic and core third generation tank since the Re-
public of Korea Army was built. Consequently, the accuracy was improved by applying
several models and previous time series techniques [9]. Currently, AI is a key technology
of the fourth industrial revolution. Therefore, this study adopted meta-learning techniques
recently applied to big data. Time series techniques, data mining, and attention recurrent
neural networks (RNNs) were used based on a meta-learning algorithm. The key objectives
of the study can be summarized as follows:

• To investigate various spare part demand forecasting models associated with classifi-
cation methods, more specifically time series analysis, data mining, and deep learning,
based on stacking and pairing spare parts and demand datasets.

• To identify the model with the highest forecasting accuracy based on statistical analyses.
• To highlight future research directions to ensure better management and spare part

demand forecasting in the defense and logistics sectors.

The rest of the paper is organized as follows. Section 2 reviews the existing studies
on time series, machine learning, and stacked generalization. The proposed model, data
extraction techniques, and variables are elaborated on in Section 3. Section 4 presents a
comparative analysis of the results of each technique. Finally, the concluding remarks and
highlights are presented in Section 5.

2. Literature Review
2.1. Time Series

Time series analyses are widely employed in many demand forecasting domains
and represent representative quantitative techniques to forecast changes from historical
patterns [10]. A few researchers used first- and second-order exponential smoothing
methods to estimate the number of traffic-accident-related injuries and fatalities in Jordan
from 1981 to 2016. The results were compared to those obtained using methods based on
the mean absolute percentage error, mean absolute deviation, and mean squared deviation.
The second-order exponential smoothing method exhibited excellent performance [11].
Our demand forecast model for repair units involved 5–8 time series techniques for each
military domain, with 3 techniques used for the Army. Models used by most South Korean
troops involve 5–9 time series techniques. In this methodology, the actual demands for year
X after implementing the year X-1 demand forecast are compared, and a relatively simple
demand forecasting technique is compared to the private technique [5,6].

2.2. Machine Learning

In this study, we applied data mining and deep learning methodologies. Data mining
involves generating knowledge by investigating, analyzing, and modeling useful infor-
mation and relations from big data [12]. Data mining methods include decision trees
(DTs), Bayesian networks, and support vector machines (SVM). In the DT-based approach,
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information is analyzed based on decision-making rules to sort the information into tree
structures, classify the concerned class into many classes, or make predictions [13].

Deep learning involves deep neural networks consisting of links. Such networks
imitate human neural networks and are composed of numerous layers [14,15]. A multi-
layer perceptron (MLP) is an orthodromic artificial neural network in which single-layer
perceptron networks are connected in multiple layers. An MLP can overcome the dis-
advantage of single-layer perceptron systems that cannot manage data that cannot be
linearly separated [16,17]. Moreover, to enhance MLP approaches, RNNs that involve
a circulation structure have been developed. In such frameworks, the information of a
specific instance is stored in each memory block and transmitted according to the following
schedule. RNNs perform excellently in processing sequential data, such as text, voice, and
time series data [18]. Using the long short-term memory (LSTM) algorithm, RNNs can
eliminate the problem of long-term dependency, and such frameworks have thus been
applied in various fields [19]. Gated recurrent units (GRU) represent the modified model
of LSTM; such models do not involve the issue of gradient vanishing and involve a less
complex calculation process [20].

A convolutional neural network (CNN) is one of the techniques that corrects problems
that occur when processing data such as images or videos in a deep neural network [21].
Previous studies applied CNNs to solve the urban functions and socioeconomic status with
short-term travel demand forecast patterns. The methodology that improved the accuracy
of travel demand prediction by combining deep learning architecture with a traditional
CNN was applied to this study [22].

