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Abstract: Sperm morphological analysis (SMA) is an essential step in diagnosing male infertility.
Using images of human sperm cells, this research proposes a unique sequential deep-learning
method to detect abnormalities in semen samples. The proposed technique identifies and examines
several components of human sperm. In order to conduct this study, we used the online Modified
Human Sperm Morphology Analysis (MHSMA) dataset containing 1540 sperm images collected from
235 infertile individuals. For research purposes, this dataset is freely available online. To identify
morphological abnormalities in different parts of human sperm, such as the head, vacuole, and
acrosome, we proposed sequential deep neural network (SDNN) architecture. This technique is
also particularly effective with low-resolution, unstained images. Sequential deep neural networks
(SDNNs) demonstrate high accuracy in diagnosing morphological abnormalities based on the given
dataset in our tests on the benchmark. Our proposed algorithm successfully detected abnormalities in
the acrosome, head, and vacuole with an accuracy of 89%, 90%, and 92%, respectively. It is noteworthy
that our system detects abnormalities of the acrosome and head with greater accuracy than current
state-of-the-art approaches on the suggested benchmark. On a low-specification computer/laptop,
our algorithm also requires less execution time. Additionally, it can classify photos in real time. Based
on the results of our study, an embryologist can quickly decide whether to use the given sperm.

Keywords: neural networks; sperm abnormality; sequential deep neural network; fertility prediction

MSC: 68T07

1. Introduction

Infertility means lack of pregnancy with unprotected intercourse after 12 months.
A total of 40–50% of reported cases suffer from male factor infertility. Globally, 15% of
people suffer from infertility problems [1,2]. Research shows that semen quality in men
is decreasing gradually with time [3]. More than 60 papers were reviewed, and it was
found that the seminal fluid number of sperms and quality in a given sample have declined
in the past 50 years [4]. To seek the reason behind this, scientists have performed semen
analyses according to World Health Organization (WHO) rules, assessing semen volume,
sperm concentration, total sperm count, sperm morphology, sperm vitality, and sperm
motility [5]. However, manual semen analysis is challenging and time-consuming even
for a medical expert [6] Therefore, researchers have been developing automatic systems
for semen analysis for several decades. After the digitization of images, computer-aided
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sperm analysis (CASA) was announced in the 1980s, making it possible to analyze images
using computer systems [7]. CASA provides a rapid and objective assessment of sperm
motility and concentration but with low accuracy due to the presence of other particles in
sperm samples. So, CASA is not suggested for medical use.

In past research, researchers proposed an automatic sperm-tracking technique called a
fully automated multi-sperm-tracking algorithm, which trails hundreds of spermatozoa at
a given time [8]. In another study, they proposed a method that uses a convolutional neural
network (CNN) that classifies a given sample into normal and abnormal sperms. Their
results were evaluated on a close dataset, and they compared it with other approaches [9].
In previous research methodologies, the CASA tool was used with classic image processing
and machine learning [9]. Deep learning, however, has been increasingly important in
computer vision applications in recent years [10–12]. These deep-learning algorithms are
state-of-the-art networks for automatic image analyses, such as VGG16, VGG19, DensNet,
GoogleNet, AlexNet, ResNet, etc. [13–15].

In this research work, we introduced new sequential deep-learning architecture for
the automatic analysis of sperm morphology structure. Furthermore, we evaluated the
effectiveness of modern machine-learning and deep-learning techniques over sperm mi-
croscopic videos of human sperm microscopic datasets/videos and related parameters to
automate the prediction of human sperm fertility. To perform this task, we used an online
freely available dataset named MHSMA [16]. This dataset is derived from the Human
Sperm Morphology Analysis (HSMA-DS) dataset [17]. Furthermore, experts annotated this
dataset with the help of guidelines provided by [18,19].

This is a challenging task because of the below-mentioned reasons.

