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Abstract: This paper presents a new distribution, the product of the mixture between Maxwell-
Boltzmann and a particular case of the generalized gamma distributions. The resulting distribution,
called the Scale Mixture Maxwell-Boltzmann, presents greater kurtosis than the recently introduced
slash Maxwell-Boltzmann distribution. We obtained closed-form expressions for its probability
density and cumulative distribution functions. We studied some of its properties and moments,
as well as its skewness and kurtosis coefficients. Parameters were estimated by the moments and
maximum likelihood methods, via the Expectation-Maximization algorithm for the latter case. A
simulation study was performed to illustrate the parameter recovery. The results of an application to
a real data set indicate that the new model performs very well in the presence of outliers compared
with other alternatives in the literature.

Keywords: Maxwell-Boltzmann distribution; generalized gamma distribution; kurtosis; maximum
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1. Introduction

The Maxwell-Boltzmann (MB) distribution was introduced by Maxwell [1] to describe
the distribution of speeds of molecules at thermal equilibrium and nowadays is widely
applied in many fields such as statistical physics, statistical mechanics and accounting
theory, among others. The MB distribution has been discussed in many works in the
literature, for example, Tyagi and Bhattacharya [2] and Bekker and Roux [3].

Some recent extensions of the MB distribution are discussed, for example, in Sharma et al. [4],
Vivekanand et al. [5], Iriarte et al. [6], Dey et al. [7], Sharma et al. [8] and Segovia et al. [9]. Prod-
uct distributions or independent random variable quotients are of great interest; for example,
Shakil et al. [10] studied the XY and X/Y distribution, where X and Y are independent random
variables that have MB and Rayleigh distributions respectively.

A random variable V follows the MB distribution with scale parameter β, denoted as
V ∼ MB(β), if its probability density function (pdf) and cumulative distribution function
(cdf) are given by

fV(v; β) =
4β3/2
√

π
v2e−βv2

and FV(v; β) =
2√
π

γ

(
3
2

, βv2
)

, (1)

respectively, where v, β > 0 and γ(a, v) =
∫ v

0 ta−1e−tdt is the incomplete gamma function.
An extension of the MB distribution, called slash Maxwell-Boltzmann (SMB), was

proposed by Acitas et al. [11]. The SMB distribution, denoted as SMB(β, q), is defined as
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Z =
V

U1/q , q > 0,

where V and U are independent random variables with MB(β) and U(0, 1) distributions,
respectively, and q > 0. As β in the MB distribution is a scale parameter, the motivation to
define Z is the introduction of a shape parameter q, which makes this distribution more
flexible. Note also that the model is parsimonious, being an alternative to traditional
models such as the Weibull or gamma distributions, for example. The pdf of Z is

fz(z; β, q) =
2q

Γ(1/2)β
Γ
(

q + 3
2

)(
z
β

)−(1+q)
G
(

z2;
q + 3

2
; β2
)

, z, β, q > 0,

where Γ(·) denotes the gamma function and G(·; a; b) the cdf of a gamma distribution with
shape and scale parameters a and b, respectively.

The main object of this article is to study an extension of the MB distribution with
a greater range of the kurtosis coefficient, in order to use this new distribution to model
datasets with atypical observations. We employ the slash methodology, as in the SMB
version proposed by Acitas et al. [11]. Other authors have successfully applied the slash
methodology. To name a few, Reyes et al. [12] obtained a generalization of the Birnbaum-
Saunders (BS) distribution and Astorga et al. [13] introduced an extension on the power
Muth distribution. In this work, we will show that the new distribution has heavier
tails than the SMB distribution. Furthermore, this new distribution can be represented
as a mixture of scales that allows us to perform simulation studies and obtain maximum
likelihood (ML) estimators by means of the Expectation-Maximization (EM) algorithm.

The paper is organized as follows. Section 2 contains the representation of this model,
and we generate the density of the new distribution. We present the scale mixture property,
and the closed expressions for pdf, cdf, moments and coefficients of skewness and kurtosis,
hazard and survival functions, and the Rényi entropy. Section 3 contains the inference,
where we obtain the moments and ML estimators, and the implementation of the EM
algorithm. In Section 4 we carry out a simulation study to assess the performance of the ML
estimators in finite samples. Section 5 presents an application, comparing the fit of the scale
mixture Maxwell–Boltzmann (SMMB) with the SMB, Weibull (W) and BS distributions to a
real data set. Finally, Section 6 presents some conclusions.

2. Definition and Properties

Our proposal is based on the generalized gamma (GG) distribution introduced by
Stacy [14]. The pdf for this model is given in Definition 1.

Definition 1. A random variable Z follows the three-parameter GG distribution, denoted by
Z ∼ GG(a, d, p), if its pdf is

fZ(z; a, d, p) =
p ad

Γ
(

d
p

) zd−1 e−(az)p
,

with a > 0, d > 0, p > 0 and z > 0.