2.3. Stacked Generalization

Stacked generalization is a learning method based on one-shot learning. In this frame-
work, a model performs rapid learning when one-shot data are provided using the rich
factor data instead of the classification analysis method [23]. Related techniques include
the bagging technique, which can reduce the variance, and the AdaBoosting technique,
which minimizes the bias [24]. Stacked generalization aims to assemble different models,
thereby reinforcing the strengths of each model and supplementing their weaknesses in
establishing a highly accurate model. The commonly used models include SVM, DT, and
random forests [25]. Stacked generalization, also known as meta-learning, estimates the
generalized error of the training dataset by using several classification algorithms to reduce
these errors and forecast the final test dataset [26]. In particular, stacked generalization
involves two steps. In the first step, the forecasts are obtained by training various classi-
fication algorithms (Level-0 models). In the second step, these forecasts are gathered to
form a meta-training set, and forecasts are obtained using the final classification algorithm
(Level-1 model). Generally, higher performance can be achieved by learning the values
predicted using Level-0 models and classifying them using Level-1 models than by using
only Level-0 models [27].

Existing studies have highlighted that AI technology is significant in the fourth indus-
trial revolution, as it can support future-oriented decision-making and big data. However,
the South Korean military still depends on the time series technique, in which only past
demand data is used. Previously, data other than demand data could not be considered.
However, since establishing an information system in 2009, additional information can
be accumulated, and the variables can be further examined. Moreover, machine learning
techniques can enhance demand forecast accuracy in various fields. This study establishes
a meta-learning technique combining RNNs and a machine learning classification approach
considering time series.

3. Problem Description and Methodology
3.1. Data Collection

Since 2009, the Republic of Korea Army has been building an information system for
the supply and maintenance of spare parts by using the latest information technologies and
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focusing on the main equipment of weapon systems. The integrated information support
system, Defense Logistics Integrated Information System, is used by maintenance-related
departments from the organization units of the Army, Navy, and Air Force from the Min-
istry of Defense. The system includes 1,053,422 transactional data points, derived from the
maintenance table of the device maintenance information system of the Air Force, involving
22 variables, including maintenance data, the number of repair accessories consumed on
the repair day, and component count per vehicle. The data for the target airplanes of
this study were reorganized based on item type, and 10,714 spare parts were considered.
In addition, variables associated with the data for yearly consumption were extracted.
The target variable to be predicted corresponded to the data associated with the require-
ment for each item in 2017, consisting of 10,714 items. To balance the distribution of the
target variable in terms of item requirement, the items included 5357 needed items and
5357 unneeded items. The 35 variables in the data corresponded to the units consumed,
units procured, consumption ratios, operating times, and operating distances for seven
years (2010–2016), as shown in Table 1. These variables were not independent because of
the time series tendency. In particular, classification problems with time series character-
istics differ from typical classification problems because the variables are specified in a
specific order. We used deep learning and meta-learning, which are excellent methods for
processing sequentially occurring data, to solve this problem.

Table 1. Feature description.

Variable (Number of the Unit) Meaning Type of Variable

Number consumed (6) Sum of spare parts consumed per item by year

Independent Variable
(2010–2015)

Number procured (6) Sum of spare parts procured per item by year

Consumption ratio (6) Consumption ratio of spare parts consumed per item by year
(Consumption ratio = number consumed/number procured)

Equipment operation time (6) Operating time of equipment by year

Equipment operation distance (6) Equipment operating distance by year

Number consumed (1) Demand forecasting of spare parts consumed per item in 2016
(Binary; 0, 1)

Dependent
Variable (2016)

3.2. Proposed Stacking Ensemble Learning System

The proposed stacking ensemble learning system consisted of a base-level learn-
ing module and a stacking ensemble learning module. The base-level learning module
determined the probability of the predicted result to prepare a meta-dataset. Five-fold
cross-validation was performed to prevent over-fitting when constructing a meta-dataset.
See Figure 1, which represents the overview of the process.
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Base-Level Learning Module. The base-level learning module can be divided into
machine learning methods that do not consider time series and deep learning methods
that consider time series. The machine learning methods include traditional statistical
models, such as logistic regression (LR) and naive Bayes (NB), and a distance-based model,
k-nearest neighbor (KNN). It also included a model that finds the hyperplane with the
most significant margin between classes, the SVM model, and the tree-based bagging or
boosting models, such as DTs, RFs, AdaBoost (AB), XGBoost (XGB), LightGBM (LGBM),
and CatBoost (CB). Additionally, we considered the characteristics of 11 models, including
the MLP.