1. Images in the given dataset are very noisy.
2. The sperms are not stained.
3. Data samples were recorded with a low-magnification microscope, so images were unclear.
4. The images were captured with a low-magnification microscope and thus lacked clarity.
5. There is a severe imbalance between the normal and abnormal sperm classes.
6. There are not enough sperm images for the training phase.
7. For the analysis to be helpful for clinical purposes, it should be performed in real time.

We use data augmentation and sampling techniques to overcome the challenges
mentioned above to resolve class imbalance issues and training image shortages. Then, we
suggest architecture for a sequential deep neural network that can be taught to distinguish
between normal and abnormal sperm heads, acrosomes, and vacuoles. Our proposed
algorithm combines Conv2d (2D convolution layer), BatchNorm2d (two-dimensional
batch normalization), ReLU (rectified linear activation unit), MaxPool2d (max pool two-
dimensional), and flattened layers. It shows impressive results on non-images. Furthermore,
our approach can be used for medical objectives. Additionally, each sperm may be checked
in as little as 25 milliseconds, allowing our approach to function in real time. Experimental
findings demonstrate the efficiency of our approach in terms of accuracy, precision, recall,
and F1 score, which is the most advanced way for this dataset.

Section 2 reviews previous work on sperm morphology analysis using different deep-
learning techniques. Section 3 describes the dataset and attributes of the proposed research
work. Section 4 presents our proposed model with a deep-learning algorithm. Sections 5–8
include our experimental and training setup details, evaluation matrices, result comparison,
and discussions. Finally, we summarize conclusions and future directions in Section 9.

2. Related Work

In the literature, a vast body of knowledge is available on automated sperm selection.
In one of these studies, the proportion of boar spermatozoa heads was assessed and a
characteristic intracellular density distribution pattern was found [20,21]. A deviation
model was established and calculated for each sperm’s head in this procedure. Then, an
ideal value was taken into account for each sperm categorization. Sperm tails were then
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taken out, and the gaps in the outlines of the heads were closed using morphological closure.
Finally, 60 sperm heads were isolated from the background using Otsu’s technique [22].

In another approach, normal and abnormal sperm groups were classified using four
phases. (1) Pre-processing images: converting RGB images to grayscale and using a median
filter to eliminate noise; (2) separating and identifying each sperm with the help of the Sobel
edge-detection technique; (3) segmentation: the head, midpiece, and tail of the sperm were
separated; and (4) statistical measurement: a categorization was carried out to distinguish
between healthy and unhealthy sperm [23]. In another study, the authors compared sperm
nuclear morphometric subpopulations in several animals, including pigs, goats, cows,
sheep, etc. [24]. A total of 70 sperm images were processed using ImageJ software, and
the findings were utilized for clustering [1]. This approach combines multivariate cluster
analyses with computer-assisted sperm-morphology-analysis fluorescence (CASMA-F)
technology. In the 1980s, computer-aided sperm analysis (CASA) was announced for sperm
analysis. It was a very successful software used to measure sperm characteristics, such as
sperm concentration and progressive and non-progressive motility in many animal species.
However, in the case of human semen analysis, the CASA tool does not show good results
due to complications in the fluid of human semen samples [25].

On the other hand, sperm classification using conventional machine-learning (ML)
techniques has been quite successful. This accomplishment was made possible by the
idea of an ML pipeline that can tell the difference between normal and abnormal sperms
in different sperm portions with the help of a solo sperm image, which is made up of
two parts. In the first section, shape-based descriptors were used as a feature extraction
technique for the manual extraction of sperm cells. The second section uses these attributes
to classify sperm images using a support vector machine [26].