Definition 2. A random variable X follows a SMMB distribution with scale parameter β > 0 and
shape parameter q > 0, denoted by X ∼ SMMB(β, q), if X can be expressed as the ratio

X =
V
W

, (2)

where V ∼ MB(β) and W ∼ GG(1, q, 2), both independent.

The following Proposition presents the pdf for the SMMB model.
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Proposition 1. Let X ∼ SMMB(β, q) with β > 0 and q > 0. Then the pdf of X is

fX(x; β, q) =
2β3/2 x2

B
( q

2 , 3
2
)
(1 + βx2)

q+3
2

,

where x > 0 and B(·, ·) denotes the beta function.

Proof. Using the representation given in (2) and computing the Jacobian transformation,
we have that:

X =
V
W

Z = W

}
⇒ V = XZ

W = Z

}
⇒ J =

∣∣∣∣∣∣∣∣∣
∂v
∂x

∂v
∂z

∂w
∂x

∂w
∂z

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣z x
0 1

∣∣∣∣ = z.

Then,

fX,Z(x, z) = |J| fV,W(xz, z) =
8β3/2x2
√

πΓ(q/2)
zq+2 exp

{
−z(1 + βx2)

}
, x > 0, z > 0.

The marginal pdf of X is:

fX(x; β, q) =
8β3/2x2
√

πΓ(q/2)

∫ ∞

0
z(q+3)−1 exp

{
−z(1 + βx2)

}
dz, x > 0. (3)

Note that the integrand in (3) is related to the pdf of a GG
(
(1 + βx2)1/2, q + 3, 2

)
distribu-

tion. Therefore, the desired result follows.

The following proposition presents the cdf of the SMMB model, which is an expression
involving the hypergeometric function that is defined by the power series:

2F1(a, b, c; x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
,

where (a)n =

{
1, n = 0;
a(a + 1) · · · (a + n− 1), n > 0.

For more details we refer the reader to

Abramowitz and Stegun [15].

Proposition 2. Let X ∼ SMMB(β, q). Then the cdf of X is given by

FX(x; β, q) =
2β3/2x3

3B
( q

2 , 3
2
) 2F1

(
q + 3

2
,

3
2

,
5
2

;−βx2
)

,

where x > 0, β > 0 and q > 0.

Proof. We can write

FX(x; β, q) =
∫ x

0

2β3/2t2

B
( q

2 , 3
2
)
(1 + βt2)

q+3
2

dt =
2β3/2

B
( q

2 , 3
2
) ∫ x

0
t2(1 + βt2)−

q+3
2 dt.

Hence, we make the following change of variable u = t2, to obtain

FX(x; β, q) =
β3/2

B
( q

2 , 3
2
) ∫ x2

0
u

1
2 (1 + βu)−

q+3
2 du. (4)
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Using the following result presented by Singh [16] (page 5)

∫ t

0
ua(1 + βu)bdu =

ta+1

a + 1 2F1(−b, a + 1, a + 2;−βt),

in Equation (4), the result is shown.

Figure 1 shows the pdf and cdf for the SMMB(β = 1, q), for different values of q.
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Figure 1. (Left panel): pdf for SMMB(β = 1, q) model. (Right panel): cdf for SMMB(β = 1, q) model.
In both cases, different values for q were considered.

Remark 1. For W ∼ GG(1, q, 2), it is possible to check that U = W2 ∼ G(q/2, 1), i.e., the
traditional gamma distribution with shape parameter q/2 and rate 1. It therefore follows, from the
properties of the inverse gamma model, that

E(U−1) =
1

q/2− 1
and V(U−1) =

1
(q/2− 1)2(q/2− 2)

, if q > 4.

Provided that E(U−1)→ 0 and E(V−1)→ 0, as q→ ∞, it follows that

U−1 =
1

W2
P→ 0, as q→ ∞,

where P→ denotes convergence in probability. Equivalently,

1
W

P→ 0, as q→ ∞.

Based on the stochastic representation for the SMMB distribution in Equation (2), it follows that

SMMB(β, q) P→ 0, as q→ ∞.

2.1. Lifetime Analysis

As the SMMB distribution is related to a non-negative and asymmetric variable, it can
be used to model survival time data. In this section, the main features of interest in this
field are studied. The survival and hazard functions for a SMMB model are provided in
Corollaries 1 and 2.
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Corollary 1. Let X ∼ SMMB(β, q). Then, the survival function of the X (RX) is given by

RX(x; β, q) =
3B
( q

2 , 3
2
)
− 2β3/2x3

2F1

(
q+3

2 , 3
2 ; 5

2 ;−βx2
)

3B
( q

2 , 3
2
) , x, β, q > 0.

Corollary 2. Let X ∼ SMMB(β, q). Then, the hazard function of the X (hX) is given by

hX(x; β, q) =
6β3/2x2

B
( q

2 , 3
2
)
(1 + βx2)

q+3
2

[
3B
( q

2 , 3
2
)
− 2β3/2x3 2F1

(
q+3

2 , 3
2 ; 5

2 ;−βx2
)] .

