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Abstract: Nowadays, a lot of research papers are concentrating on the diffusion dynamics of infectious
diseases, especially the most recent one: COVID-19. The primary goal of this work is to explore the
stability analysis of a new version of the SEIR model formulated with incommensurate fractional-
order derivatives. In particular, several existence and uniqueness results of the solution of the
proposed model are derived by means of the Picard–Lindelöf method. Several stability analysis
results related to the disease-free equilibrium of the model are reported in light of computing the
so-called basic reproduction number, as well as in view of utilising a certain Lyapunov function. In
conclusion, various numerical simulations are performed to confirm the theoretical findings.
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1. Introduction

Coronavirus disease is an acute severe breathing disease resulting from a coronavirus
2 (SARS-CoV-2), which represents a novel component of the family Coronaviridae and
the genus Beta coronavirus [1,2]. This virus is mainly transmitted from one human being
to another through contact transmission and airborne droplets [3]. The clinical signs of
the infected clients appear as severe, moderate, and mild symptoms such as pneumonia,
diarrhoea, nausea, new loss of smell or taste, fatigue, difficulty breathing, dry cough, and
fever [4,5]. Extremely harsh cases, presenting as organ dysfunctions, chronic medical
illness, and death, have often been witnessed in people with immunodeficiencies and
elderly patients [6]. The pandemic began spreading in China and then transmitted broadly
to communities around the world [7,8].

In view of the fact that the number of confirmed cases of COVID-19 continues to grow,
predictions of the number of infected individuals, as well as the COVID-19 pandemic’s
ending, are indeed worthy of further examination. From this perspective, mathematical
modelling of such a disease can play a key role in investigating its spread dynamics. In gen-
eral, a mathematical model can provide a sufficient prediction to the outbreak’s coming
conditions, enabling decision makers to implement excellent strategies for controlling the
spread of diseases. In [9], the authors make a contribution to the mathematical theory
of the spread of epidemics and the causes and triggers of the spread. Meanwhile, [10]
presents an analytical study and simulation of the model of the spread of epidemics in
complex networks. The paper [11] gives an explanation for periodic solutions in epidemio-
logical models. In fact, there are many kinds of mathematical models that can be used to
provide a good prediction for the infection spread of pandemics and biological invasions.
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Among them are what we named the compartment models. This kind of model has con-
firmed its top position in describing and understanding the complex spread of COVID-19
dynamics. In this paper, we establish a novel version of the SEIR model with incommen-
surate fractional-order derivatives; the fractional order is characterised by the effect of
memory, which allows us to provide more accurate results than the usual derivatives [12]. It
is a well-known fact that this model has four main compartments involving the susceptible
cases S, exposed cases E, infectious cases I, and recovered cases R. The SEIR model has
confirmed its ability to describe the transmission of disease from one infected human to
another one in a short period of time. Several investigators have examined the prediction
dynamics of various SEIR models, such as severe acute respiratory syndrome [13,14], Mid-
dle East respiratory syndrome [15,16], Ebola [17,18], and Dengue fever [19–21], to name
a few.

Recently, many works have expressed interested in models describing the spread of
the COVID-19 virus, in the discrete cases [22] and fractional-order discrete cases [23–29],
and most of their interest was in studying the dynamics of these systems. Some models
showed that they have chaotic behavior [30].

In this work, we intend to present a sufficient study that deals with the stability
analysis of a new version of the SEIR model formulated with incommensurate fractional-
order derivatives. Actually, the initial version of the SEIR model at hand was first proposed
in [31] as follows:

dS
dt = Λ− r1

S(t)E(t)
N(t) − r2

S(t)I(t)
N(t) − µS(t) + τR(t),

dE
dt = r1

S(t)E(t)
N(t) + r2

S(t)I(t)
N(t) − (µ + ρ)E(t),

dI
dt = ρE(t)− (γ + d + µ)I(t),
dR
dt = γI(t)− (µ + τ)R(t),

(1)

where the model’s description with its parameters can be outlined in Table 1, reported below.

Table 1. Description of the SEIR model reported in [31].