In one of their investigations, a group of researchers benchmarked various combina-
tions of descriptors/classifiers on sperm head classification into five categories: one normal
class and four abnormal classes [26]. They used a mix of three distinct shape-based de-
scriptors to extract appropriate sperm attributes from a sperm image. These characteristics
were input into four different classifiers: decision tree; naive Bayes; nearest neighbor; and
support vector machine (SVM). SVM achieved the greatest mean accurate classification
of 49% among these classifiers. As is clear from this illustration, conventional learning
algorithms mainly rely on the manual modelling of the data format and extracting the
characteristics of human sperm cells. Because the data were complicated and people created
the representations, the process took time and was prone to mistakes. As a result, current
research has focused on “deep learning,” a method that aims to minimize human biases.

Deep-learning algorithms have the potential to learn how to accurately categorize each
sperm, as well as how to efficiently portray the data on their own, making them a viable
option for overcoming these limitations. Convolutional neural networks, a subclass of
deep-learning algorithms, are the most promising for image categorization tasks [27]. These
neural network designs consist of several layers that may be divided into two successive
sections based on their operation. The first section uses techniques, such as convolution and
pooling layers, to learn an abstract representation (i.e., several valuable properties) from
a given dataset. The second section, a multi-layer feed-forward neural network, receives
these abstract representations and trains an approximation function to map them into the
necessary categories [28].

These techniques have just lately begun to be used in sperm morphology studies. Early
research focused on categorizing the whole sperm dataset as normal or abnormal [28–30].
The first pre-trained deep-learning model was used in 2018 to classify healthy sperm and
identify whether sperm is normal or abnormal. Researchers developed a smartphone-based
microscope to differentiate between normal and abnormal sperm images and learn a deep
convolutional neural network. They argued that using their network with a smartphone-
based microscope could evaluate human sperm at home [28].

Another study proposed a region-of-interest (ROI) segmentation methodology that
automatically segments sperm images depending on sperm count, with the help of fuzzy
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C-means clustering and modified overlapping group shrinkage (MOGS). The author used
the Sperm Morphology Image Dataset (SMID) to categorize each sperm image into three
groups: normal; abnormal; and non-sperm. Moreover, they also trained an efficient neural
network (Mobile-Net) from scratch without pre-training on other datasets and obtained
stunning results [29].

The author also proposed smartphone-based data acquisition and reporting tech-
niques for sperm motility analysis. According to the author, this is the first smartphone
technique in an expert system for semen analysis up to 2021. Furthermore, they introduced
a multi-stage hybrid analyzing approach for video stabilization, sperm motility, and con-
centration analysis. They also used the Kalman filter for sperm tracking. Authors claim
that this system can report more detailed outcomes in different situations and has more
advantages than any other expert system previously used for semen analysis concerning
cost, modularity, and portability [31].

In the following study, the author classifies sperm heads into four to five categories [32,33],
given by HuSHeM [34] and SCIAN [35] datasets. They employed a pre-trained VGG19
model [33]. They fine-tuned the datasets mentioned above to classify sperm heads into
four (HuSHeM dataset) and five (SCIAN dataset) different categories [36]. After this research,
researchers manually created a unique convolutional neural network, increasing the accuracy
of the prior study on both datasets [32]. Another field of study has focused on classifying
the three components of human sperm images (the head, acrosome, and vacuole) into
normal and abnormal sperms using freely available datasets (MHSMA) [16]. In their initial
investigation, Javadi and Ghasemian used a deep-learning technique to address this issue.
In their work, they created a deep-learning system from scratch by hand and trained it using
this dataset. They classified the head, vacuole, and acrosome more accurately than prior
research that used hand-crafted heuristics [37]. A more recent work, however, used a unique
evolutionary technique to create the architecture of a CNN and achieved better results on the
same dataset. This neural architecture method showed an accuracy of 77.33%, 77.66%, and
91.66% in the head, acrosome, and vacuole, respectively. This algorithm is called Genetic
Neural Architecture Search (GeNAS) [37]. Similarly, in 2022, Chandra et al. also used the
same dataset and applied all famous pre-trained deep-learning models, such as VGG16,
VGG19, ResNet50, InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, DenseNet,
NASNetMobile, NASNetLarge, and Xception. According to experimental findings, the
deep-learning-based system performs better than human specialists in classifying sperm
with great accuracy, reliability, and throughput. By visualizing the feature activations
of deep-learning models, they further analyzed the sperm cell data and offered a fresh
viewpoint. Last but not least, a thorough study of the experimental findings revealed
that ResNet50 and VGG19 had the highest accuracy rates of 87.33%, 71%, and 73% for the
vacuole, acrosome, and head labels, respectively [38]. The following Table 1 shows the
latest research and outcomes on the MHSMA dataset.

