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Abstract: In this paper, elliptic optimal control problems with L1-control cost and box constraints
on the control are considered. To numerically solve the optimal control problems, we use the First
optimize, then discretize approach. We focus on the inexact alternating direction method of multipliers
(iADMM) and employ the standard piecewise linear finite element approach to discretize the sub-
problems in each iteration. However, in general, solving the subproblems is expensive, especially
when the discretization is at a fine level. Motivated by the efficiency of the multigrid method for
solving large-scale problems, we combine the multigrid strategy with the iADMM algorithm. Instead
of fixing the mesh size before the computation process, we propose the strategy of gradually refining
the grid. Moreover, to overcome the difficulty whereby the L1-norm does not have a decoupled
form, we apply nodal quadrature formulas to approximately discretize the L1-norm and L2-norm.
Based on these strategies, an efficient multilevel heterogeneous ADMM (mhADMM) algorithm is
proposed. The total error of the mhADMM consists of two parts: the discretization error resulting
from the finite-element discretization and the iteration error resulting from solving the discretized
subproblems. Both errors can be regarded as the error of inexactly solving infinite-dimensional
subproblems. Thus, the mhADMM can be regarded as the iADMM in function space. Furthermore,
theoretical results on the global convergence, as well as the iteration complexity results o(1/k) for the
mhADMM, are given. Numerical results show the efficiency of the mhADMM algorithm.

Keywords: optimal control problems; ADMM; sparse regularization; multilevel

MSC: 49M41; 49M25; 65K10; 65M32

1. Introduction

Sparse optimal control problems are widespread in many areas, such as the placement
of actuators [1], quantum spin systems [2], etc. [3,4]. It is well-known that adding the
L1-norm penalty can lead to sparse optimal control problems, i.e., the infinite dimensional
control variable is localized in its domain of action. In this paper, we consider the elliptic
optimal control problem with L1-control cost and box constraints on the control:

min
(y,u)∈Y×U

J(y, u) =
1
2
‖y− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) + β‖u‖L1(Ω)

s.t. Ly = u + yr in Ω,

y = 0 on ∂Ω,

u ∈ Uad = {v(x)|a ≤ v(x) ≤ b, a.e on Ω} ⊆ U,

(1)

where Y := H1
0(Ω), U := L2(Ω), Ω ⊆ Rn(n = 2, 3) is a convex, open and bounded domain

with C1,1- or polygonal boundary; the desired state yd ∈ H1(Ω) and the source term
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yr ∈ H1(Ω) are given; parameters α, β > 0, −∞ < a < 0 < b < +∞; L is the uniformly
elliptic differential operator given by

Ly := −
n

∑
i,j=1

∂xj(aijyxi ) + c0y, (2)

where aij, c0 ∈ L∞(Ω), c0 > 0, aij = aji and there is a constant θ > 0, such that

n

∑
i,j=1

aij(x)ξiξ j > θ‖ξ‖2, a.a. x ∈ Ω, ∀ξ ∈ Rn. (3)

Due to the L1-control cost, the objective function J(y, u) is non-smooth. This means
that the structure of the control significantly differs from that of the smooth one. To solve
elliptic optimal control problems with L1-control cost, Stadler et al. proposed a semi-
smooth Newton method to solve elliptic optimal control problems with L1-control cost [1].
Porcelli et al. proposed a semi-smooth Newton method with a robust preconditioner for
different formulations of the Newton equation [5]. However, solving Newton equations
is expensive, especially when the discretization is at a fine level. Thus, some efficient
first-order algorithms have received much attention in recent years. In [6], Schindele and
Borzì proposed an inexact accelerated proximal gradient (APG) method in function space
to solve elliptic optimal control problems with L1-control cost. However, the efficiency of
the APG method relies closely on the step length. The backtracking approach is applied to
obtain the appropriate step length, but this greatly increases the computational cost. In [7],
Song et al. proposed an inexact heterogeneous ADMM (ihADMM) algorithm. Different
from the classical ADMM, two different weighted inner products are utilized to define
the augmented Lagrangian function for two subproblems. Moreover, the ihADMM was
applied to solve PDE-constrained optimization problems with L2-control cost [8] and
elliptic optimal control problems with pointwise box constraints on the state [9]. For more
applications of ADMM-type algorithms to solve PDE-constrained optimization problems,
see [10–13]. Inspired by the efficiency of ADMM-type algorithms on PDE-constrained
optimal control problems, we consider using ADMM-type algorithms to solve (1).

In classical finite-element-based algorithms, problems are always discretized and
computed at a fixed grid level. As the mesh becomes finer and finer, the scale of the
discretized problems will be larger and the computation cost will increase, causing a bottle-
neck. Thus, it is essential to develop new approaches to solve optimal control problems in
an accurate and computationally efficient way. The multigrid method is a modern field
of research, which started in the early 1970s. It is well-known that the multigrid method
is the optimal solution to many discretized partial differential equations [14]. Different
from the classical multigrid method, Deuflhard proposed a cascadic multigrid method for
elliptic partial differential equations, which solves problems from the coarse grid to the
fine grid [15]. In [16], the multigrid method was applied to tackle infinite dimensional
non-linear partial differential equations using Newton methods. Due to the efficiency
of the multigrid method, it is a natural idea to construct the multigrid type numerical
method for PDE-constrained optimization problems. The classical multigrid method for
the optimal control problem is designed to solve the linear algebraic systems formulated
on each step of the optimization algorithm; refer to [17] for an overview. In [18], Gong et
al. proposed an adaptive multilevel correction method, which solves the optimal control
problems from the coarsest mesh to the finest mesh. Chen et al. proposed a strategy of
gradually refining the grid, and proposed a multilevel ADMM (mADMM) algorithm for
PDE-constrained optimization problems with a L2-control cost in [19]. The authors proved
the global convergence and the iteration complexity results o(1/k) for the mADMM.

In this paper, we focus on the first optimize, then discretize [20] approach. This approach
provides the freedom to discretize subproblems using different discretization schemes.
Motivated by the success of the multigrid method, we combined the multigrid method and
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the ihADMM algorithm to numerically solve (1). At the early stage of the whole iteration
process of the algorithm, using a coarse grid will not make the precision worse, but will
reduce the computational cost. Thus, we propose a strategy of gradually refining the grid.
Specifically, we first introduced the iterative scheme of the iADMM in function space.
Then, nodal quadrature formulas were used to approximately discretize the L1-norm and
L2-norm to ensure that discretized subproblems have decoupled forms. Finally, appropriate
methods, such as Krylov-based methods, are used to solve the discretized subproblems.

The main contribution of this paper can be summarized as follows:

• We propose an efficient multilevel heterogeneous ADMM (mADMM) algorithm for
solving sparse optimal control problems with L1-control cost. Specifically, we first
apply the iADMM in the function space as an outer optimization method. Then, the
subproblems in each iteration are discretized by the finite element method. Instead of
fixing the grid size before the computation process, we apply the strategy of gradually
refining the grid. Moreover, we apply nodal quadrature formulas to approximately
L1-norm and L2-norm to overcome the difficulty that L1-norm does not have a de-
coupled form and ensure z-subproblems have closed form solutions. Finally, we use
appropriate methods to inexactly solve the subproblems in each iteration. The global
convergence and the iteration complexity results for the mhADMM algorithm are
also established.

• We present numerical experiments to illustrate the effectiveness of the mhADMM
algorithm. In addition, we compare the performance of the mhADMM with two
benchmark methods: the ihADMM and the classical ADMM. Compared to the two
methods, the mhADMM has an evident advantage in terms of computational time.
Moreover, the numerical results regarding iterations illustrate the mesh-independent
performance of the mhADMM.