Variable/Parameter Description

S(t) Susceptible class
E(t) Exposed class
I(t) Infected class
R(t) Recovered class

Λ Recruitment rate into susceptible population
r1, r2 Incidence rates

µ Natural mortality rate
τ Relapse rate

ρ
Progression rate from exposed to infectious

class
γ Treatment rate for infectious individuals
d COVID-19 death rate

The total population N can be gained by adding up all classes announced in the
model (1), i.e.,

N = S + E + I + R. (2)

Over the last few decades, fractional calculus has demonstrated immense effectiveness
in providing more sensible outcomes than that of traditional calculus. This is, however,
connected to its flexibility in offering accurate approximations to several solutions of a
lot of real phenomena and several applied science problems which are better than those
that came before. From this point of view, we will pay attention to the model that could
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be formulated by fractionalising model (1) in the sense of the Caputo incommensurate
fractional-order derivative operator. This model, in brief, would take the following form:

C
0 Dα1

t S(t) = Λ− r1
S(t)E(t)

N(t) − r2
S(t)I(t)

N(t) − µS(t) + τR(t),
C
0 Dα2

t E(t) = r1
S(t)E(t)

N(t) + r2
S(t)I(t)

N(t) − (µ + ρ)E(t),
C
0 Dα3

t I(t) = ρE(t)− (γ + d + µ)I(t),
C
0 Dα4

t R(t) = γI(t)− (µ + τ)R(t),

(3)

subject to the following initial conditions:

S(0), E(0), I(0), R(0) ≥ 0, (4)

where 0 < α1, α2, α3, α4 < 1 and C
t0

Dα
t is the Caputo fractional-order derivative operator,

which will be presented in the next section.

2. Preliminaries

To proceed to the main objectives, some needed facts and definitions from fractional
calculus are collected in the following paragraphs.

Definition 1 ([32]). The Riemann–Liouville fractional-order integral operator of an arbitrary
integrable function f can be expressed as:

Iα
t f (t) =

1
Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, (5)

where t ≥ t0, 0 < α < 1, and Γ(·) is the gamma function.

Definition 2 ([32]). The Caputo fractional-order derivative operator of the function f can be
expressed as:

C
t0

Dα
t f (t) =

1
Γ(1− α)

∫ t

t0

(t− τ)−α d
dτ

f (τ)dτ, (6)

where 0 < α < 1

For simplicity, we intend to choose the notion CDα
t instead of C

t0
Dα

t throughout the
remainder of this paper.

Lemma 1 ([33]). (Generalised mean value theorem). Suppose that f (t) ∈ C([a, b]) and CDα
t f (t) ∈

C(]a, b]), such that 0 < α ≤ 1, then:

f (t) = f (a) +
1

Γ(α)
CDα

t f (ξ)(t− a)α, (7)

with a ≤ ξ ≤ t, for all t ∈ (a, b].

3. Existence and Uniqueness Results

In this part, some theoretical results associated with the existence and uniqueness of
the solution of the proposed system (3) are derived with the help of the fixed-point theory
and Picard–Lindelöf method. To go forward to this goal, we may rewrite system (3) in the
following classical form: 

C
0 Dα1

t S(t) = F1(t, S)
C
0 Dα2

t E(t) = F2(t, E)
C
0 Dα3

t I(t) = F3(t, I)
C
0 Dα4

t R(t) = F5(t, R)

(8)



Mathematics 2023, 11, 555 4 of 16

where the functions Fi, 1 ≤ i ≤ 4, are defined as follows:

F1(t, S) = Λ− r1
S(t)E(t)

N(t) − r2
S(t)I(t)

N(t) − µS(t) + τR(t),

F2(t, E) = r1
S(t)E(t)

N(t) + r2
S(t)I(t)

N(t) − (µ + ρ)E(t),
F3(t, I) = ρE(t)− (γ + d + µ)I(t),
F5(t, R) = γI(t)− (µ + τ)R(t).