Table 1. MHSMA dataset with previously proposed techniques.

Ref Dataset Method of
Classification

Network Outcomes

[17] HSMA-DS SMA algorithm The SMA algorithm was used for classification, and results show
above 90% accuracy for sperm abnormality detection. It also shows

high rates of true positive and true negative.
[16] MHSMA Deep CNN Deep CNN CNN was used to classify sperm image datasets into normal and

abnormal sperms with the help of multiple morphological
characteristics. As a result, CNN achieved an F 0.5 score of 94.65%,
83.86%, and 84.74% in the vacuole, head, and acrosome abnormality

revealing, respectively.
[38] MHSMA Deep CNN VGG19 and

ResNet50
VGG19 and ResNet50 showed the best accuracy of 87.33%, 71%, and

73% for the vacuole, acrosome, and head label, respectively.
[37] MHSMA CNN Genetic Neural

Architecture Search
This neural architecture method showed an accuracy of 77.33%,

77.66%, and 91.66% in the head, acrosome, and vacuole, respectively.
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3. Dataset Parameters and Distribution

This paper uses a freely available benchmarked MHSMA [16] derived from the HSMA-
DS dataset [17]. Experts marked this dataset with the help of guidelines provided by [18,19].
A well-defined acrosome makes up 40 to 70% of the sperm head, and the sperm head’s
length and width are between 3 and 5 m and 2 and 3 m, respectively. The presence of
vacuoles shows that the sperm is abnormal. Axially, the midpiece is around 1 micrometer
wide, making it one and a half times as big as the head. Additionally, the typical tail
features, such as homogeneity, uncoiling, being thinner than the mid-piece, and having a
length of 45 m, must be discernible. Figure 1 shows a schematic of a sperm cell’s structure
built on marked labels.
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Figure 1. Sperm cell’s structure based on annotated labels.

This dataset used a low-magnification microscope (400× and 600×) to collect the
1540 grayscale non-stained sperm images. Each image has one sperm and is available
in two distinct sizes, 64 × 64 and 128 × 128 pixels. In the field of sperm morphology
analysis, specialists identified the head, vacuole, acrosome, neck, and tail of the sperm
into normal and abnormal sperm images. Table 2 illustrates the distribution of samples
from this collection. As can be seen from this chart, the vacuole, tail, and neck labels,
in particular, suffer from the issue of data imbalance. Another concern is the limited
amount of data samples because deep-learning algorithms need a lot of examples to
create good function approximations for high-dimensional input-space problems [27]. The
dataset’s normal and abnormal samples are displayed in Figure 2. Two distinct partitioning
strategies were used in our research to assess each trained model. In the first technique, the
training set, test set, and validation set are the three separate sets into which the MHSMA
dataset is divided. Table 3 displays the division of the dataset into normal and abnormal
samples in each section. Surprisingly, the technique’s distribution of training, test, and
validation test samples match that of two other studies on this dataset, allowing for a fair
comparison [16,37,38].

Table 2. MHSMA dataset samples details.

Label #Normal #Abnormal %Normal
Acrosome 1086 454 70.52
Head 1122 418 72.86
Vacuole 1301 239 84.48
Tail and Neck 1471 69 95.52
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Table 3. Division of MHSMA dataset in different partitions.