Figure 2 shows the survival and hazard functions. Additionally, we can see that the
curve related to the hazard function is unimodal, and that as q grows, the curve has longer
tails and extends over a greater range.
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Figure 2. (Left panel): survival function for SMMB(β = 1, q) model. (Right panel): hazard function
for SMMB(β = 1, q) model. In both cases, different values for q were considered.

Note that considering η(t) := f ′X(t)
fX(t)

= β(q+3)t
1+βt2 − 2

t for t > 0, we have η′(t) =

−β2(q+1)t4+β(q+7)t2+2
t2(1+βt2)2 . From this we obtain that

t2(1 + βt2)2η′(t) = −β2(q + 1)t4 + β(q + 7)t2 + 2,

which implies that the zeros and signs of the η′ are same as those of the polynomial
p(t) := −β2(q + 1)t4 + β(q + 7)t2 + 2.

We note that t =
√

q+7
2β(q+1) is a positive zero of the p′(t) = 2βt(−2β(q + 1)t2 + q + 7),

and p′′
(√

q+7
2β(q+1)

)
= −12β2(q + 1) q+7

2β(q+1) + 2β(q + 7) = −4β(q + 7) < 0. Therefore, at

t =
√

q+7
2β(q+1) a maximum is reached, with value: p

(√
q+7

2β(q+1)

)
= (q+7)2

4(q+1) + 2 > 2 = p(0).

As t0 =

√
q+7+
√

q2+22q+57
2β(q+1) is a zero of p(t), we can conclude that

η′(t) > 0 for t ∈ (0, t0) and η′(t) < 0 for t ∈ (t0, ∞).

On the other hand, if we consider g′(t) defined as in Glaser [17], in our case we
have that

g′(t) =
(β(q + 1)t2 − 2)(1 + βt2)

q+1
2

t3

[ √
πΓ(q/2)

4β3/2Γ((q + 3)/2)
− 1

3
t3

2F1(
3
2

,
q + 3

2
;

5
2

;−βt2)

]
− 1, (5)

where 2F1 is the hypergeometric function. We note that g′(t) tends to −∞ as t tends to 0+;
and taking x =

√
βt, g′(t) it can be rewritten as

f q(x) =
((q + 1)x2 − 2)(1 + x2)

q+1
2

x3

[ √
πΓ(q/2)

4Γ((q + 3)/2)
− 1

3
x3

2F1(
3
2

,
q + 3

2
;

5
2

;−x2)

]
− 1,
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so the number of positive zeros of g′(t) is equal to that of f q(x). In Table 1, the hypergeo-
metric function 2F1(

3
2 , q+3

2 ; 5
2 ;−βt2) is shown for different values of q (see Weisstein [18]).

Table 1. Specific values of 2F1(
3
2 , q+3

2 ; 5
2 ;−βt2) for different q values.

q 2F1(
3
2 , q+3

2 ; 5
2 ;−βt2) q 2F1(

3
2 , q+3

2 ; 5
2 ;−βt2)

1 3
2β3/2t3

[
tan−1(

√
βt)−

√
βt

1+βt2

]
5 1

16β3/2t3

[
3 tan−1(

√
βt) +

√
βt(βt2+3)(3βt2−1)

(1+βt2)3

]
2 1/(1 + βt2)3/2 6 4βt2(2βt2+7)+35

35(1+βt2)7/2

3 3
8β3/2t3

[
tan−1(

√
βt) +

√
βt(βt2−1)
(1+βt2)2

]
7 1

128β3/2t3

[√
βt(βt2(5βt2(3βt2−11)+73)−15)

(1+βt2)4 + 15 tan−1(
√

βt)
]

4 5+2βt2

5(1+βt2)5/2
8 105+2βt2(4βt2(2βt2+9)+63)

105(1+βt2)9/2

Based on g′(t) graphs of the function defined in (5) for different q values shown in
Figure 3, and using Theorem (d) part (i) in Glaser [17], we obtain that failure time density
has an inverted bathtub shape.
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Figure 3. f q(x) function graphs for different values of q.

The following proposition presents the scale mixture property for the SMMB distribution.

Proposition 3. If X|V = v ∼ MB(v2β) and V ∼ GG(1, q, 2), is obtained X ∼ SMMB(β, q).

Proof. We have that the joint function of (X, V) is fX,V(x, v) = fX|V(x|v) fV(v), therefore,
fX(x) is given by

fX(x; β, q) =
∫ ∞

0
fX,V(x, v)dv =

8β
3
2 x2

√
πΓ( q

2 )

∫ ∞

0
v(q+3)−1 exp

{[
−v(1 + βx2)

1
2

]2
}

dx.

Note that this function corresponds to the pdf of a random variable with GG((1 + βx2)
1
2 , q +

3, 2) distribution. Then the integral is equal to 1, consequently we have that

fX(x; β, q) =
2β3/2 x2

B
( q

2 , 3
2
)
(1 + βx2)

q+3
2

,

where x > 0 and B is the beta function, also X ∼ SMMB(β, q).