The paper is organized as follows. In Section 2, we first briefly review the iteration
format of the inexact ADMM algorithm in function space, then introduce the finite element
approximation. A strategy of gradually refining the grid is introduced and the mhADMM
algorithm is proposed. Numerical computation of the subproblems is also discussed. In
Section 3, we present the convergence results of the mhADMM algorithm. Numerical
results are given in Section 4, and concluding remarks are drawn in Section 5.

2. An Multilevel Heterogeneous ADMM Algorithm

In this section, we propose an efficient convergent multilevel alternating direction
method of multipliers (mhADMM). Moreover, we introduce the numerical computation of
the subproblems in the mhADMM algorithm.

To apply ADMM to solve (1), we introduce an artificial variable z; then, we can
rewrite (1) in an equivalent form:

min
(y,u,z)∈Y×U×U

J(y, u, z) =
1
2
‖y− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) + β‖z‖L1(Ω)

s.t. Ly = u + yr in Ω,

y = 0 on ∂Ω,

u = z,

z ∈ Uad = {v(x)|a ≤ v(x) ≤ b, a.e on Ω} ⊆ U.

(4)

For the existence and uniqueness of the solution of the elliptic PDE involved in (1),
where L is defined by (2), the following proposition holds.

Proposition 1. For every u ∈ L2(Ω) and yr ∈ H1(Ω), the elliptic PDE involved in (1):

Ly = u + yr in Ω,

y = 0 on ∂Ω,
(5)
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has a unique weak solution y = y(u) := S(u + yr), where S : L2(Ω) → H1
0(Ω) denotes the

solution operator. Moreover, S is a well-defined continuous linear injective operator. The adjoint
operator S∗ : H−1(Ω)→ H1

0(Ω) is also a continuous linear operator.

Proof. The weak formulation of (5) is given by the following:

Find y ∈ H1
0(Ω) : a(y, v) = (u + yr, v)L2(Ω), ∀v ∈ H1

0(Ω),

where a : V ×V → R is a bilinear form:

a(y, v) :=
∫

Ω

(
n

∑
i,j=1

aijyxi vxj + c0yv

)
dx.

We know from the assumption (3) that a(·, ·) is symmetric, i.e., a(y, v) = a(v, y) for
all y, v ∈ H1

0(Ω). Thus, (y, v) := a(y, v) defines a new inner product on H1
0(Ω). Then, the

existence of a unique solution of (5) directly follows from the Riesz representation theorem.
Moreover,

θ‖y‖2
H1

0 (Ω)
≤ a(y, y) = (u + yr, y)L2(Ω) ≤ ‖u + yr‖L2(Ω)‖y‖L2(Ω) ≤ ‖u + yr‖L2(Ω)‖y‖H1

0 (Ω),

where θ is a constant, depending only on Ω, and we use the equivalence of norms in H1
0(Ω)

in the first inequality. Then, we have

‖y‖2
H1

0 (Ω)
≤ 1

θ
‖u + yr‖L2(Ω).

Thus, the solution operator S is well-defined and called the control-to-state mapping,
which is a continuous linear injective operator. Since H1

0 is a Hilbert space, the adjoint
operator S∗ : H−1(Ω)→ H1

0(Ω) is also a continuous linear operator.

Since (4) is continuous and strongly convex, the solution of (4) exists and is unique.
The following Karush–Kuhn–Tucker (KKT) conditions hold at the optimal solution of (4).

Theorem 1. (First-order optimality condition) (y∗, u∗, z∗) is the optimal solution of (4), if, and
only if, adjoint state p∗ ∈ H1

0(Ω) and Lagrange multiplier λ∗ ∈ L2(Ω) exists, such that the
following conditions hold in the weak sense:

y∗ = S(u∗ + yr),

p∗ = S∗(y∗ − yd),

αu∗ − p∗ + λ∗ = 0,

u∗ = z∗,

z∗ ∈ Uad,

〈−λ∗, z̃− z∗〉L2(Ω) + β
(
‖z̃‖L1(Ω) − ‖z∗‖L1(Ω)

)
≥ 0, ∀z̃ ∈ Uad.

Moreover, we have

u∗ := ΠUad

(
1
α

soft(p∗, β)

)
,

where the projection operator ΠUad(·) and the soft thresholding operator soft(·), respectively, are
defined as follows:

ΠUad(v(x)) := max{a, min{v(x), b}},
soft(v(x), β) := sgn(v(x)) ◦max(|v(x)| − β, 0).
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Using the solution operator S, (4) can be equivalently rewritten as the following
reduced form:  min

(u,z)∈U×U
f (u) + g(z)

s.t. u = z,
(6)

where
f (u) :=

1
2
‖S(u + yr)− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω),

g(z) := β‖z‖L1(Ω) + δUad(z),

δUad denotes the indicator function of Uad, i.e.,

δUad(z) =
{

0, z ∈ Uad,
∞, z /∈ Uad.

Notice that (6) is a two-block separable convex optimization problem with linear
equality constraints; the ADMM algorithm can be used to solve (6). The augmented
Lagrangian function of (6) is defined as follows:

Lσ(u, z, λ; σ) = f (u) + g(z) + 〈λ, u− z〉L2(Ω) +
σ

2
‖u− z‖2

L2(Ω),

where λ ∈ L2(Ω) denotes the Lagrangian multiplier; σ > 0 is the penalty parameter.
Given the initial point (u0, z0, λ0) ∈ L2(Ω) × dom(δUad(·)) × L2(Ω), parameters σ > 0,

τ ∈
(

0,

√
5 + 1
2

)
, the iteration format of ADMM in function space is as follows:


Step 1 : ūk+1 = arg min

u
f (u) + 〈λ̄k, u− z̄k〉L2(Ω) +

σ

2
‖u− z̄k‖2

L2(Ω),

Step 2 : z̄k+1 = arg min
z

g(z) + 〈λ̄k, ūk+1 − z〉L2(Ω) +
σ

2
‖ūk+1 − z‖2

L2(Ω),

Step 3 : λ̄k+1 = λ̄k + τσ(ūk+1 − z̄k+1).

(7)

However, computing the exact solution of each subproblem is usually expensive and
unnecessary. In [7], Song et al. propose an inexact ADMM (iADMM) in function space
for (6). Krylov-based methods are used to solve the subproblems, which are equivalent
to large-scale linear systems. We show the iterative scheme of the iADMM algorithm in
Algorithm 1.

It is easy to see that the z-subproblem has a closed-form solution

zk+1 = arg min
z

σ

2
‖z− 1

σ
(σuk+1 + λk)‖2

L2(Ω) + β‖z‖L1(Ω) + δUad(z)

= ΠUad

(
1
σ

soft
(

σuk+1 + λk, β
))

.

For the global convergence results and the iteration complexity for Algorithm 1, we
have the following theorem.
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Algorithm 1 Inexact ADMM (iADMM) algorithm for (6)

Input: Choose the initial point (u0, z0, λ0) ∈ L2(Ω)× dom(δUad(·))× L2(Ω), parameters

σ > 0, τ ∈
(

0,

√
5 + 1
2

)
. Let {εk+1}∞

k=0 be a sequence satisfying {εk+1}∞
k=0 ⊆ [0,+∞)

and
∞

∑
k=0

εk < ∞. Set k = 0.

Output: uk, zk, λk.
Step 1 Compute uk+1 as an approximation solution of

min
u

f (u) + 〈λk, u− zk〉L2(Ω) +
σ

2
‖u− zk‖2

L2(Ω)

such that the residual δk+1
u := ∇ f (uk+1) + λk + σ(uk+1 − zk) satisfies

‖δk+1
u ‖L2(Ω) ≤ εk+1.