Set Label #Normal #Abnormal %Normal
Acrosome 699 301 69.90
Head 727 237 72.70
Vacuole 830 170 83.00

Training set

Tail and Neck 954 46 95.40
Acrosome 213 87 71.00
Head 219 81 73.00
Vacuole 262 38 87.33Test set

Tail and Neck 284 16 94.67
Acrosome 174 66 72.50
Head 176 64 72.33
Vacuole 209 31 87.08Validation set

Tail and Neck 233 7 97.08

First, the entire MHSMA dataset is divided into five equal partitions. The training and
validation sets comprise the left-behind 1240 samples. The test set, consisting of 300 sample
photos, is chosen as one of these divisions. The validation set, composed of 240 samples
drawn randomly from these four partitions, is used to test the training set, consisting of the
remaining 1000 samples. The dataset split ratios for the training, testing, and validation
sets are shown in Table 4.

Table 4. Dataset Distribution.

Number of Images Split Percentage
Training Set 1000 69.94%
Validation Set 240 15.58%
Test Set 300 19.48%

4. Proposed Method

This section introduces a new sequential deep-learning technique for automatically
identifying a human sperm’s head, acrosome, and vacuole from grayscale non-stained
images. Next, we detail how our deep-learning network was developed and trained. In the
end, we review the evaluation measures and procedures employed to rate our suggested
model. It is important to emphasize that we do not investigate finding a solution to the
categorization issue with the tail and neck labels because classifying the labels for the head,
acrosome, and vacuole is challenging work for embryologists, and classifying the labels for
the tail and neck is a very simple job.

In light of this, the main topic of this work is the three different classification challenges
of identifying the head, acrosome, and vacuole as normal or abnormal. The beauty of
our proposed algorithm is that we use the same number of layers to classify sperm cells
into the head, vacuole, and acrosome. Moreover, our proposed model outperforms all
previously proposed techniques on a given dataset by a significant margin. It should be
highlighted that on the suggested benchmark, our system detects abnormalities of the head
and acrosome with 12.67% and 11.34% greater accuracy than present modern approaches.
Furthermore, our algorithm requires less execution time, even on a low-specification
computer/laptop. Moreover, our algorithm classifies images in real-time environments.
This enables an embryologist to quickly decide if a given sperm should be chosen or not.

Deep-Learning Model

The design of our deep neural network is based on the Sequential model. The Se-
quential model is a container class; we also call this a wrapper class used to compose a
neural network. We can build any neural network with the Sequential model’s help, which
means we can combine different layers in our model, even though we can combine different
networks in a single model. Our proposed sequential deep neural network contains three
stacks of layers, and the layers present in each stack are explained below.
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1. Convolutional 2D layer: This layer extracts image features from the input dataset
with the help of the convolution kernel. Conv2d creates a convolution kernel, com-
bining the input layer and producing a tensor of output. A bias vector is created and
added to the outputs if use bias is True. Finally, if activation is not None, it is also
applied to the outputs. Arguments of this layer include kernel size 4, stride 1, and
padding 1.

2. Batch normalization: The output of Conv2d is used as the input to the batch norm2d
layer, and the output of the batch norm2d layer is used as the input of the first ReLU.
A ReLU activation function follows each convolutional layer.

3. Max Pooling2d: Max pooling reduces feature map size through downsampling.
Pooling is normally conducted with the help of two common techniques. The first
one is max pooling, and the second one is average pooling. However, max pooling is
mostly recommended for image feature processing because it retains maximum output
samples in the rectangular region. So, we also adopted the max pooling technique in
this research with a max pooling stride of 2 that ensures late downsampling.

Similarly, we created three stacks of layers with minor changes. Details of our proposed
sequential model are given below in Figure 3.
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5. Training Configurations

In this section, we trained our proposed model to achieve predictions with maximum
accuracy and minimum loss. To achieve this, we employed the cross-entropy loss function.
This function is a metric used in machine learning to assess how well a categorization model
performs. Loss or error is represented between o and 1 and the ideal model represents a
0 reading. Generally speaking, the objective is to bring your model as close to 0 as possible.