Remark 2. Proposition 1 shows that the SMMB pdf has a closed expression, as occurs with its
respective cdf given in Proposition 2. Proposition 3 shows that a SMMB distribution can also be
obtained as a scale mixture of a MB and a GG distribution. This property is very important for
generating random numbers and the implementation of the EM algorithm.



Mathematics 2023, 11, 529 7 of 16

2.2. Moments

In this subsection, the following proposition shows the computation of the moments
of a random variable with SMMB(β, q) distribution. Hence, it also displays the coefficients
of skewness and kurtosis. For this, the following lemma will be useful.

Lemma 1. Let W ∼ GG(1, q, 2) with q > 0. For r > 0 and r < q, then the r-th moment of W−r

is given by

E(W−r) =
Γ
(

q−r
2

)
Γ
( q

2
) . (6)

Proof. By definition,

E(W−r) =
2

Γ(q/2)

∫ ∞

0
w−r−q−1e−w2

dw,

and hence the result follows making the variable transformation u = w2.

In the next proposition, the moments of a SMMB model are given:

Proposition 4. Let X ∼ SMMB(β, q). Then the r-th moment of X is given by

µr = E(Xr) =
2√

πβr/2 Γ
(

r + 3
2

)Γ
(

q− r
2

)
Γ
( q

2

) .

In particular,

µ1 =
2√
πβ

Γ
(

q−1
2

)
Γ
( q

2
) , q > 1, µ2 =

3
2β

Γ
(

q−2
2

)
Γ
( q

2
) , q > 2,

µ3 =
4√

πβ3/2

Γ
(

q−3
2

)
Γ
( q

2
) , q > 3, µ4 =

15
4β2

Γ
(

q−4
2

)
Γ
( q

2
) , q > 4,

V(X) =
3πΓ

(
q−2

2

)
Γ
( q

2
)
− 8
[
Γ
(

q−2
2

)]2

2πβ
[
Γ
( q

2
)]2 , q > 2.

Proof. Using the stochastic representation for the distribution given in (2), we have that

E(Xr) = E
[(

V
W

)r]
= E(Vr)E(W−r) =

2√
πβr/2 Γ

(
r + 3

2

)Γ
(

q− r
2

)
Γ
( q

2

) ,

where E(Vr) =
2√

πβr/2 Γ
(

r + 3
2

)
is the r-th moment of a MB(β) distribution and E(W−r)

was given in (6).

The asymmetry and kurtosis coefficients of the SMMB model are presented in the
following proposition.

Proposition 5. Let X ∼ SMMB(β, q) with β > 0. Then the asymmetry and kurtosis coefficients
of X are
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√
β1 =

2
√

2[4π a31 a02 − 9π a12 a21 a01 + 16 a13]

[27π3 a23 a03 − 216π2 a22 a02 a12 + 576π a21 a01 a14 − 512 a16]
1/2 , for q > 3 and

β2 =

[
15π2 a41 a03 − 128π a11 a31 a02 + 136π a12 a21 a01 − 192 a14

]
[9π2 a22 a02 − 48π a21 a01 a12 + 64 a14]

, for q > 4,

respectively, where aij =

[
Γ
(

q− i
2

)]j
.

Proof. Recall that by definition

√
β1 =

E[(X− E(X))3]

(V(X))3/2 =
µ3 − 3µ1µ2 + 2µ3

1(
µ2 − µ2

1
)3/2 , and

β2 =
E[(X− E(X))4]

(V(X))2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1(

µ2 − µ2
1
)2 ,

where µ1, µ2, µ3 and µ4 were given in Proposition 4. The result follows replacing the
corresponding terms.

Figure 4 shows the skewness and kurtosis coefficients for the SMMB and SMB dis-
tributions in terms of the shape parameter q. Note that both the skewness and kurtosis
coefficients become smaller as q increases.
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Figure 4. (Left panel): skewness coefficient. (Right panel): kurtosis coefficient; for the SMMB and
SMB distributions.

2.3. Order Statistics

Given a random sample of size n of X ∼ SMMB(β, q) and denoting by X(j) the j-
th order statistics, j ∈ {1, . . . , n}. The following proposition presents the pdf for order
statistics from the SMMB model.

Proposition 6. The pdf of X(j) is

fX(j)
(x) =

3n!

(j− 1)!(n− j)! x(1− βx2)
q+3

2

[
2β3/2x3

3B
( q

2 , 3
2
)]j

2Fj−1
1

(
q + 3

2
,

3
2

;
5
2

;−βx2
)

×
[

1− 2β3/2x3

3B
( q

2 , 3
2
) 2F1

(
q + 3

2
,

3
2

;
5
2

;− βx2
)]n−j

.