Step 2 Compute zk+1 as follows:

zk+1 = arg min
z

g(z) + 〈λk, uk+1 − z〉L2(Ω) +
σ

2
‖uk+1 − z‖2

L2(Ω).

Step 3 Compute
λk+1 = λk + τσ(uk+1 − zk+1).

Step 4 If a termination criterion is met, stop; otherwise, set k := k + 1 and go to Step 1.

Theorem 2 ([7] Theorem 3). Let (y∗, u∗, z∗, p∗, λ∗) be the KKT point of (4), the sequence
{(uk, zk, λk)}∞

k=0 is generated by Algorithm 1 with the associated state {yk}∞
k=0 and adjoint state

{pk}∞
k=0; then, we have

lim
k→∞
{‖uk − u∗‖L2(Ω) + ‖zk − z∗‖L2(Ω) + ‖λk − λ∗‖L2(Ω)} = 0,

lim
k→∞
{‖yk − y∗‖H1

0 (Ω) + ‖pk − p∗‖H1
0 (Ω)} = 0.

Moreover, a constant C0 only depends on the initial point (u0, z0, λ0) and the optimal solution
(u∗, z∗, λ∗), such that, for k ≥ 1,

min
1≤i≤k

R(ui, zi, λi) ≤ C0

k
, lim

k→∞
(k · min

1≤i≤k
R(ui, zi, λi)) = 0,

where the function R : (u, z, λ)→ [0, ∞) is defined as

R(u, z, λ) := ‖∇ f (u) + λ‖2
L2(Ω) + dist2(0,−λ + ∂g(z)) + ‖u− z‖2

L2(Ω).

2.1. The mhADMM Algorithm

To numerically solve (6), we consider the full discretization, in which both the state y
and the control u are discretized by piecewise, linear, globally continuous finite elements.
We introduce a family of regular and quasi-uniform triangulations {Th} of Ω̄, i.e., Ω̄ =⋃

T∈Th
T̄. With each element T ∈ Th, we define the diameter of the set T by ρT := diam T

and let σT denote the diameter of the largest ball contained in T. The grid size is defined by
h := maxT∈Th ρT . We suppose the following standard assumption holds (see [20]).

Assumption 1. (Regular and quasi-uniform triangulations) There are two positive constants κ
and τ such that

ρT
σT
≤ κ,

h
ρT
≤ τ
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hold for all T ∈ Th and all h > 0. Moreover, let us define Ω̄h =
⋃

T∈Th
T̄ and let Ωh ⊆ Ω and Γh

denote its interior and boundary, respectively. In the case that Ω is a convex polyhedral domain,
we have Ω = Ωh. In the case that Ω is a domain with a C1,1- boundary Γ, we assume that Ω̄h is
convex and all boundary vertices of Ω̄h are contained in Γ, such that

|Ω\Ωh| ≤ c∗h2,

where | · | denotes the measure of the set, and c∗ > 0 is a constant.

Due to the homogeneous boundary condition of the state equation, we use

Yh := {yh ∈ C(Ω̄)|yh|T ∈ P1, ∀T ∈ Th, yh = 0 in Ω̄ \Ωh},
Uh := {uh ∈ C(Ω̄)|uh|T ∈ P1, ∀T ∈ Th, uh = 0 in Ω̄ \Ωh},

as the discretized state space and the discretized control space, respectively. P1 denotes
the space of polynomials of degree less than or equal to 1. For the given regular and quasi-
uniform triangulation Th with nodes {xi}

Nh
i=1, let {φi(x)}Nh

i=1 be a basis of Yh, Uh, which
satisfies the following properties:

φi(x) > 0, ‖φi(x)‖∞ = 1 ∀i = 1, ..., Nh,
Nh

∑
i=1

φi(x) = 1.

Then, uh ∈ Uh, yh ∈ Yh can be represented in the following forms, respectively,

yh =
Nh

∑
i=1

yiφi, uh =
Nh

∑
i=1

uiφi,

where yi := yh(xi), ui := uh(xi). Moreover, yh can be expressed by yh(u) = Sh(u + yr),
where Sh denotes the discretized version of the solution operator S. Let Uad,h denotes the
discretized feasible set, which is defined by

Uad,h := Uh ∩Uad =

{
zh =

Nh

∑
i=1

ziφi|a ≤ zi ≤ b, ∀i = 1, · · · , Nh

}
⊂ Uad.

To overcome the difficulty that the discretized L1-norm does not have a decoupled
form, we choose the nodal quadrature formulas introduced in [21] to approximately dis-
cretized the L1-norm:

‖zh‖L1
h(Ωh)

=
n

∑
i=1
|zi|

∫
Ωh

φi(x)dx.

Moreover, in order to obtain a closed form solution for the z-subproblem, a simi-
lar quadrature formulae introduced in [8] is also used to discretize the L2-norm in the
z-subproblem:

‖zh‖L2
h(Ωh)

=

(
n

∑
i=1

(zi)
2
∫

Ωh

φi(x)dx

) 1
2

.

For the given yr ∈ H1(Ω) and u ∈ L2(Ω), the unique discretized state yh associated
with u is can be expressed by yh(u) = Sh(u + yr), where Sh is the discretized version of the
solution operator S. Then, we have the well-known error estimates:

Lemma 1 ([22], Theorem 4.4.6). For a given u ∈ L2(Ω), let y be the unique weak solution of
the state Equation (5) and yh be the unique discretized state. Then, there exists a constant c > 0
independent of h, u and yr, such that

‖y− yh‖L2(Ω) + h‖∇y−∇yh‖L2(Ω) ≤ ch2(‖u‖L2(Ω) + ‖yr‖L2(Ω)).
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In particular, this implies ‖S− Sh‖L(L2,L2) ≤ ch2 and ‖S− Sh‖L(L2,H1) ≤ ch.

To project the solution obtained on the coarser grid to the finer grid, we introduce the
definition of the node interpolation operator Ih.

Definition 1. For a given regular and quasi-uniform triangulation Th of Ω with nodes {xi}
Nh
i=1,

let {φi(x)}Nh
i=1 denotes the standard set of nodal basis functions. The interpolation operator Ih is

defined as

Ihw(x) :=
Nh

∑
i=1

w(xi)φi(x) for any w ∈ C0(Ω) ∩ H1(Ω).

For the interpolation error estimate, we have the following Theorem 3.

Theorem 3 ([19] Theorem 2). For all w ∈ C0(Ω) ∩ H1(Ω), we have

‖w− Ihw‖L2(Ω) ≤ cIh‖w‖H1(Ω),

where cI is a constant independent of h.

At the early stage of the whole process, computing on the coarser grid can reduce
the computation cost without making the precision worse. While as the iteration process
proceeds, the iteration precision is supposed to increase. In this case, it is necessary to use
the finer grid at the late stage. Thus, we apply the strategy of gradually refining the grid. In
the initial iteration, we obtained a solution on the coarse grid, then projected the obtained
solution to the finer grid. For the convenience of representing subproblems on different
grids, we define

fhk+1
(u) :=

1
2
‖Shk+1

(u + Ihk+1
yr)− Ihk+1

yd‖2
L2(Ωhk+1

) +
α

2
‖u‖2

L2(Ωhk+1
),

ghk+1
(z) := β‖z‖L1

hk+1
(Ωhk+1

) + δUad ,hk+1
(z).

Moreover, let

Ihyr :=
Nh

∑
i=1

yi
rφi, Ihyd :=

Nh

∑
i=1

yi
dφi

denotes the L2-projection of yr and yd onto Yh, respectively. Then, we show the iterative
scheme of the multilevel heterogeneous ADMM alternating direction method of multipliers
(mhADMM) in Algorithm 2.