This function is estimated by subtracting the actual output from the predicted output.
Then, we multiply that amount by “−y × ln(y)”. In other words, we start with a negative
number, raise it to the power of the y-positive logarithm, and then deduct it from our initial
calculation. The cross-entropy loss calculation formula is as below:

Hp(q) = − 1
N ∑N

i=1 yi · log(p(yi)) + (1 − yi)· log(1 − p(yi)) (1)

We trained our model through images available in the training set, with the help of
the hyperparameters given in Table 5.

Table 5. Details of hyperparameters for proposed model.

Label Head Acrosome Vacuole

Optimizer Adam Adam Adam
Learning-rate 1 × 10−4 1 × 10−4 0.001
WEIGHT_DECAY 0.01 0.01 0.01

Loss Function Cross-entropy
loss function

cross-entropy
loss function

cross-entropy
loss function

Batch size 64 64 64
eps EPS EPS EPS

When our model gave the best validation accuracy, we marked its checkpoints through-
out training, which will be documented. If more than one point gave us the same high
validation accuracy, then we chose the highest accuracy with the lowest loss. Then, we
deployed this model on the test set.

The beauty of our proposed model is that we used the same number of stack layers for
the testing and validation set of the head, acrosome, and vacuole with different hyperpa-
rameters. On the training set, the parameters of the entire model was trained and adjusted
for 100 iterations. The performance of our models was enhanced by obtaining many useful
features for each of the three jobs.

To implement our proposed model, we used Python programming language with
TORCH framework and Tensorflow backend. Furthermore, all our experiments were
performed on Kaggle using NVIDIA Tesla P100 GPU.

6. Evaluation Metrics and Methods

We utilized numerical and visual performance indicators to assess the effectiveness
of the models introduced in this paper. The following equations present these numerical
evaluation metrics: (2)–(6). The symbols TP, FP, TN, and FN stand for true positive
(normal sperms correctly recognized), false positive (abnormal sperms wrongly identified),
true negative (abnormal sperms correctly identified), and false negative (normal sperms
incorrectly detected) in these equations, respectively. Similarly, Equations (5) and (6)
describe the f 0.5 and f 1 scores, respectively. Figure 4 displays the confusion matrix for
different labels of the given dataset.

Acc =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

fβ Score
(

1 + β2 )× Precision × Recall
β2 × Precision + Recall

(5)

f 1 − score
(2 × P × R)

P + R
(6)
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7. Results Comparison

We separately trained the model to classify the sperm’s head, acrosome, and vacuole.
We introduced our model with 1000 samples on 100 iterations (epochs) because we achieved
the highest accuracy on 100 iterations. The validation set (240 pieces) determines the loss
value after each iteration, and the checkpoint with the lowest validation loss is stored. We
assessed the saved checkpoint on the held-out test set after training (300 samples). Figure 5
displays the accuracy and loss during the training and validation for each label over training
iterations. Our proposed technique can independently predict abnormality in the sperm
head, acrosome, and vacuole with an accuracy of 88.6%, 89%, and 92%, respectively. Table 6
compares our proposed model with pre-trained modern deep-learning architectures.
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Figure 5. Progression of accuracy and loss on the validation set during sequential deep-learning
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and (c) head. Similarly, the right side of the graph shows maximum validation loss with the blue line
and maximum training loss with the orange line.

We evaluated the efficiency of our proposed technique against 11 pre-trained state-
of-the-art deep-learning models [38] tested with the same dataset. Our proposed model
outperformed all modern deep-learning models by a significant margin. Table 6 presents
the big picture of these models, besides our model, concerning accuracy, F1 score, recall,
and precision in different parts of sperm cells.