In particular, the pdf of the minimum, X(1), is

fX(1)
(x) =

2nβ3/2x2

(1− βx2)
q+3

2 B
( q

2 , 3
2
)
[

1− 2β3/2x3

3B
( q

2 , 3
2
) 2F1

(
q + 3

2
,

3
2

;
5
2

;− βx2
)]n−1

,
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and the pdf of the maximum, X(n), is

fX(n)
(x) =

3n

x(1− βx2)
q+3

2

[
2β3/2x3

3B
( q

2 , 3
2
)]n

2Fn−1
1

(
q + 3

2
,

3
2

;
5
2

;− βx2
)

.

Proof. Since we are dealing with an absolutely continuous model, the pdf of the j-th order
statistics is obtained by applying

fX(j)
(x) =

n!
(j− 1)!(n− j)!

f (x)[F(x)]j−1[1− F(x)]n−j,

where F and f are the cdf and pdf of the SMMB distribution.

2.4. Entropy

The following results show the Rényi and Shannon entropy of a random variable
X ∼ SMMB(β, q). Such results are commonly related with a state of disorder or uncer-
tainty, and are used in different fields such as thermodynamics, statistical physics and
information theory.

Proposition 7. The Rényi (Rγ) entropy for a random variable X ∼ SMMB(β, q) and values of
γ > 0 and γ 6= 1 is as follows

Rγ(X) =
1

1− γ

[
(γ− 1) log(2

√
β) + ψ

(
2γ + 1

2

)
+ ψ

(
γq + γ− 1

2

)
+ γκ(q)− ψ(γρ3)

]
,

where ρi =
q+i

2 , with i = 0, 3, ψ(·) is the digamma function and κ(q) = ψ(ρ3)− ψ(ρ0)− ψ(1.5).

Proof. Calculating the Rényi entropy by its definition we have:

Rγ(X) =
1

1− γ
log
[∫ ∞

0
fX(x; β, q)γdx

]
=

1
1− γ

log

∫ ∞

0

2γβ3γ/2 x2γ

Bγ
( q

2 , 3
2
)
(1 + βx2)

γ(q+3)
2

dx

,

then considering the change of variable u = βx2, we obtain the result.

Corollary 3. Let X ∼ SMMB(β, q), the Shannon (S) entropy for random variable X is given by

S(X) = ρ3ψ′(ρ3)− ρ1ψ′(ρ0) + ψ(ρ0) + ψ(1.5)− ψ(ρ3)− ψ′(1.5)− log(2
√

β), (7)

where ρi =
q+i

2 , with i = 0, 1, 3.

Proof. The Shannon entropy is obtained for the limit case γ → 1 in the definition for
the Renyi entropy Rγ(X). Therefore, applying L’Hopital’s rule, lim

γ→1
Rγ(X), the result

is obtained.

3. Inference

In this section, we present the estimators for the parameters β and q of the SMMB
distribution obtained by the moments and maximum likelihood methods.

3.1. Moments Estimators

The following proposition presents the moment estimators for the SMMB distribution.

Proposition 8. Let X1, . . . , Xn be a random sample from X ∼ SMMB(β, q). Then the moments
estimators (β̂M, q̂M) of (β, q) for q > 2 are as follows



Mathematics 2023, 11, 529 10 of 16

β̂M =

 2Γ
(

q̂M−1
2

)
√

πXΓ
(

q̂M
2

)
2

, (8)

8X2Γ2
(

q̂M − 1
2

)
− 3πX2Γ

(
q̂M
2

)
Γ
(

q̂M − 2
2

)
= 0, (9)

where (9) is solved for q̂M numerically, then the value of q̂M found is replaced in (8) and β̂M
is obtained.

Proof. From Proposition 4 and using the first two equations, and following the moments
method, we have

X =
2Γ
(

q−1
2

)
√

πβΓ
( q

2
) , X2 =

3Γ
(

q−2
2

)
2βΓ

( q
2
) .

Solving the first equation above for β we obtain β̂M given in (8). Substituting β̂M in the
second equation above, we obtain the result given in (9).

3.2. Maximum Likelihood Estimator

Let X1, ..., Xn be a random sample from X ∼ SMMB(β, q). Then the log-likelihood
function is

`(β, q) = n log(2
√

β3) + 2
n

∑
i=1

log xi − n log B
(

q
2

,
3
2

)
−
(

q + 3
2

) n

∑
i=1

log
(

1 + βx2
i

)
. (10)

The score equations are given by

β(q + 3)
n

∑
i=1

x2
i

1 + βx2
i
= 3n, (11)

nψ
( q

2

)
+

n

∑
i=1

log(1 + βx2
i ) = nψ

(
q + 3

2

)
. (12)

Solutions for Equations (11) and (12) can be obtained by using numerical procedures
such as the Newton-Raphson algorithm. An alternative to obtain the ML estimates is by
maximizing (10) using the optim subroutine in the R software package [19].

3.3. EM-Algorithm

Employing the stochastic representation of the SMMB model given in Proposition 2,
we can apply an iterative method to find maximum likelihood estimators based on the
EM algorithm (see Dempster [20]). This will greatly simplify the estimation process, since
the steps of the algorithm that we will develop will both have a closed form (both E
and M steps). We next present Lemma 2, which will be useful in the application of the
EM algorithm.