(9)

In consequence, we proceed in the following manner. We first use the initial conditions
given in (4), and then we apply the fractional-order integral operator given in (5) on
system (3). This would transform its equations to be as follows:

S(t)− S(0) = Iα1
t

(
Λ− r1

S(t)E(t)
N(t) − r2

S(t)I(t)
N(t) − µS(t) + τR(t)

)
,

E(t)− E(0) = Iα2
t

(
r1

S(t)E(t)
N(t) + r2

S(t)I(t)
N(t) − (µ + ρ)E(t)

)
,

I(t)− I(0) = Iα3
t (ρE(t)− (γ + d + µ)I(t)),

R(t)− R(0) = Iα4
t (γI(t)− (µ + τ)R(t)).

(10)

With the help of (9), we can obtain the state variables in terms of Fi, i = 1, 2, 3, 4, as follows:
S(t) = S(0) + 1

Γ(α1)

∫ t
0 (t− s)α1−1F1(s, S(s))ds,

E(t) = E(0) + 1
Γ(α2)

∫ t
0 (t− s)α2−1F2(s, E(s))ds,

I(t) = I(0) + 1
Γ(α3)

∫ t
0 (t− s)α3−1F3(s, I(s))ds,

R(t) = R(0) + 1
Γ(α4)

∫ t
0 (t− s)α4−1F4(s, R(s))ds.

(11)

Accordingly, the Picard iterations can be then implemented to (11) to gain the following
equations: 

Sn+1(t) = S(0) + 1
Γ(α1)

∫ t
0 (t− s)α1−1F1(s, Sn(s))ds,

En+1(t) = E(0) + 1
Γ(α2)

∫ t
0 (t− s)α2−1F2(s, En(s))ds,

In+1(t) = I(0) + 1
Γ(α3)

∫ t
0 (t− s)α3−1F3(s, In(s))ds,

Rn+1(t) = R(0) + 1
Γ(α4)

∫ t
0 (t− s)α4−1F4(s, Rn(s))ds.

(12)

In order to discuss the first result, we let X(t) = (S(t), E(t), I(t), R(t))T , F(t, X(t)) =
(F1(t, S(t)), F2(t, E(t)), F3(t, I(t)), F4(t, R(t)))T and R4

+ =
{

X ∈ R4 : X ≥ 0
}

.

Lemma 2. The solution of system (3) (if it exists) with non-negative initial data will remain
non-negative.

Proof. For the purpose of proving this result, we should first observe that the following
assertions hold:

C
0 Dα1

t S(t)
∣∣
S=0 = Λ + τR(t) ≥ 0,

C
0 Dα2

t E(t)
∣∣
E=0 = r2

S(t)I(t)
N(t) ≥ 0,

C
0 Dα3

t I(t)
∣∣

I=0 = ρE(t) ≥ 0,
C
0 Dα4

t R(t)
∣∣
R=0 = γI(t) ≥ 0,

(13)

for all t ∈ [0, T]. Consequently, according to Lemma 1, we can conclude that the solu-
tion X(t) = (S(t), E(t), I(t), R(t))T of system (3) belongs to R4

+, and this completes the
proof.

In the following content, we aim to state and prove one of the significant results of this
work. Actually, this result will pave the way to derive the result that discusses the existence
and uniqueness of the solution of system (3), which will be provided later on.
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Lemma 3. The function F(t, X(t)) defined in (9) satisfies the Lipschitz condition, i.e.,

‖F(t, X(t))− F(t, X∗(t))‖ ≤ β‖(X(t)− X∗(t))‖, (14)

where
β = max{|r1 + r2 + µ|, |r1 + µ + ρ|, |(γ + d + µ)|, |(µ + τ)|}. (15)

Proof. Summarising that S(t) and S∗(t) are couple functions yields the following equality:

‖F1(t, S(t))− F1(t, S∗(t))‖ =
∥∥∥∥(r1

E(t)
N(t)

+ r2
I(t)
N(t)

+ µ

)
(S(t)− S∗(t))

∥∥∥∥. (16)

Considering
β1 = |r1 + r2 + µ| (17)

leads one to deduce the following inequality:

‖F1(t, S(t))− F1(t, S∗(t))‖ ≤ β1‖(S(t)− S∗(t))‖. (18)

Continuing in the same way, one gets:

‖F2(t, E(t))− F1(t, E∗(t))‖ ≤ β2‖(E(t)− E∗(t))‖,
‖F3(t, I(t))− F1(t, I∗(t))‖ ≤ β3‖(I(t)− I∗(t))‖,
‖F5(t, R(t))− F1(t, R∗(t))‖ ≤ β4‖(R(t)− R∗(t))‖,

(19)

where
β2 = |r1 + µ + ρ|,
β3 = |γ + d + µ|,
β4 = |µ + τ|.