It is easy to see that the z-subproblem has a closed-form solution:

zk+1
hk+1

= arg min
z

σ

2
‖z− 1

σ
(σuk+1

hk+1
+ λk

hk+1
)‖2

L2(Ωhk+1
) + β‖z‖L1

hk+1
(Ωhk+1

) + δUad ,hk+1
(z)

= ΠUad ,hk+1

(
1
σ

soft
(

σuk+1
hk+1

+ λk
hk+1

, β
))

.
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Algorithm 2 Multilevel heterogeneous ADMM (mhADMM) algorithm for (6)

Input: Choose the initial point (u0
h1

, z0
h1

, λ0
h1
) ∈ H1(Ω)× H1(Ω)× H1(Ω), parameters

σ > 0, τ ∈
(

0,

√
5 + 1
2

)
. Let{εk+1}∞

k=0 be a sequence satisfying {εk+1}∞
k=0 ⊆ [0,+∞)

and
∞

∑
k=0

εk+1 < ∞, mesh sizes {hk+1}∞
k=0 of each level satisfying

∞

∑
k=0

hk+1 < ∞. Set k = 0.

Output: uk
hk

, zk
hk

, λk
hk

.

Step 1 Compute uk+1
hk+1

as an approximation solution of

min
u

fhk+1
(u) + 〈λk

hk+1
, u− zk

hk+1
〉L2(Ωhk+1

) +
σ

2
‖u− zk

hk+1
‖2

L2(Ωhk+1
)

such that the residual δk+1
u,hk+1

:= ∇ fhk+1
(uk+1

hk+1
) + λk

hk+1
+ σ(uk+1

hk+1
− zk

hk+1
) satisfies

‖δk+1
u,hk+1

‖L2(Ωhk+1
) ≤ εk+1.

Step 2 Compute zk+1
hk+1

as follows:

zk+1
hk+1

= arg min
z

ghk+1
(z) + 〈λk

hk+1
, uk+1

hk+1
− z〉L2(Ωhk+1

) +
σ

2
‖uk+1

hk+1
− z‖2

L2
hk+1

(Ωhk+1
)
.

Step 3 Compute
λk+1

hk+1
= λk

hk+1
+ τσ(uk+1

hk+1
− zk+1

hk+1
).

Step 4 If a termination criterion is met, stop; otherwise, set k := k + 1 and go to Step 1.

2.2. Numerical Computation of the Subproblems in Algorithm 2

To rewrite the subproblems into matrix-vector forms, we define the following matrices

Kh := (a(φi, φj))
Nh
i,j=1,

Mh :=
(∫

Ωh

φiφjdx
)Nh

i,j=1
,

Wh := diag
(∫

Ωh

φi(x)dx
)Nh

i,j=1
,

where Kh, Mh and Wh denote the finite element stiffness matrix, mass matrix and lump
mass matrix, respectively.

For uh =
Nh

∑
i=1

uiφi ∈ Uh, yh =
Nh

∑
i=1

yiφi ∈ Yh, let

uh = (u1, ..., uNh), yh = (y1, ..., yNh)

be the relative coefficient vectors, respectively. For Ihyr =
Nh

∑
i=1

yi
rφi, Ihyd =

Nh

∑
i=1

yi
dφi, let

yr,h = (y1
r , y2

r , ..., yNh
r ), yd,h = (y1

d, y2
d, ..., yNh

d )

be the coefficient vectors, respectively. Let Ih denotes the vector version of the interpolation
operator. Moreover, we define
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f (u) :=
1
2
‖K−1

h Mh(u + yr,h)− yd,h‖
2
Mh

+
α

2
‖u‖2

Mh
,

g(z) := β‖Whz‖2
1 + δ[a,b]Nh (z).

Then, the matrix-vector form of Algorithm 2 is given in Algorithm 3.

Algorithm 3 Matrix-vector form of the mhADMM algorithm

Input: (u0, z0, λ0) ∈ RNh × [a, b]Nh × RNh , parameters σ > 0, τ ∈
(

0,

√
5 + 1
2

)
.

Let{εk+1}∞
k=0 be a sequence satisfying {εk+1}∞

k=0 ⊆ [0,+∞) and
∞

∑
k=0

εk+1√
‖Mhk+1

‖2

< ∞,

mesh sizes {hk+1}∞
k=0 of each iteration satisfy

∞

∑
k=0

hk+1 < ∞. Set k = 0.

Output: uk
hk

, zk
hk

, λk
hk

.

Step 1: Compute uk+1
hk+1

as an approximation solution of

min
u

f (u) + 〈Mhk+1
λk

hk+1
, u− zk

hk+1
〉+ σ

2
‖u− zk

hk+1
‖2

Mhk+1

such that the residual δk+1
u,hk+1

:= ∇ f (uk+1
hk+1

) + Mhk+1
λk

hk+1
+ σMhk+1

(uk+1
hk+1
− zk

hk+1
)

satisfies ‖δk+1
u,hk+1

‖ ≤ εk+1√
‖Mhk+1

‖2
.

Step 2: Compute zk+1
hk+1

as follows:

zk+1
hk+1

= arg min
z

g(z) + 〈Mhλk
hk+1

, uk+1
hk+1
− z〉+ σ

2
‖uk+1

hk+1
− z‖2

Wh
.

Step 3: Compute
λk+1

hk+1
= Ihk+1

λk
hk
+ τσ(uk+1

hk+1
− zk+1

hk+1
).

Step 4: If a termination criterion is met, stop; otherwise, set k := k + 1 and go to Step 1.

The u-subproblem at the kth iteration is equivalent to the following linear system:

Mhk
K−1

hk
Mhk

(K−1
hk

Mhk
(uk

hk
+ yr,hk

)− yd,hk
) + αMhk

uk
hk
+ λk

hk
+ σ(uk

hk
− zk

hk
) = 0, (8)

where yk
hk

:= K−1
hk

Mhk
(uk

hk
+ yr,hk

), pk
hk

:= K−1
hk

Mhk
(yd,hk

− yk
hk
) denote the discretized state

and the discretized adjoint state, respectively. Then (8) can be rewritten as: Mhk
0 Khk

0 (α + σ)Mhk
−Mhk

Khk
−Mhk

0


 yk

hk
uk

hk
pk

hk

 =

 Mhk
yd,hk

Mhk
(σIhk

zk−1
hk−1
− Ihk

λk−1
hk−1

)

Mhk
yr,hk

. (9)

We know from (9) that pk
hk

= (α + σ)uk
hk
− σIhk

zk−1
hk−1

+ Ihk
λk−1

hk−1
. By eliminating the

variable pk
hk

, (9) can be rewritten in the following reduced form without any additional
computational cost:[

Mhk
(α + σ)Khk

−Khk
Mhk

] [
yk

hk
uk

hk

]
=

[
Mhk

yd,hk
+ Khk

(σIhk
zk−1

hk−1
− Ihk

λk−1
hk−1

)

−Mhk
yr,hk

]
. (10)
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The equation system (10) can be solved by the generalized minimal residual (GMRES) with
the preconditioned variant of modified hermitian and skew-hermitian splitting (PMHSS)
preconditioner [23,24].

For the z-subproblem, there is a closed-form solution

zk+1
hk+1

= Π
[a,b]

Nhk+1

(
1
σ

soft
(

σuk+1
hk+1

+ W−1
h Mhλk

hk+1
, β
))

.