Lemma 2. Let X ∼ Gamma(k, σ) with k > 0 shape parameter and σ > 0 rate parameter, where
density function is fX(x) = 1

Γ(k)σkxk−1e−σx, x > 0. Then

1. Xk ∼ GG
(

σm, k
m , 1

m

)
, m > 0 with pdf given in (1).

2. E[log(X)] = ψ(k)− log σ.

In this context, the SMMB distribution can also be written employing the hierarchical
representation defined in Proposition 3:

Xi | Zi = zi ∼ MB(z2
i β) and Zi ∼ GG(1, q, 2), i = 1, . . . , n.

In this scenario, we have that joint pdf Xi and Zi is
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fXi ,Zi (xi, zi | θ) = fXi |Zi
(xi | zi, θ) · fZi (zi | θ) =

8β3/2x2
i zq+2

i√
πΓ
( q

2
) exp{−z2

i (1 + βx2
i )}, (13)

where θ = (β, q)> is the vector of parameters. We have that x = (x1, . . . , xn)> and
z = (z1, . . . , zn)> represent the observed and unobserved data, respectively. The complete
data are given by xc = (x>, z>)>. Furthermore, we denote `c(θ | xc) and Q(θ | θ̂) =
E[`c(θ|xc) | x, θ̂] as the log-likelihood complete function and its expected conditional value
over the observed data. From (13), we see directly that the complete log-likelihood function
is given by

`c(θ | xc) =
n

∑
i=1

log f (xi, zi|θ)

= (q + 2)
n

∑
i=1

log zi +
3n
2

log β− n log Γ
( q

2

)
−

n

∑
i=1

z2
i (1 + βx2

i ) + C,

where C is a constant that does not depend on θ. To obtain Q(θ | θ̂), we need to calculate
E[z2

i | xi, θ] and E[log(zi) | xi, θ]. From Equation (13), it is direct that

f (zi | xi, θ) ∝ zq+2
i exp{−z2

i (1 + βx2
i )} ∝ z(q+3)−1

i exp{−
[
zi(1 + βx2

i )
1/2
]2
}. (14)

Therefore, we conclude that Zi|xi, θ ∼ GG
(
(1 + βx2

i )
1/2, q + 3, 2

)
. Then, using Lemma 2

it follows

E[Z2
i | xi, θ] =

[(
1 + βx2

i

)−1/2
]2 Γ

(
(q+3)+2

2

)
Γ
(

q+3
2

) =
q + 3

2(1 + βx2
i )

, and (15)

E[log(Zi)|xi, θ] =
1
2

ψ

(
q + 3

2

)
− 1

2
log(1 + βx2

i ). (16)

Thus,

Q(θ | θ̂) = (q + 2)
n

∑
i=1

̂log(zi) +
3n
2

log β− n log Γ
( q

2

)
−

n

∑
i=1

ẑ2
i (1 + βx2

i ), (17)

where ẑ2
i = E[Z2

i | xi, θ = θ̂] and ̂log(zi) = E[log(Zi) | xi, θ = θ̂] are given in (15) and (16),
respectively. Hence, partially differentiating with respect to β and q and equalising to zero,
we obtain the following expressions:

β̂ =
3n

2 ∑n
i=1 ẑ2

i x2
i

and q̂ = 2ψ−1
(

2 · l̂og(z)
)

,

where l̂og(z) is the mean of ̂log(zi)
′
s and ψ−1(·) is the inverse of the digamma function. It

is possible to check that ∂Q(θ|θ̂)/∂β and ∂Q(θ|θ̂)/∂q are increasing functions in β and q,
respectively. This guarantees that β̂ and q̂ are the unique maximum for this function. Thus,
the EM algorithm is reduced to the following steps:

• Step-E : For i = 1, . . . , n compute

ẑ2
i

(k+1)
=

q(k) + 3
2
(
1 + β(k)x2

i
) and ̂log(zi)

(k+1)
=

1
2

[
ψ

(
q(k) + 3

2

)
− log

(
1 + β(k)x2

i

)]
.

• Step-M: Update the parameters as

β̂(k+1) =
3n

2 ∑n
i=1 ẑ2

i

(k+1)
x2

i

and q̂(k+1) = 2ψ−1

(
2 · l̂og(z)

(k+1)
)

.
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Steps E and M are repeated until we reach a defined convergence criterion. For
instance, we specify that the difference between the successively obtained values should be
inferior to a pre-established value, i.e.,

max
(∣∣∣β(k) − β(k−1)

∣∣∣, ∣∣∣q(k) − q(k−1)
∣∣∣) < ε, with ε = 10−4.

3.4. Fisher’s Information Matrix

Let us now consider X ∼ SMMB(β, q). For a single observation x of X, the log-
likelihood function for θ = (β, q)> is given by

`(θ) = log(2) +
3
2

log(β) + 2 log(x)− log
(

B
(

q
2

,
3
2

))
−
(

q + 3
2

)
log(1 + βx2).