(20)

From (18–19), we find that all four kernels, F1, F2, F3, and F4, satisfy the Lipschitz condi-
tion. In addition, we also notice that if βi < 1, then the kernels Fis are contradictory for
i = 1, 2, 3, 4.

Theorem 1. Consider Lemma 3. If

β max
1≤i≤4

Tαi

Γ(αi + 1)
< 1, (21)

then there exists a unique positive solution of system (3).

Proof. In fact, the solution of system (3) can be written as:

X(t) = P(X(t)), (22)

where P : C([0, T],R4)→ C([0, T],R4) is the Picard operator, which can be defined by:

P(X(t)) = X(0) +
∫ t

0
diag

(
(t− s)α1−1

Γ(α1)
,
(t− s)α2−1

Γ(α2)
,
(t− s)α3−1

Γ(α3)
,
(t− s)α4−1

Γ(α4)

)
F(s, X(s))ds. (23)
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At the same time, we have the following consecutive inequalities:

‖P(X(t)− P(X∗(t))‖ =

∥∥∥∫ t
0 diag

(
(t−s)α1−1

Γ(α1)
, (t−s)α2−1

Γ(α2)
, (t−s)α3−1

Γ(α3)
, (t−s)α4−1

Γ(α4)

)
× (F(s, X(s))− F(s, X∗(s)))ds‖

,

≤

∥∥∥∫ t
0 diag

(
(t−s)α1−1

Γ(α1)
, (t−s)α2−1

Γ(α2)
, (t−s)α3−1

Γ(α3)
, (t−s)α4−1

Γ(α4)

)
ds
∥∥∥

× sup
s∈[0,T]

‖F(s, X(s))− F(s, X∗(s))‖

≤ max
1≤i≤4

∫ t
0

(t−s)αi−1

Γ(αi)
ds sup

s∈[0,T]
‖F(s, X(s))− F(s, X∗(s))‖,

≤ β max
1≤i≤4

Tαi
Γ(αi+1) sup

s∈[0,T]
‖X(t)− X∗(t)‖.

(24)

Since β max
1≤i≤4

Tαi
Γ(αi+1) < 1, for t ≤ T, then the operator P is a contraction. Hence, system (3)

has a unique solution, which finishes the proof of this result.

4. Stability Analysis of the Model

This part is devoted to deriving various stability analysis results related to the incom-
mensurate fractional-order COVID-9 model (3). Such results are associated with determining
the disease-free equilibrium (DFE) point and calculating the basic reproduction number R0.

4.1. Disease-Free Equilibrium (DFE)

It may be stated that identifying the equilibrium points of the SEIR models is deemed
one of the key points necessary to investigate their stability analysis. As a matter of fact,
there exist two primary types of such equilibria that may be categorised in accordance with
the non-existence of the infection: the Endemic Equilibrium (EE) point and the Disease-
Free Equilibrium (DFE) point. In particular, to find the DFE point for system (3), we set
its right-hand side to be equal to 0, together with letting I = 0. In other words, we let
C
0 Dα1

t S(t) = 0, C
0 Dα2

t E(t) = 0, C
0 Dα3

t I(t) = 0, C
0 Dα4

t R(t) = 0. Thus, system (3) is:
Λ− r1

SE
N − r2

SI
N − µS + τR = 0,

r1
SE
N + r2

SI
N − (µ + ρ)E = 0,

ρE− (γ + d + µ)I = 0,
γI − (µ + τ)R = 0.