3. Convergence Analysis

In this section, we establish the global convergence and the iteration complexity
results in non-ergodic sense for the sequence generated by Algorithm 2. Before giving
the convergence analysis, we first introduce the exact multi-level heterogeneous ADMM
(mhADMM) algorithm. Each subproblem of the exact mhADMM algorithm is solved
exactly. Given the initial point (u0, z0, λ0) ∈ H1(Ω)× H1(Ω)× H1(Ω), parameters σ > 0,

τ ∈
(

0,

√
5 + 1
2

)
. The mesh sizes {hk+1}∞

k=0 of each iteration satisfy ∑∞
k=0 hk+1 < ∞. Then,

each iteration of the exact mhADMM has three main steps:
Step 1 : ūk+1

hk+1
= arg min

u
fhk+1

(u) + 〈λ̄k
hk+1

, u− z̄k
hk+1
〉L2(Ωhk+1

) +
σ

2
‖u− z̄k

hk+1
‖L2(Ωhk+1

),

Step 2 : z̄k+1
hk+1

= arg min
z

ghk+1
(z) + 〈λ̄k

hk+1
, ūk+1

hk+1
− z〉L2(Ωhk+1

) +
σ

2
‖ūk+1

hk+1
− z‖2

L2
hk+1

(Ωhk+1
)
,

Step 3 : λ̄k+1
hk+1

= λ̄k
hk+1

+ τσ(ūk+1
hk+1
− z̄k+1

hk+1
),

(11)

where λ̄k
hk+1

:= Ihk+1
λ̄k

hk
, z̄k

hk+1
:= Ihk+1

z̄k
hk

. Then, we use the following lemma to measure
the gap between the solution sequence obtained by the ADMM in function space and the
exact mhADMM algorithm in finite dimensional space.

Lemma 2. Let the initial point be (z0, λ0) ∈ H1(Ω) × H1(Ω). Let {(ūk, z̄k, λ̄k)}∞
k=0 defined

in (7) be the sequence generated by the ADMM in function space and {(ūk
hk

, z̄k
hk

, λ̄k
hk
)}∞

k=0 defined
in (11) be the sequence generated by the exact mhADMM algorithm. Then, for all k > 1, we have

‖ūk − ūk
hk
‖L2(Ωhk

) ≤ Cu,khk,

‖z̄k − z̄k
hk
‖L2(Ωhk

) ≤ Cz,khk,

‖λ̄k−1 − λ̄k−1
hk
‖L2(Ωhk

) ≤ Cλ,khk,

where Cu,k, Cz,k, Cλ,k are constants independent of hk and there is a constant C such that Cu,k ≤ C
for any k ≥ 1. Thus, we have

∞

∑
k=1
‖ūk − ūk

hk
‖L2(Ωhk

) ≤ C
∞

∑
k=1

hk.

Proof. We employ the mathematical induction to prove the conclusion. For k = 1, we
know from Theorem 3 that

‖λ̄0 − λ̄0
h1
‖L2(Ωh1

) = ‖λ0 − Ih1 λ0‖L2(Ωh1
)

≤ cIh1‖λ0‖H1(Ωh1
)

≤ Cλ,1h1,

where Cλ,1 := cI‖λ̄0‖H1(Ωh1
) is a constant independent of h.
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For u-subproblems, ū1 and ū1
h1

satisfy the following optimality conditions, respectively,

S∗[S(ū1 + yr)− yd] + αū1 + λ0 + σ(ū1 − z0) = 0,

S∗h1
[Sh1(ū

1
h1
+ Ih1 yr)− Ih1 yd] + αū1

h1
+ Ih1 λ0 + σ(ū1

h1
− Ih1 z0) = 0.

By subtracting the two equalities above, we have[
−(α + σ)I − S∗h1

Sh1

]
(ū1 − ū1

h1
)

=S∗Sū1 − S∗h1
Sh1 ū1 + S∗Syr − S∗h1

Sh1 Ih1 yr − S∗yd + S∗h1
Ih1 yd + λ0 − Ih1 λ0 + σIh1 z0 − σz0.

Then, we know from Lemma 2 in [19] that ‖ū1 − ū1
h1
‖L2(Ωh1

) ≤ Cu,1h1, where Cu,1 is a
constant independent of h1.

For z-subproblems, z̄1 and z̄1
h1

satisfy

z̄1 = ΠUad

(
1
σ

soft
(

σū1 + λ0, β
))

,

z̄1
h1

= ΠUad ,h1

(
1
σ

soft
(

σu1
h1
+ λ0

h1
, β
))

,

respectively. Then, we know from the projection operator Π and the soft thresholding
operator soft(·) are nonexpansive, such that

‖z̄1 − z̄1
h1
‖L2(Ωh1

) = ‖ΠUad

(
1
σ

soft
(

σū1 + λ0, β
))
−ΠUad ,h1

(
1
σ

soft
(

σū1
h1
+ λ0

h1
, β
))
‖L2(Ωh1

)

≤ 1
σ
‖σū1 − σū1

h1
+ λ0 − λ0

h1
‖L2(Ωh1

)

≤ ‖ū1 − ū1
h1
‖L2(Ωh1

) +
1
σ
‖λ0 − λ0

h1
‖L2(Ωh1

)

≤ Cu,1h1 +
1
σ

Cλ,1h1

= Cz,1h1,

where Cz,1 := Cu,1 +
1
σ Cλ,1. Hence, the statement is true for k = 1.

For k > 1, we assume the statement is true for ∀j ≤ k. Then, for j = k + 1, we have

‖λ̄k − λ̄k
hk+1
‖L2(Ωhk+1

) =‖λ̄k − λ̄k
hk
+ λ̄k

hk
− Ihk+1

λ̄k
hk
‖L2(Ωhk+1

)

≤‖λ̄k − λ̄k
hk
‖L2(Ωhk

) + ‖λ̄k
hk
− Ihk+1

λ̄k
hk
‖L2(Ωhk+1

)

≤‖λ̄k−1 − λ̄k−1
hk

+ τσ(ūk − ūk
hk
)− τσ(z̄k − z̄k

hk
)‖L2(Ωhk

)

+ ‖λ̄k
hk
− Ihk+1

λ̄k
hk
‖L2(Ωhk+1

)

≤‖λ̄k−1 − λ̄k−1
hk
‖L2(Ωhk

) + τσ
(
‖ūk − ūk

hk
‖L2(Ωhk

) + ‖z̄k − z̄k
hk
‖L2(Ωhk

)

)
+ ‖λ̄k

hk
− Ihk+1

λ̄k
hk
‖L2(Ωhk+1

)

≤(Cλ,k + τσCu,k + τσCz,k)hk + cIhk+1‖λ̄k
hk
‖H1(Ωhk+1

)

≤Cλ,k+1hk+1,

where Cλ,k+1 := Ck+1(Cλ,khk + τσCu,k + τσCz,k) + cI‖λ̄k
hk
‖H1(Ωhk+1

) is a constant indepen-

dent of hk+1. In the last equality, we use the property ∑∞
k=0 hk < ∞; thus, there exists a

constant Ck+1 such that hk < Ck+1hk+1.



Mathematics 2023, 11, 570 13 of 21

For u-subproblems, ūk+1 and ūk+1
hk+1

satisfy the following optimality conditions respectively,

S∗[S(ūk + yr)− yd] + αūk+1 + λ̄k + σ(ūk+1 − z̄k) = 0,

S∗hk+1
[Shk+1

(ūk+1
hk+1

+ Ihk+1
yr)− Ihk+1

yd] + αūk+1
hk+1

+ λ̄k
hk+1

+ σ(ūk+1
hk+1
− z̄k

hk+1
) = 0.

By subtracting the two equalities above, we have

−
[
(α + σ)I + S∗hk+1

Shk+1

]
(ūk+1 − ūk+1

hk+1
)

=S∗Sūk+1 − S∗hk+1
Shk+1

ūk+1 + S∗Syr − S∗hk+1
Shk+1

Ihk+1
yr − S∗yd + S∗hk+1

Ihk+1
yd

+ λ̄k − λ̄k
hk+1
− σ(z̄k − z̄k

hk+1
).