The corresponding first and second partial derivatives of the log-likelihood function are
derived in Appendix A. It can be shown that the Fisher’s information matrix, denoted by
IF(·), for the SMMB distribution is provided by

IF(θ)=

 3q
2β2(q+5)

3
2β(q+3)

3
2β(q+3)

1
4

(
ψ′
(

q+3
2

)
− ψ′

( q
2
))

,

where ψ′(·) is the trigamma function. Hence, for large samples, the ML estimator, θ̂, of θ is
asymptotically normal bivariate, i.e.,

√
n
(

θ̂− θ
) D−→ N2(0, [ IF(θ)]

−1), as n→ +∞.

As a result, the asymptotic covariance matrix of the ML estimators θ̂ is the inverse of Fisher’s
information matrix IF(θ). Since the parameters are unknown, the observed information
matrix is usually considered, where the unknown parameters are estimated by ML. Note
that asymptotic confidence intervals for β and q with confidence level 100(1− α)% should
be constructed as

CI(β, 100(1− α)%) = β̂∓ zα/2 × ŝe
(

β̂
)

and

CI(q, 100(1− α)%) = q̂∓ zα/2 × ŝe(q̂),

where ŝe
(

β̂
)

and ŝe(q̂) are the root of the first and second element of the diagonal of

[ IF(θ)]
−1, respectively, and zα/2 satisfies P(Z > zα/2) = α/2, with Z a random variable

with standard normal distribution.

4. Simulation Study

In this section, we present a simulation study to assess the performance of the EM
algorithm for the estimators of β and q in the SMMB model. We consider 1000 replicates of
three sample sizes generated using the SMMB model: n = 50, 100 and 200. By using the
stochastic representation given in Equation (2), it is possible to generate random numbers
for the SMMB(β, q) distribution, which leads to the following algorithm:

1. Generate Pi ∼ χ2
3 (chi squared with 3 degrees of freedom), i = 1, . . . , n.

2. Compute Vi =

√
Pi
2β

, i = 1, . . . , n.

3. Generate Wi ∼ GG(1, q, 2), i = 1, . . . , n.

4. Compute Xi =
Vi
Wi

i = 1, . . . , n.

It then follows that X ∼ SMMB(β, q).



Mathematics 2023, 11, 529 13 of 16

For each sample generated, ML estimates were calculated using the EM algorithm.
In Table 2 the empirical bias (Bias), the mean of the standard errors (SE), the root of the
empirical mean squared error (RMSE) and the 95% coverage probability (CP) based on
the asymptotic distribution for ML estimators are given for the parameter estimators. We
conclude that the ML estimates have desirable properties. Bias is reasonable and decreases
as the sample size increases. As expected, SE and RMSE terms are closer when the sample
size increases, which suggests that the SE estimates are well estimated.

Table 2. Simulation study for different combinations of parameters for the SMMB(β, q) model.

True Value n = 50 n = 100 n = 200

β q Estim. Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

3

1 β̂ 0.113 1.294 1.334 90.1 0.074 0.897 0.925 92.1 0.027 0.623 0.661 92.2
q̂ 0.057 0.216 0.232 96.5 0.024 0.145 0.153 95.0 0.016 0.102 0.111 94.1

2 β̂ 0.065 1.290 1.335 90.1 0.039 0.896 0.921 92.5 0.019 0.628 0.665 91.8
q̂ 0.211 0.613 0.709 95.9 0.090 0.388 0.426 95.5 0.052 0.265 0.296 94.9

3 β̂ 0.040 1.396 1.444 89.6 0.015 0.966 0.996 92.1 0.009 0.679 0.709 92.0
q̂ 0.524 1.329 1.625 95.7 0.226 0.758 0.892 95.1 0.115 0.495 0.558 95.2

5

1 β̂ 0.188 2.155 2.222 90.1 0.122 1.495 1.541 92.1 0.044 1.038 1.102 92.2
q̂ 0.057 0.216 0.232 96.5 0.024 0.145 0.153 95.1 0.016 0.102 0.111 94.1

2 β̂ 0.106 2.149 2.224 90.1 0.064 1.493 1.534 92.5 0.030 1.046 1.108 91.8
q̂ 0.211 0.613 0.709 95.9 0.091 0.388 0.426 95.5 0.053 0.265 0.296 94.9

3 β̂ 0.061 2.324 2.410 89.5 0.024 1.610 1.659 92.1 0.014 1.132 1.182 92.0
q̂ 0.567 1.478 2.120 95.7 0.227 0.758 0.892 95.1 0.116 0.495 0.558 95.2

7

1 β̂ 0.262 3.017 3.111 90.1 0.169 2.093 2.157 92.1 0.061 1.453 1.542 92.2
q̂ 0.057 0.216 0.232 96.5 0.024 0.145 0.153 95.1 0.016 0.102 0.111 94.1