Similarly, after comparing with pre-trained modern deep-learning models, we also
compared our results with the previously proposed technique by different researchers
with the same dataset. As a result, we demonstrated that, when applied to all three head,
vacuole, and acrosome labels of the MHSMA dataset, our proposed model can identify
better than modern architecture previously proposed models by different researchers, such
as manually designed CNN architecture, random search and image processing approaches,
in terms of accuracy, precision, and f 0.5 [37]. Eventually, as shown in Table 7, our proposed
model shows higher accuracy, precision, recall, and f 0.5 on the test set for all three labels.
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Table 6. (a) Comparison with modern deep-learning models for acrosome sperm cells. (b) Com-
parison with modern deep-learning models for vacuole sperm cells. (c) Comparison with modern
deep-learning models for head sperm cells.

(a)
Model Accuracy Precision Recall F1 Score
SDNN 89.00 96.18 91.63 95.23
VGGI16 70.67 84.15 72.30 77.78
VGG19 71.00 83.87 73.24 78.20
ResNet.50 71.00 84.24 72.77 78.09
Inception V3 61.00 78.57 61.97 69.29
InceptionResNet 70.33 84.44 71.36 77.35
MobileNet 71.00 85.00 71.83 77.86
MobileNetV2 69.00 81.58 72.77 76.92
DenseNet 66.00 81.71 67.14 73.71
NASNetMobile 71.00 83.51 73.71 78.30
NASNetLarge 63.00 80.36 63.38 70.87
Xception 55.00 73.78 56.81 64.19
(b)
Model Accuracy Precision Recall F1 Score
SDNN 92.00 97.70 93.43 95.52
VGGI16 87.33 96.28 88.93 92.46
VGG19 87.33 95.90 89.31 92.49
ResNet.50 87.33 95.53 89.69 92.52
Inception V3 82.67 94.49 85.11 89.56
InceptionResNet 84.33 95.36 86.26 90.58
MobileNet 77.67 94.12 79.39 86.13
MobileNetV2 86.67 95.87 88.55 92.06
DenseNet 85.67 95.44 87.79 91.45
NASNetMobile 86.00 95.45 88.17 91.67
NASNetLarge 28.00 73.47 27.48 40.00
Xception 48.00 86.30 48.09 61.76
(c)
Model Accuracy Precision Recall F1 Score
SDNN 90.00 96.94 92.02 95.92
VGGI16 73.00 86.70 74.43 80.10
VGG19 73.33 87.17 74.43 80.30
ResNet.50 73.67 87.23 74.89 80.59
Inception V3 70.00 84.49 72.15 77.83
InceptionResNet 73.00 87.10 73.97 80.00
MobileNet 73.00 86.32 74.89 80.20
MobileNetV2 62.67 81.29 63.47 71.28
DenseNet 72.33 86.56 73.52 79.51
NASNetMobile 71.67 86.02 73.06 79.01
NASNetLarge 69.67 84.41 71.69 77.53
Xception 66.00 81.97 68.49 74.63

Table 7. Comparison of the latest proposed models with the SDNN technique.

Label Method Accuracy Precision Recall f0.5 Score
SDNN 89.00 96.18 91.63 95.23
GeNAS 77.66 84.76 83.56 84.42
Random Search 69.66 74.5 86.8 76.67
Javadi et al. 76.67 85.93 80.02 84.74

Acrosome

Ghasemian et al. N/A N/A N/A N/A
SDNN 90.00 96.94 92.02 95.92
GeNAS 77.33 84.47 84.47 84.47
Random Search 76.00 80.49 88.58 81.98
Javadi et al. 77.00 83.48 85.93 83.86

Head

Ghasemian et al. 61.00 76.71 71.79 75.68
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Table 7. Cont.