Then, we know from Lemma 2 in [19] that

‖ūk+1 − ūk+1
hk+1
‖L2(Ωhk+1

) ≤ Cu,k+1hk+1,

where Cu,k+1 is a constant independent of hk+1.
For z-subproblems, z̄k+1 and z̄k+1

hk+1
satisfy

z̄k+1 = ΠUad

(
1
σ

soft
(

σūk+1 + λk, β
))

,

z̄k+1
hk+1

= ΠUad ,h1

(
1
σ

soft
(

σūk+1
hk+1

+ λk
hk+1

, β
))

,

respectively. We know the projection operator Π and the soft thresholding operator soft(·)
are nonexpansive, such that

‖z̄k+1 − z̄k+1
hk+1
‖L2(Ωhk+1

) ≤
1
σ
‖σūk+1 − σūk+1

hk+1
+ λk − λk

hk+1
‖L2(Ωhk+1

)

≤ ‖ūk+1 − ūk+1
hk+1
‖L2(Ωhk+1

) +
1
σ
‖λk − λk

hk+1
‖L2(Ωhk+1

)

≤ Cu,k+1hk+1 +
1
σ

Cλ,k+1hk+1

= Cz,k+1hk+1,

where Cz,k+1 := Cu,k+1 +
1
σ Cλ,k+1. Hence, the statement is true for j = k + 1. We complete

the whole proof of Lemma 2.

Similarly, we have the following lemma. Lemma 3 shows the gap between the se-
quence (uk, zk, λk) generated by Algorithm 1 and the sequence (uk

hk
, zk

hk
, λk

hk
) generated by

Algorithm 2.

Lemma 3. Let the initial point be (u0, z0, λ0) ∈ H1(Ω)×H1(Ω)×H1(Ω). Let {(uk, zk, λk)}∞
k=0

be the sequence generated by Algorithm 1 and {(uk
hk

, zk
hk

, λk
hk
)}∞

k=0 be the sequence generated by
Algorithm 2. Then, for all k > 1, we have

‖uk − uk
hk
‖L2(Ωhk

) ≤ Ĉu,k(hk + ‖δk
u,hk
‖L2(Ωhk

)),

‖zk − zk
hk
‖L2(Ωhk

) ≤ Ĉz,k(hk + ‖δk
u,hk
‖L2(Ωhk

)),

‖λk−1 − λk−1
hk
‖L2(Ωhk

) ≤ Ĉλ,k(hk + ‖δk
u,hk
‖L2(Ωhk

)),
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where Ĉu,k, Ĉz,k, Ĉλ,k are constants independent of hk, and there exists a constant Ĉ such that
Ĉu,k ≤ Ĉ for any k ≥ 1. Thus we have

∞

∑
k=1
‖uk − uk

hk
‖L2(Ω) ≤ Ĉ

∞

∑
k=1

(
hk + ‖δk

u,hk
‖L2(Ωhk

)

)
.

Proof. We employ the mathematical induction to prove the conclusion. The proof is similar
to Lemma 2. We do not discuss this in detail here.

The total error of utilizing numerical methods to solve PDE-constrained optimal con-
trol problem consists of two parts: the discretization error and the iteration error. These two
kinds of errors can be regarded as the error of inexactly solving infinite-dimensional sub-
problems. Thus, the mhADMM algorithm can be regarded as the iADMM algorithm in func-
tion space. Inspired by the results of Theorem 2, we have the following convergence results.

Theorem 4. Let (y∗, u∗, z∗, p∗, λ∗) be the KKT point of (1), (uk
hk

, zk
hk

, λk
hk
)∞

k=0 be the sequence
generated by Algorithm 2 with the associated state {yk

hk
}∞

k=0 and the adjoint state {pk
hk
}∞

k=0. Then
we have

lim
k→∞
{‖uk

hk
− u∗‖L2(Ωhk

) + ‖zk
hk
− z∗‖L2(Ωhk

) + ‖λk
hk
− λ∗‖L2(Ωhk

)} = 0,

lim
k→∞
{‖yk

hk
− y∗‖H1

0 (Ωhk
) + ‖pk

hk
− p∗‖H1

0 (Ωhk
)} = 0.

Moreover, there exists a constant C̄ that only depends on the initial point (u0, z0, λ0) and the
optimal solution (u∗, z∗, λ∗) such that, for k ≥ 1,

min
1≤i≤k

Rhi
(ui

hi
, zi

hi
, λi

hi
) ≤ C̄

k
, lim

k→∞
(k · min

1≤i≤k
Rhi

(ui
hi

, zi
hi

, λi
hi
)) = 0,

where Rhi
: (ui

hi
, zi

hi
, λi

hi
)→ [0, ∞) is defined as

Rh(ui
hi

, zi
hi

, λi
hi
) := ‖∇ fh(ui

hi
) + λi−1

hi
‖2

L2(Ωhi
) + dist2(0,−λi−1

hi
+ ∂gh(zi

hi
)) + ‖ui

hi
− zi

hi
‖2

L2(Ωhi
).

Proof. Note that (uk
hk

, zk
hk

, λk
hk
) can be regarded as the inexact solution obtained by Algorithm 1.

The total error δk
u consists of two parts, the discretization error from gradually refining the

grid and the iteration error from the inexactly solving the subproblems. Then, we know
from the optimality conditions of the u-subproblem in Algorithm 1 that

S∗[S(uk
hk
+ yr)− yd] + αuk

hk
+ λk−1

hk−1
+ σ(uk

hk
− zk−1

hk−1
) = δk

u. (12)

Moreover, we know from the optimality condition of the u-subproblem in ADMM in
function space, the optimality conditions of the u-subproblem in Algorithm 2 and the exact
multi-level ADMM that

S∗[S(ūk + yr)− yd] + αūk + λ̄k−1 + σ(ūk − z̄k−1) = 0, (13)

S∗hk
[Shk

(uk
hk
+ Ihk

yr)− Ihk
yd] + αuk

hk
+ λk−1

hk
+ σ(uk

hk
− zk−1

hk
) = δk

u,hk
, (14)

S∗hk
[Shk

(ūk
hk
+ Ihk

yr)− Ihk
yd] + αūk

hk
+ λ̄k−1

hk
+ σ(ūk

hk
− z̄k−1

hk
) = 0. (15)

Then, we know from (12)–(15) that
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δk
u =δk

u − δk
u,hk

+ δk
u,hk

=δk
u,hk

+ S∗S(uk
hk
− ūk) + (α + σ)(uk

hk
− ūk) + (λk−1 − λ̄k−1)− σ(zk−1 − z̄k−1)

+ S∗hk
Shk

(ūk
hk
− uk

hk
) + (α + σ)(ūk

hk
− uk

hk
) + (λ̄k−1

hk
− λk−1

hk
)− σ(z̄k−1

hk
− zk−1

hk
)

=δk
u,hk

+ [(α + σ)I + S∗S](ūk
hk
− ūk)︸ ︷︷ ︸

I1

+ (λk−1 − λk−1
hk

)︸ ︷︷ ︸
I2

− σ(zk−1 − zk−1
hk

)︸ ︷︷ ︸
I3

+ (λ̄k−1
hk
− λ̄k−1)︸ ︷︷ ︸
I4

− σ(z̄k−1
hk
− z̄k−1)︸ ︷︷ ︸
I5

+ (S∗S− S∗hk
Shk

)(uk
hk
− ūk

hk
)︸ ︷︷ ︸

I6

.