(25)

This immediately gives rise to the equilibrium point:

EF = (S0, 0, 0, 0) = (
Λ
µ

, 0, 0, 0). (26)

4.2. Basic Reproduction Number R0

The basic reproduction number R0 signifies the average amount of the secondary
cases produced from the preliminary infective individuals within a community without
resistance to the pandemic [22]. This vital measure has progressively represented a fun-
damental amount utilised for identifying the interventions force required to dominate
pandemics. In epidemiological models, it is widely known that if R0 > 1, then the disease
will progressively broadcast in the susceptible community. In contrast, if R0 < 1, then
the susceptible community will never suffer from epidemics. The scheme of finding R0
needs to determine the spectral radius σ of the next-generation matrix. In other words,
R0 = σ(G), where G is the next-generation matrix; see [22] to get a full overview of the
calculation of such measure. Herein, we briefly intend to describe how R0 can be calculated.
To this end, we consider the following two equations that are taken out from the system (3):



Mathematics 2023, 11, 555 7 of 16

{
C
0 Dα2

t E(t) = r1
S(t)E(t)

N(t) + r2
S(t)I(t)

N(t) − (µ + ρ)E(t),
C
0 Dα3

t I(t) = ρE(t)− (γ + d + µ)I(t),
(27)

In accordance with the above equations, we can determine the matrix J∗ that can be
established based on the leaving fluxes from the infected compartment and the new fluxes
of such a compartment. That is,

J∗ =
(

r1 − (µ + ρ) r2
ρ −(γ + d + µ)

)
. (28)

Now, we can decompose the matrix J in terms of another two matrices, F and V, such that
J = F−V. This yields:

F =

(
r1 r2
0 0

)
, (29)

and

V =

(
(µ + ρ) 0
−ρ (γ + d + µ)

)
. (30)

Consequently, we can generate the next-generation matrix G = FV−1 to be in the following
form:

G = FV−1 =

(
r1

µ+ρ + ρ r2
(µ+ρ)(d+γ+µ)

r2
d+γ+µ

0 0

)
. (31)

Therefore, the basic reproduction number R0 will then be given by:

R0 = σ(G) =
dr1 + γr1 + µr1 + ρr2

(µ + ρ)(d + γ + µ)
. (32)

4.3. Stability Analysis

In this section, we aim to further study the stability analysis of system (3) around the
DFE. In particular, we will provide some theoretical results associated with the local and
global stability analysis of the system at hand around the DFE with the aid of R0 computed
in the previous subsection.

4.3.1. Local Stability of DFE

In this part, we will derive a significant result related to the local stability analysis
of system (3) around the DFE. This shall be accomplished by bearing in mind the next
important theorem.

Theorem 2 ([34]). Assume that 0 < αi < 1, for i = 1, 2, · · · , n. Let M be the lowest common
multiple between ui and vi in which αi = vi

ui
, where ui, vi ∈ N, such that (ui, vi) = 1, ∀i =

1, 2, · · · , n. If all the roots λ of

det(diag(λv1 , λv2 , · · · , λvn)− J) = 0, (33)

satisfies | arg λ| > π
2M , where J is the Jacobian matrix of F at the equilibrium. Then, the equilibrium

of system (3) is locally asymptotically stable.

Theorem 3. Suppose α2 = α3 = α. Then, the DFE (EF) of system (3) is locally asymptotically
stable if R0 < 1.
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Proof. The Jacobian matrix of F at EF is:

J(EF) =


−µ −r1 −r2 τ
0 r1 − (µ + ρ) r2 0
0 ρ −(γ + d + µ) 0
0 0 γ −(µ + τ)

. (34)

Consequently, we can obtain:

det
(

diag
(

λMα1 , λMα2 , λMα3 , λMα4
)
− J(EF)

)
= 0 (35)

⇔ (
µ + λMα1

)(
τ + µ + λMα4

)(
λMα2+Mα3 + BλMα2 + CλMα3 + D

)
, (36)

where B = (γ + µ + d), C = (µ + ρ)(1 + ρr2
(µ+ρ)(d+γ+µ)

− R0), and D = (µ + ρ)(d + γ + µ)

(1− R0). This immediately yields:(
µ + λMα1

)
= 0⇒ arg λ1,k =

π
Mα1

+ 2 kπ
Mα1

⇒
∣∣arg λ1,k

∣∣ > π
2M , k = 0, 1, · · · , Mα1 − 1,

(37)

and (
τ + µ + λMα4

)
= 0⇒ arg λ2,k =

π
Mα4

+ 2 kπ
Mα4

⇒
∣∣arg λ2,k

∣∣ > π
2M , k = 0, 1, · · · , Mα4 − 1.