Label Method Accuracy Precision Recall f0.5 Score
SDNN 92.00 97.70 93.43 96.82
GeNAS 91.66 95.40 95.03 95.32
Random Search 89.00 94.20 93.12 93.98
Javadi et al. 91.33 94.36 95.80 94.65

Vacuole

Ghasemian et al. 80.33 83.21 93.56 85.09

8. Discussion

Our proposed deep-learning technique shows excellent accuracy on the MHSMA
dataset, as we have f 0.5 and f 1 scores. These outcomes prove that our SDNN technique
is highly recommended for solving sperm classification problems. This approach is more
efficient than 11 pre-trained deep-learning models. It also outperformed the latest deep-
learning techniques proposed by researchers, including automatically generated deep
networks, including the GeNAS algorithm [16,37]. On the head and acrosome labels, our
proposed model increases their accuracy by 12.67% and 11.34%, respectively.

After a detailed study of the literature, we concluded that deep-learning models are the
finest solution that quickly solve image classification problems compared to conventional
approaches, especially for sperm image datasets, such as MHSMA, HuSHeM, and SCIAN.
It is interesting to know whether our algorithm can be implemented in real time, such as
in fertility clinics. The answer is yes; we can use these deep-learning models in fertility
clinics because their accuracy, precision, and other metrics are remarkably greater than
even expert manual sperm abnormality identification. We can improve our algorithms
by applying our strategies in hospitals and fertility clinics. Two methods can enhance
their effectiveness. First, as we train deep-learning algorithms on larger amounts of data,
their performance and dependability tend to improve. The images we encounter daily are
simple to comprehend, which means they are easy to learn, but analyzing and interpreting
images in the medical field requires a great deal of experience. This is particularly true for
the classification issue with sperm abnormalities and many other image segmentation and
classification issues in medical imaging.

As a result, we conclude that MHSMA dataset magnitude is modest compared to other
freely available online datasets. Therefore, we can improve the accuracy and efficiency of
our model by gathering more data. To overcome this problem, the first solution is to resolve
the dataset’s shortfall and carry out a particular procedure to collect more sperm images
for the training set. However, this is a complex, costly, and time-consuming procedure.
However, if we paid closer attention, we would see that daily operations of this nature occur
in hospitals and clinics. In light of this, we advise that medical facilities create guidelines
to systematically compile information from people who refer them for an evaluation of
their sperm. Here, another point to be noted is that each sperm dataset differs from the
others because of the unique equipment and procedures used to gather each dataset. So,
supposing one model works well on a given (MHSMA) dataset, in that case, it cannot
provide similar or impressive results on other datasets, such as SCIAN and HuSHeM [35],
that record sperm images with a different microscope. This means that while creating deep-
learning models, dataset variability should be taken into account. Additionally, supposing
we wish to apply deep-learning techniques in fertility clinics, in that case, we will ensure
that we use the same tools and methods as those who collect the dataset (especially for the
test set partition of the dataset).

9. Conclusions

In this research, our proposed sequential deep-learning approach significantly outper-
formed existing sperm morphology analysis (SMA) methods regarding accuracy, precision,
and recall, as well as the f 0.5 and f 1 score. Notably, the accuracy of the head, acrosome,
and vacuole labels using our SDNN technique was 90%, 92%, and 89%, respectively. Sig-
nificantly, sequential deep-learning has never been used to examine sperm morphology.
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Mainly, when combined, stack network-based deep learning is used. Furthermore, we hy-
pothesize that our ground-breaking SDNN technique can also be applied to address issues
related to SMA in the real world, such as fertility clinics, etc. In addition, although our
dataset contains labels associated with four separate sperm components and is one of the
largest datasets currently available, we need to increase the dataset size, specifically the test
set, to conduct additional empirical testing of our state-of-the-art model. Nevertheless, our
research demonstrates that this is the most effective method. Therefore, we are hopeful that
the fertility departments of healthcare institutions will adopt our suggested deep-learning
technique for fertility prediction and analyses.
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