(16)

For the term I1 and I4, we know from Lemma 2 that

‖I1‖L2(Ωhk
) ≤ (α + σ + ‖S∗‖‖S‖)Cu,khk, (17)

‖I4‖L2(Ωhk
) ≤ Cλ,khk. (18)

For the term I5, we know from Theorem 3 and Lemma 2 that

‖I5‖L2(Ωhk
) = σ‖z̄k−1

hk
− z̄k−1

hk−1
+ z̄k−1

hk−1
− z̄k−1‖L2(Ωhk

)

≤ σ‖z̄k−1
hk
− z̄k−1

hk−1
‖L2(Ωhk

) + σ‖z̄k−1
hk−1
− z̄k−1‖L2(Ωhk

)

≤ σcIhk‖z̄k−1
hk−1
‖H1(Ωhk

) + σCz,k−1hk−1

≤ σcIhk‖z̄k−1
hk−1
‖H1(Ωhk

) + σCz,k−1Ckhk

≤ c5hk,

(19)

where c5 := σcI‖z̄k−1
hk−1
‖H1(Ωhk

) + σCz,k−1Ck is a constant, hk−1 ≤ Ckhk.
For the term I2, we know from Lemma 3 that

‖I2‖L2(Ωhk
) ≤ Ĉλ,k(hk + ‖δk

u,hk
‖L2(Ωhk

)). (20)

For the term I3, we know from Theorem 3 and Lemma 2 that

‖I3‖L2(Ωhk
) ≤ c3(hk + ‖δk

u,hk
‖L2(Ωhk

)), (21)

where c3 is a constant.
Finally, for the term I6, we make use of the decomposition

‖uk
hk
− ūk

hk
‖L2(Ωhk

) =‖uk
hk
− uk + uk − u∗ + u∗ − ūk + ūk − ūk

hk
‖L2(Ωhk

)

≤‖uk
hk
− uk‖L2(Ωhk

) + ‖uk − u∗‖L2(Ωhk
) + ‖u∗ − ūk‖L2(Ωhk

) + ‖ūk − ūk
hk
‖L2(Ωhk

)

≤Ĉu,k(hk + ‖δk
u,hk
‖L2(Ωhk

)) + C∗,

(22)

where Ĉu,k, C∗ are constants in dependent of hk. In the last equality, we used Lemma 2,
Lemma 3, the convergence property of ADMM in function space and the inexact ADMM in
function space. Then, we know from Proposition 1 and Lemma 1 that

‖I6‖L2(Ωhk
) =‖(S∗S− S∗Shk

+ S∗Shk
− S∗hk

Shk
)(uk

hk
− ūk

hk
)‖L2(Ωhk

)

≤‖(S∗S− S∗Shk
)(uk

hk
− ūk

hk
)‖L2(Ωhk

) + ‖(S∗Shk
− S∗hk

Shk
)(uk

hk
− ūk

hk
)‖L2(Ωhk

)

≤‖S∗‖‖S− Shk
‖‖uk

hk
− ūk

hk
‖L2(Ωhk

) + ‖S∗ − S∗hk
‖‖Shk

‖‖uk
hk
− ūk

hk
‖L2(Ωhk

)

≤c6hk,

(23)

where c6 is a constant.
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Then, we know from (16)–(23) that there are constants C∗1 and C∗2 such that

∞

∑
k=1
‖δk

u‖L2(Ω) ≤ C∗1
∞

∑
k=1
‖δk

u,hk
‖L2(Ωhk

) + C∗2
∞

∑
k=1

hk.

Moreover, the mesh sizes {hk+1}∞
k=0 of each mhADMM iteration satisfy

∞

∑
k=0

hk+1 < ∞,

the residuals of each mhADMM iteration satisfy
∞

∑
k=0
‖δk+1

u,hk+1
‖L2(Ωhk+1

) ≤
∞

∑
k=0

εk+1 < ∞, thus

we have
∞

∑
k=1
‖δk

u‖L2(Ω) < ∞.

Then, we know from Theorem 2 that the global convergence and the iteration com-
plexity results o(1/k) for Algorithm 2 are guaranteed.

4. Numerical Experiments

In this section, we illustrate the numerical performance of the mhADMM algorithm for
the elliptic PDE-constrained optimization problems with L1-control cost. For our numerical
experiment, we used MATLAB R2021b with the FEM package iFEM [25] on a Thinkpad
laptop with 2.8 GHz Intel Core i7 processor with 16GB of RAM.

In the mhADMM algorithm, the accuracy of a numerical solution is measured by the
following residual. Let ε be a given accuracy tolerance, we terminate the algorithm when
η < ε, where η := max{η1, η2, η3, η4, η5}, where

η1 :=
‖Khy−Mhu−Mhyr‖

1 + ‖Mhyr‖
, η2 :=

‖Mh(u− z)‖
1 + ‖u‖ , η3 :=

‖Mh(y− yd) + Khp‖
1 + ‖Mhyd‖

,

η4 :=
‖αMhu−Mhp + Mhλ‖

1 + ‖u‖ , η5 :=
‖z−Π[a,b]Nh

(
soft

(
W−1

h Mhλ, β
))
‖

1 + ‖z‖ .

To present the finite element error estimates’ results, we introduce the experimental
order of convergence, a brief EOC defined by

EOC :=
log E(h1)− log E(h2)

log h1 − log h2
,

where h1, h2 > 0, h1 6= h2 denotes different grid sizes, E denotes the positive error functional

E(h) := ‖u− uh‖L2(Ω).

We note that if E(h) = O(hγ) holds, then EOC ≈ γ.
As shown in Section 2.1, instead of using the standard piecewise linear and continu-

ous finite elements, nodal quadrature formulas are used to approximately discretize the
L1-norm and L2-norm in Algorithm 2. In both examples, the mhADMM algorithm, the
ihADMM algorithm and the classical ADMM algorithm are employed to obtain numerical
solutions of different grid sizes. For both numerical examples and all algorithms, we chose
(u0, z0, λ0) = (0, 0, 0) as the initial values. The penalty parameter σ was chosen as σ = α.
For the step length τ, we chose τ = 1.618. We terminate the algorithms when the residual
η < 10−6 with the maximum number of iterations set to 500.

In numerical experiments, we show the numerical results for different final mesh
sizes. In Tables 1 and 2, h denotes the final mesh size, ‘#dofs’ denotes the dimension
of the control variable on each grid level, and ‘iter’ represents the times of iteration. To

guarantee the sequence {εk+1}∞
k=0 ⊆ [0,+∞) satisfies

∞

∑
k=0

εk+1√
‖Mhk+1

‖2
2

< ∞, and the mesh
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sizes {hk}∞
k=0 ⊆ [0,+∞) of each iteration satisfy

∞

∑
k=0

hk+1 ≤ ∞, we choose εk+1 = C
(k+1)2 ,

where C is a constant and hk =
√

2
2k+3 , k ∈ Z, k ≥ 1 in both examples. Moreover, we would

like to point out that, in the iteration of mhADMM algorithm, once the mesh size hk reaches
the final mesh size h, we continue the iteration in the final mesh until the stopping criterion
above is satisfied.

Before providing examples, we first introduce the following algorithm, which can help
us formulate sparse optimal control problems.

According to the first-order optimality condition given in Theorem 1, it is easy to
see that Algorithm 4 provides a construction strategy for problems with known optimal
solutions (y∗, u∗).

Algorithm 4 Construct the optimal control problem

Step 1 Choose y∗ ∈ H1
0(Ω) and p∗ ∈ H1

0(Ω) arbitrarily.
Step 2

u∗ :=ΠUad

(
1
α

soft(p∗, β)

)

=


min

{
p∗−β

α , b
}

, on x ∈ Ω : p∗(x) > β,

max
{

p∗+β
α , a

}
, on x ∈ Ω : p∗(x) < −β

0, elsewhere.