(38)

Suppose α2 = α3 = α; then, we obtain:(
λMα2+Mα3 + BλMα2 + CλMα3 + D

)
=
(

λ2Mα + (B + C)λMα + D
)

. (39)

If R0 < 1, then (B + C) > 0 and D > 0. This leads us to deduce:

(B + C)2 − 4D > 0.

Thus, the roots
(
λMα

3 , λMα
4
)

of(
λ2Mα + (B + C)λMα + D

)
= 0 (40)

are negative. This gives:

arg λ4,k = arg λ3,k =
π

Mα + 2 kπ
Mα

⇒
∣∣arg λ4,k

∣∣ = ∣∣arg λ3,k
∣∣ > π

2M , k = 0, 1, · · · , Mα− 1.
(41)

Therefore, according to Theorem 2, the FDE point is locally asymptotically stable if R0 < 1.

4.3.2. Global Stability of DFE

In a similar manner to the previous part, we will derive another important result
related to the global stability analysis of system (3) around the DFE based on one of the
major stability theorems reported below.

Theorem 4 ([34]). Let x = 0 be an equilibrium point for the fractional-order non-linear system (3).
Let V(t, x) be a Lyapunov function and γi (i = 1, 2, 3) be functions of class K, such that:

γ1(‖x‖) ≤ V(t, x(t)) ≤ γ1(‖x‖) (42)

and
CDβ

t V(t, x(t)) ≤ −γ3(‖x‖), (43)

where β ∈ (0, 1). Then, the equilibrium point x = 0 is asymptotically stable.
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Theorem 5. Suppose α2 = α3 = α. If R0 < 1, then the pandemic will disappear.

Proof. Consider the Lyapunov function of the form:

L(t) = θ1E(t) + θ2 I(t), (44)

where θ1 = 1
2 , and θ2 = r2

(γ+d+µ)
. Differentiating L with respect to the time t yields the

following consecutive inequalities:

C
0 Dα

t L(t) = θ1
C
0 Dα

t E(t) + θ2
C
0 Dα

t I(t),
= θ1

(
r1

S(t)E(t)
N(t) + r2

S(t)I(t)
N(t) − (µ + ρ)E(t)

)
+ θ2(ρE(t)− (γ + d + µ)I(t)),

≤ (θ1r1 + θ2ρ− (µ + ρ))E + (θ1r2 − θ2(γ + d + µ))I,
≤ (µ + ρ)

(
r1

2(µ+ρ)
+ r2ρ

(µ+ρ)(γ+d+µ)
− 1
)

E +
(
− r2

2
)

I,
≤ (µ + ρ)(R0 − 1)E +

(
− r2

2
)

I.
(45)

If R0 < 1, then L(t) will be immediately negative. Therefore, according to Theorem 4,
the pandemic will disappear.

It should be noted that the conditions of the previous theorems do not relate to
the fractional-order values. This, however, backs up the fact that these results are just
generalisations of the results reported in the case of the integer-order values.

5. Numerical Simulations

In this section, we will perform several numerical simulations to verify the results men-
tioned in the previous section. We take the value of the initial population as N(0) = 610, 624,
so that it is divided as follows: the number of susceptible people S(0) = 410, 624, the num-
ber of exposed people E(0) = 183, 981, the number of infected people I(0) = 267, and the
number of people who have recovered from the disease R(0) = 15, 752. In the same regard,
we assume the parameters of system (3) as follows: the value of the recruitment rate into sus-
ceptible population is Λ = 1534, the value of the natural death rate is µ = 3.53513× 10−5,
the value of the rate of transmission of people from group E to group I is ρ = 0.61515,
the value of the death rate caused by the coronavirus d = 0.022801, the value of recovery
rate γ = 0.75217, and the value of the rate of transmission of people from group R to group
S is τ = 0.56128. The rate of new infections r1 = 0.40221, which is related to the friction
of group I with group S, such that it is greater than r2 = 0.24521, which is related to the
friction of group S with group I. This is because the people in group I have a visible injury,
and this means that their contact with group S is small. On the other hand, we take the
fractional-order values as:

α1 = 0.7, α2 = α3 = 0.8, α4 = 0.75. (46)

In order to apply Theorem 5, one should first calculate R0 to be as follows:

R0 = r1(d+γ+µ)+ρr2
(µ+ρ)(d+γ+µ)

= 0.40221(0.022801+0.75217+3.53513×10−5)+(0.61515)(0.24521)
(3.53513×10−5+0.61515)(0.022801+0.75217+3.53513×10−5)

= 0.97018.

(47)

Due to R0 < 1, the pandemic will disappear according to Theorem 5. However, according
to the two values of time (t = 20 and t = 200 days) and according to the values of αi
(i = 1, 2, 3, 4) given in (46), we generate, respectively, Figure 1a,b, which represent the
dynamics of system (3) in case of R0 < 1.
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(a) The dynamics of system (3) over t = 20 days.
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(b) The dynamics of system (3) over t = 200 days.

Figure 1. The dynamics of system (3) according to the values of α reported in (46) and in case of
R0 < 1.

In the same regard, we plot Figure 2, which represents another dynamic of system (3)
but with different values of each of αi, where i = 1, 2, 3, 4.

In light of this figure, we notice that any change in the fractional-order values allows us
to control the curvature of the curves. In other words, the incommensurate fractional-order
values can allow us to control the slope of the curves separately from each other, which
gives us more freedom to make a model that is more compatible with the real results.

On the other hand, if we take the value r1 = 0.50221, we get R0 > 1. Thus, according
to t = 20 and t = 200 days, as well as the values of αi (i = 1, 2, 3, 4) given in (46), we can
generate, respectively, Figure 3a,b, which represent the dynamics of system (3) in case of
R0 > 1.
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Figure 2. Size of all classes for system (3) according to different values of α and in case of R0 < 1.
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(b) The dynamics of system (3) over t = 200 days.

Figure 3. The dynamics of system (3) according to the values of α reported in (46) and in case of
R0 > 1.
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Based on these curves, we notice that the free disease fixed point is unstable. In fact,
this system has another fixed point called the pandemic fixed point, in which studying its
stability is deemed a very difficult mission in the abstract case due to the complexity of its
calculation. However, Figure 4 shows that the free disease fixed point is also unstable and
the pandemic point is asymptotic stable, according to different values of each αi, where
i = 1, 2, 3, 4.
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Figure 4. Size of all classes for system (3) according to different values of α and in case of R0 > 1.

6. Conclusions

In this paper, several existence and uniqueness results, as well as several stability
analysis results, of a new version of the SEIR model established in view of incommensurate
fractional-order derivatives have been investigated. It is worth mentioning that to achieve
a good study of the pandemic disease, we should have correct statistics for a certain period
of such disease. The longer this period is, the more accurate results of the predictions
will be. Furthermore, we can conclude that, when dealing with the integer-order system,
there is difficulty persuading the system to agree with certain statistics. This is because the
curvature is constant, which means that the integer-order system cannot be agreed with the
collected statistics. For this reason, we can use the incommensurate fractional-order models,
as shown for system (3). It has been observed that any change in the fractional-order values
can allow to control the curvature of the system’s curves. This, immediately, can allow us to
agree between the real results and the system’s dynamics in a given interval, as previously
shown in Figures 2 and 4. We would then obtain more accurate predictions than that of
the integer-order systems. One of the significant features here lies in the fact that when
the curvature of any state of the system is changed to match the desired results, the other
curvatures of the other compartments will be affected. In other words, we can make the
results of any compartment of the system more accurate by controlling the curvature of
each state independently, and then we can provide accurate predictions for each one. This
is exactly the benefit of using the incommensurate fractional-order in the SEIR models.
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