An RNN algorithm was used as a deep learning technique to reflect the time series
tendency. In particular, RNNs, GRUs, and LSTM, commonly used RNN algorithms, and
AttRNN, attention GRU (AttGRU), and attention LSTM (AttLSTM) were applied with the
attention mechanism to focus on features related to the target. Moreover, a 1D convolutional
neural network (1DCNN) that extracts features through the convolution operation was
used, leading to seven deep learning algorithms.

Stacking Ensemble Learning Module. The meta-dataset created through the learning
of the base-level learning module included numerical data that expressed prediction values
as probabilities. In the stacking ensemble learning module, a relatively simple linear model
is usually used to combine the results predicted by the base-level learning module and the
confidence [17]. Therefore, LR and SVM were used as machine learning techniques to train
the meta-dataset in this study’s stacking ensemble learning module. See Figure 2 for more
details on the stacking ensemble learning module. The result was computed by training
the meta-dataset using the stacking ensemble learning module.
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4. Experimental Study
4.1. Experimental Design

The data used in this study exhibited a time series characteristic. To reflect this time
series tendency, training data were obtained by splitting the data into years to enhance
the robustness of the learned model. Given that the objective was to forecast the repair
accessory demand in 2017, data from 2010 to 2015 were used as input variables and
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trained to forecast the demand for spare parts in 2016. Subsequently, the final performance
was evaluated by forecasting the demand for spare parts in 2017 using 2011 to 2016 as
input variables.

Performance Indicators. The accuracy, precision, recall, and F1-score, typically used
in classification problems, were used as evaluation indicators. In addition, we examined
the area under the receiver operating characteristic curve (AUROC) and the area under the
precision–recall curve (AUPR), which can illustrate the robustness of the model. AUROC
is a real number between 0.5 and 1, and if it is closer to 1, it is better than the model. The
x-axis of AUPR becomes a recall, and the y-axis becomes precision. The AUPR below it
becomes the area. The Equations for each evaluation indicator are as follows:

Actual: Yes, Predicted: Yes = TP (True Positive),

Actual: Yes, Predicted: No = FP (False Positive),

Actual: No, Predicted: Yes = FN (False Negative),

Actual: No, Predicted: No = TN (True Negative)

Accuracy rate = (TP + TN)/(TP + FP + FN + TN)

Recall = TP/(TP + FN), Precision = TP/(TP + FP),

Specificity = TN/(TN + FP), F1-Score = 2 × Recall × Precision/(Recall + Precision)

4.2. Classification Results of the Base Model

The base model consisted of time series, machine learning, and deep learning tech-
niques. The goal of this research was to suggest a model that predicts the demand for
an entire year, based on previous data for spare parts, for six years. Since lag data based
on spare parts is used for verification and evaluation, cross-validation was performed by
randomly classifying five folds. For the fairness of the experiment, the spare parts to be
evaluated over time were always selected from the same group. The methodology of the
base model transformed the state of the spare parts into representations of binary integers
[0, 1] according to the occurrence of the item.

As indicated in Table 2, the machine learning-based model outperformed the tradi-
tional univariate time series model. In particular, the tree-based model exhibited excellent
overall performance in terms of the accuracy and the F1-score. Figures 3 and 4 show that
the AUROC and AUPR scores were also significantly high. The deep learning-based model
exhibited a high recall value. Execution time (ET) is the time required relative to the number
of operations required to perform operations based on input values and algorithm changes.
Given the ETs from the results, the suggested methodology can be applied in real time.
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Table 2. Performance values of base models.