2 β̂ 0.148 3.008 3.113 90.1 0.088 2.090 2.148 92.5 0.041 1.464 1.550 91.8
q̂ 0.211 0.613 0.709 95.9 0.091 0.388 0.426 95.5 0.053 0.265 0.296 94.9

3 β̂ 0.078 3.251 3.378 89.4 0.033 2.254 2.322 92.1 0.019 1.585 1.655 92.0
q̂ 0.610 1.566 2.519 95.7 0.227 0.758 0.892 95.1 0.116 0.495 0.559 95.2

5. Application

In this section, we present an illustration using a real dataset in order to compare the
fit of the SMMB model with those of the SMB, W and BS distributions. These models are
compared using the Akaike Information Criterion (AIC) (see Akaike [21]), and the Bayesian
Information Criterion (BIC), introduced in Schwarz [22]. The data set is related to zinc
(Zn) concentrations in 86 soil samples obtained from the Mining Department, Universidad
de Atacama, Chile; it is available in Reyes et al. [23]. Table 3 provides the descriptive
summary for the data, including the sample asymmetry coefficient b1 and sample kurtosis
coefficient b2.

Figure 5 and Table 3 show the type of situation in which the SMMB distribution is
appropriate: distribution with a very heavy tail (see the typical boxplot), and high sample
kurtosis coefficient (b2 = 32.3421).

Table 3. Descriptive statistics for zinc data set.

n x s b1 b2

86 96.721 148.434 5.088 32.342
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0 200 400 600 800 1000 1200

Zinc

Figure 5. Boxplot for zinc dataset.

Table 4 shows the results for the fit of the BS, W, SMB and SMMB models. Note that
the SMMB model provides a better fit than the others since its AIC and BIC values are
less than the rest of models. Finally, Figure 6 shows the qq-plot comparing the quantiles
for the zinc dataset with the quantiles for the fitted SMMB model, and the empirical cdf
for the zinc data compared with the estimated cdf for the fitted SMMB, SMB, BS and W
distributions. The first plot suggests that the SMMB model is appropriated for this data
and the second confirms that the SMMB model provides a better fit for this data than the
other models considered.

Table 4. Estimates, SE in parenthesis, log-likelihood, AIC and BIC values for zinc concentration data.

Parameters BS W SMB SMMB

α 1.3038 (0.0995) 0.0125 (0.0047) 3.4666 (0.1226) -
β 50.8841 (5.8694) 0.9632 (0.0701) - 0.0007 (0.0002)
q - - 0.4077 (0.1827) 1.6506 (0.3079)

log-likelihood −484.7785 −479.0418 −471.7718 −469.5580
AIC 973.557 962.084 947.544 943.1161
BIC 978.466 966.992 952.452 948.0248
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Figure 6. (Left panel): qq-plot for zinc data set versus the fitted SMMB distribution. (Right panel):
Empirical cdf (black) and estimated cdf of SMMB (red), SMB (blue), BS (green) and W (orange)
models for the zinc data set.

6. Conclusions

In this paper, we introduce a new model with a greater kurtosis than the SMB distri-
bution. To estimate the parameters, we use the EM algorithm, obtaining acceptable results
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for the ML estimators. In the application to a real data set, it shows a better fit than other
known models. Some additional characteristics are:

• SMMB distribution has a more flexible kurtosis coefficient than the SMB distribution,
as is clearly shown in Figure 4 (Right panel)

• Closed expressions are given for its main characteristics: pdf, cdf, moments and
coefficients of skewness and kurtosis.

• We discuss the hazard and survival functions, which are in terms of the hypergeomet-
ric function and the order statistics of the SMMB model.

• Employing the scale mixture representation, the EM algorithm was implemented to
calculate the ML estimators.

• The results of a simulation study indicate that, with a reasonable sample size, an
acceptable bias is obtained.

• An illustration with real data shows that the SMMB model achieves a better fit in
terms of the AIC and BIC criteria.

In future research, we plan to extend the proposed model to create a multivariate
scale mixture of the Maxwell–Boltzmann model [24] to handle multivariate/clustered and
positive data in order to explore other estimation methods for the model [25].
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Appendix A

The first derivatives of `(θ) are given by

∂`(θ)

∂β
=

3
2β
−
(

q + 3
2

)
x2

1 + βx2 ,

∂`(θ)

∂q
=

1
2

ψ
( q

2

)
− 1

2
ψ

(
q + 3

2

)
− 1

2
log(1 + βx2).

The second derivatives of l(θ) are:

∂2`(θ)

∂β2 = − 3
2β2 +

(
q + 3

2

)
x4

(1 + βx2)2 ,

∂2`(θ)

∂β∂q
= − x2

2(1 + βx2)
,

∂2`(θ)

∂q2 =
1
4

ψ′
( q

2

)
− 1

4
ψ′
(

q + 3
2

)
,

where ψ(·) and ψ′(·) are the digamma and trigamma functions respectively.
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