Step 3 Set yr = S−1y∗ − u∗ and yd = y∗ − (S∗)−1 p.

Example 1. Consider

min
(y,u)∈H1

0 (Ω)×L2(Ω)
J(y, u) =

1
2
‖y− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) + β‖u‖L1(Ω)

s.t. − ∆y = u + yr in Ω,

y = 0 on ∂Ω,

u ∈ Uad = {v(x)|a ≤ v(x) ≤ b, a.e on Ω},

where Ω = (0, 1)2, the parameters α = 0.5, β = 0.5, a = −0.5, b = 0.5. As this is a constructed
problem, we set y∗ = sin(πx1) sin(πx2) and p∗ = 2β sin(2πx1) exp(0.5x1) sin(4πx2). Then,
through Algorithm 4, we can obtain the optimal control solution u∗ = ΠUad

(
1
α soft(p∗, β)

)
, the

source term yr = S−1y∗ − u∗ and the desired state yd = y∗ − (S∗)−1 p∗. Thus, we construct the
example for which we know the exact solution.

We then test the mhADMM, the ihADMM and the classical ADMM for Example 1.
The exact optimal control u and an example for the numerical optimal control obtained by
mhADMM on the grid with h =

√
2

27 are shown in Figure 1.
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(a) exact optimal control u (b) numerical optimal control uh

Figure 1. (a) The exact optimal control on the grid with h =
√

2
27 for Example 1. (b) The numerical

optimal control obtained by the mhADMM on the grid with h =
√

2
27 for Example 1.

In Table 1, we report the dimension of the control variable on each grid level, the error
E of the control u, the EOC, the residual η, the computational time and the number of
iterations obtained by the mhADMM, the ihADMM and the classical ADMM. As can be
seen from the fourth and fifth column of Table 1, a high-subfigures are correct.precision
solution does not improve the accuracy of the discretization error and the EOC. The
computational time on the seventh, eighth and ninth columns show that the mhADMM is
much faster than the ihADMM and the classical ADMM, especially when the discretization
is at a fine level. The mhADMM algorithm can significantly reduce the computational cost
and make the algorithm faster. This is mainly because the mhADMM adopts the strategy
of gradually refining the grid, while the ihADMM and the classical ADMM compute the
problem on a fixed grid size, which is their computational bottleneck. Moreover, the seventh
column illustrates the mesh-independent performance of mhADMM; that is, the number of
iteration of the mhADMM is independent of the discretization level. Above all, we can see
that the mhADMM is much more efficient than the ihADMM and the classical ADMM.

Example 2. Consider

min
(y,u)∈H1

0 (Ω)×L2(Ω)
J(y, u) =

1
2
‖y− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) + β‖u‖L1(Ω)

s.t. − ∆y = u in Ω,

y = 0 on ∂Ω,

u ∈ Uad = {v(x)|a ≤ v(x) ≤ b, a.e on Ω},

where Ω = (0, 1)2, the parameters α = 10−4, β = 10−3, a = −10, b = 10. The exact sparse
solution of this problem is not known in advance. Instead, we use the numerical solutions computed
on the grid with the grid size h =

√
2

29 as reference solutions.

As an example, Figure 2 presents the numerical optimal control for Example 2 on the
grid with h =

√
2

27 .
Table 2 shows the dimension of the control variable at each grid level, the error E of

the control u, the EOC, the residual η, the computational time and the number of iterations
for three methods. Similar to Example 1, the mhADMM still outperforms the ihADMM
and the classical ADMM in terms of the computational time. The fourth and fifth column
of Table 2 clearly show that a high-precision solution does not improve the accuracy of
the discretization error and the EOC. Furthermore, the numerical results in the seventh
column also illustrate the mesh-independent performance of our mhADMM algorithm.
These results demonstrate that the mhADMM is more efficient than the ihADMM and the
classical ADMM.
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Table 1. The convergence behavior of the mhADMM, the ihADMM and the classical ADMM for
Example 1.

Case h #dofs E EOC Index mhADMM ihADMM ADMM

1
√

2
24 225 9.66 × 10−2 0.99 residual η 8.93 × 10−7 6.69 × 10−7 6.46 × 10−7

time (s) 0.12 0.13 0.13
#iter 20 16 18

2
√

2
25 961 4.46 × 10−2 1.05 residual η 9.44 × 10−7 6.60 × 10−7 8.63 × 10−7

time (s) 0.40 0.42 0.53
#iter 20 18 24

3
√

2
26 3969 1.49 × 10−2 1.23 residual η 3.30 × 10−7 7.37 × 10−7 9.40 × 10−7

time (s) 2.16 2.67 8.51
#iter 22 21 49

4
√

2
27 16,129 4.92 × 10−3 1.32 residual η 5.57 × 10−7 5.54 × 10−7 8.87 × 10−7

time (s) 14.86 18.35 262.56
#iter 21 23 120

5
√

2
28 65,025 1.65 × 10−3 1.37 residual η 7.02 × 10−7 4.61 × 10−7 9.97 × 10−7

time (s) 114.33 200.43 7576.14
#iter 20 25 257

6
√

2
29 261,121 5.83 × 10−4 1.39 residual η 6.91 × 10−7 2.82 × 10−7 1.17 × 10−5

time (s) 2457.43 3850.03 279,881.28
#iter 20 27 500

Figure 2. The numerical optimal control for Example 2 on the grid with h =
√

2
27 .
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Table 2. The convergence behavior of the mhADMM, the ihADMM and the classical ADMM for
Example 2.

Case h #dofs E EOC Index mhADMM ihADMM ADMM

1
√

2
24 225 9.69 × 10−1 1.19 residual η 7.12 × 10−7 7.12 × 10−7 8.04 × 10−7

time (s) 0.25 0.30 0.33
#iter 22 22 35

2
√

2
25 961 5.72 × 10−1 0.97 residual η 7.71 × 10−7 7.77 × 10−7 9.37 × 10−7

time (s) 0.95 1.10 1.66
#iter 19 19 88

3
√

2
26 3969 1.64 × 10−1 1.25 residual η 6.03 × 10−7 6.02 × 10−7 7.63 × 10−7

time (s) 5.03 5.57 35.73
#iter 20 20 198

4
√

2
27 16,129 4.44 × 10−2 1.41 residual η 8.48 × 10−7 8.25 × 10−7 8.10 × 10−7

time (s) 28.13 37.70 851.48
#iter 20 20 454

5
√

2
28 65,025 1.72 × 10−2 1.40 residual η 7.15 × 10−7 7.74 × 10−7 1.66 × 10−5

time (s) 134.46 196.07 8659.08
#iter 21 21 500

6
√

2
29 261,121 - - residual η 9.09 × 10−7 9.01 × 10−7 6.17 × 10−5

time (s) 1052.59 1972.46 151,623.99
#iter 21 21 500

5. Conclusions

In this paper, we propose a new, efficient, multilevel, heterogeneous ADMM (mhADMM)
algorithm for solving sparse elliptic PDE-constrained optimal control problems with
L1-control cost and box constraints on the control. Specifically, the inexact ADMM is
first applied in the function space. Then, we propose the strategy of gradually refining
the grid and employ the standard piecewise linear finite element to discretize the related
subproblems appearing in each iteration of the inexact ADMM algorithm. Moreover, nodal
quadrature formulas are utilized to approximately discretize the L1-norm and L2-norm to
overcome the difficulty that the L1-norm does not have a decoupled form. Finally, subprob-
lems are solved by appropriate numerical methods. Theoretical results regarding the global
convergence and iteration complexity are presented. In our numerical experiments, we
show that the proposed mhADMM is superior to the ihADMM and the classical ADMM in
terms of the efficiency.
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