Model Method Accuracy Precision Recall F1-Score AUROC AUPR ET (Sec)

AM

Time
series

0.692 0.776 0.692 0.706 0.690 0.620 0.002
SMA 0.725 0.771 0.725 0.731 0.720 0.650 0.001
WMA 0.548 0.914 0.548 0.649 0.550 0.520 0.001
LMA 0.575 0.790 0.575 0.626 0.610 0.560 0.002

LS 0.540 0.860 0.540 0.627 0.540 0.520 0.003

LR

Machine
learning

0.743 0.886 0.556 0.684 0.820 0.840 0.884
NB 0.593 0.914 0.206 0.336 0.740 0.760 0.908

KNN 0.771 0.786 0.744 0.765 0.840 0.830 1.100
SVM 0.716 0.811 0.564 0.665 0.810 0.820 2.490
DT 0.801 0.838 0.747 0.79 0.790 0.780 2.521
RF 0.800 0.834 0.75 0.79 0.860 0.880 2.908
AB 0.791 0.839 0.721 0.775 0.860 0.890 3.139

XGB 0.801 0.857 0.722 0.784 0.860 0.890 4.344
LGBM 0.802 0.858 0.723 0.785 0.870 0.890 4.600

CB 0.801 0.853 0.727 0.785 0.870 0.890 9.811

MLP

Deep
learning

0.775 0.829 0.692 0.754 0.840 0.870 12.407
RNN 0.646 0.614 0.787 0.69 0.700 0.700 7.902
LSTM 0.646 0.614 0.787 0.69 0.730 0.730 8.928
GRU 0.646 0.614 0.787 0.69 0.740 0.740 7.916

1DCNN 0.621 0.609 0.673 0.64 0.700 0.700 5.261
AttRNN 0.616 0.607 0.662 0.633 0.560 0.560 2.026
AttLSTM 0.646 0.614 0.787 0.69 0.740 0.740 4.576
AttGRU 0.646 0.614 0.787 0.69 0.730 0.730 4.295
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4.3. Classification Results Obtained Using the Stacking Ensemble Model

Three models were established for the stacking ensemble model, based solely on the
machine learning algorithm (ML), solely on the deep learning algorithm (DL), and on a
combination of ML and DL (ML + DL). Overall, the stacking ensemble model outperformed
the base model in terms of the accuracy and the F1-score, as indicated in Table 3. Moreover,
Figure 5 shows that the AUROC and AUPR scores were enhanced for the stacking model.
Among the proposed stacking ensemble models, the LR (ML) and LR (ML + DL) models,
both of which exhibited the highest performance, achieved an accuracy of 80.5% and an
F1-score of 79.2%.
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Table 3. Performance values of the stacking ensemble models.

Model Accuracy Precision Recall F1-Score AUROC AUPR ET (Sec)

LR (ML) 0.805 0.850 0.742 0.792 0.880 0.900 0.022
LR (DL) 0.647 0.614 0.789 0.691 0.750 0.730 1.060

LR (ML + DL) 0.805 0.849 0.742 0.792 0.880 0.900 1.109
SVM (ML) 0.804 0.868 0.716 0.785 0.840 0.830 0.690
SVM (DL) 0.647 0.615 0.790 0.691 0.750 0.760 3.161

SVM (ML + DL) 0.804 0.872 0.713 0.784 0.840 0.830 1.622
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Figure 5. Comparison of the area under the receiver operating characteristic curve (AUROC) and
area under the precision–recall curve (AUPR) for the stacking ensemble model.

The LR fared better in the stacking ensemble learning module than the SVM in terms
of recall and the F1-score, despite the SVM’s superior accuracy and precision. The precision
and recall values were slightly superior to SVM (ML + DL) and SVM (DL) when the time
series deep learning model was used. The deep learning-based stacking ensemble model
gave a high recall, identical to the base model. Utilizing a suitable stacking ensemble
learning module while considering the necessary evaluation indicators is essential in
this context.

5. Conclusions

Time series, machine learning, deep learning, and stacked generalization techniques
were applied to forecast the demand for spare parts. The stacked generalization techniques
outperformed the existing time series method.

A significant portion of the munitions inventory is spare parts, accounting for a high
percentage of the inventory. Therefore, a small improvement in forecasting for spare parts
can ensure significant cost savings and higher wartime preparedness. For models with
high accuracy, data expansion is required by considering intermittent demand forecasting
and applying the M4 (day, month, quarter, half, year) competition methodology. Until now,
only structured data were considered, but unstructured data will also be considered to
increase the accuracy of future demand forecasts.
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