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Abstract: The following paper talks about the dynamic modeling and control of robot manipulators
using Hamilton’s equations in the screw theory framework. The difference between the proposed
work with diverse methods in the literature is the ease of obtaining the laws of control directly
with screws and co-screws, which is considered modern robotics by diverse authors. In addition,
geometric algebra (GA) is introduced as a simple and iterative tool to obtain screws and co-screws.
On the other hand, such as the controllers, the Hamiltonian equations of motion (in the phase space)
are developed using co-screws and screws, which is a novel approach to compute the dynamic
equations for robots. Regarding the controllers, two laws of control are designed to ensure the error’s
convergence to zero. The controllers are computed using the traditional feedback linearization and
the sliding mode control theory. The first one is easy to program and the second theory provides
robustness for matched disturbances. On the other hand, to prove the stability of the closed loop
system, different Lyapunov functions are computed with co-screws and screws to guarantee its
convergence to zero. Finally, diverse simulations are illustrated to show a comparison of the designed
controllers with the most famous approaches.

Keywords: screw theory; geometric algebra; Hamilton’s equations; sliding mode control; Lyapunov
theory

MSC: 70e60; 70b15

1. Introduction

In the Lagrangian approach, the two fundamental variables, written as position (θ)
and velocity (θ̇), are mutually dependent. However, in the Hamiltonian formalism, the
fundamental variables, computed as position (θ) and momentum (p), provide more abstract
and profound formulations mechanics [1]. For example, Hamiltonian formalism is very
important in the study of the energy changes that are possible in molecules and atoms. In
addition, it is crucial if it is interested in quantizing a dynamical system or in quantum
theory. Thus, this field should be taken into account [1,2].

The Lagrangian formalism (traditionally used in robots) is based on the kinetic and
potential energies of the robot. This function is used to construct the body dynamics and
then the control of the system [3]. Therefore, the resulting dynamic model and its controller
will be represented by positions and velocities. However, in robotics, it is possible to
compute controllers using Hamiltonian formalism, because the momenta, in theory, change
very quickly (in rate 1/10) [4]. In addition, in practice, it is easier to measure these forces
with sensors. Hence, there are motivations to implement controllers using the Hamiltonian
approach. Some relevant works about Hamiltonian controllers are mentioned below.

In [5], the authors present a proportional-derivative control with gravity compensation
(PD+G) using Hamilton’s equations for robot manipulators with multiple degrees of
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freedom, demonstrating and proving the analysis using a simulation for a planar robot.
In [6], the authors propose a hybrid controller for a SCARA robot. The work is based on
a port-controlled Hamiltonian system to reduce the position tracking error. In [7], using
Hamilton’s equations, the work describes a formalism to control electromechanical systems.
On the other hand, there are other advanced works formulating Hamiltonian mechanics
using a geometric framework. In [8], the work proposes Hamiltonian mechanics in terms
of Geometric Calculus, where the author mentioned that their Hamiltonian formalism
would be highly important for application with robots. On the other hand, other works are
using GA to reduce the computational cost, as mentioned in [9]. In [10], geometric algebra
is utilized to compute Hamiltonian mechanics and the Poisson bracket, where this work
could be used in robotics. The authors in [11] illustrate the importance of Hamiltonians
in robotics. The technique computes the dynamic equations using Newton–Euler and
describes the local Hamiltonians in each joint to implement its law of control. Based on
the above, the Hamiltonian equations can be used to control electromechanical systems.
However, the previous works have been developed using the traditional Euler–Lagrange
or Newton–Euler equations, where in some robots, the computational cost is high due
to the considerable multiplications between the diverse components. In addition, the
development is tedious for some robots. Hence, the new proposed method expands the
Hamiltonian control approach using screw theory, where this powerful mathematical tool
has been used in recent years for the analysis of spatial mechanisms and some works have
expressed it as “the forgotten tool in multibody dynamics” [12,13].

Screw theory is a mathematical tool for the analysis of spatial mechanics, the main
element of this theory is the screw [14]. The screw is constructed by two three-dimensional
vectors, where these vectors are angular velocity and linear velocity [15,16]. Therefore, it is
possible to study rigid bodies using this technique. The screw theory has gained importance
because it is an elegant mathematical tool and can reduce the number of multiplications
between the Lie group SE(3) (as is common in traditional techniques) [17]. Moreover,
some authors describe the analysis of the kinematics and dynamics of rigid bodies using
screw theory as modern robotics [18]. In robotics, several works using screw theory have
gained prominence in recent years. For example, diverse authors propose the screw theory
approach in the process of inverse and/or forward kinematics [19–22]. Other relevant
techniques are described below. In [23], the paper describes an analysis of error sources
of industrial robots, where they proposed a pose error model of industrial robots with
screw theory. In [24], the authors propose a mathematical model using Kane’s dynamic
equations in the framework of screw theory. In [25], they study the rigid-body dynamics of
serial robots subject to time-invariant holonomic constraints on their end-effectors. The
paper proposes a technique to compute the dynamic model of robots in the framework of
screw theory. On the other hand, other interesting approaches for the dynamic models are
mentioned in [26,27]. Alternatively, in [28], the method suggests a motion control approach
with a focus on robotic manipulators based on screw theory and dual quaternions, where
they add a stability analysis to propose a law of control for a desired trajectory. However, the
drawback is that, while previous works consider kinematics and dynamics in rigid bodies,
controllers are not directly proposed using screw theory. Therefore, it is an interesting
motivation to compute controllers using the screw theory and the Hamiltonian approach.
In addition, GA is proposed to compute the screws of the controllers and dynamics of
the system; this novel approach reduces the number of operations and is intuitive for
new researchers in the robotics field (due to previous knowledge of vector calculus not
being required).

Taking into account the previous literature, it is possible to see that the Hamilton’s
equations can be used as a methodology to compute controllers for robots, where our
work extends these equations for robots in the screw theory framework and iteratively. In
addition, GA is proposed for computing the diverse screws and co-screws, which is an
advantage for new users interested in robotics. Regarding the controllers, the equations of
the robot are designed with co-screws and screws using the approach in [17]. Later, to prove
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convergence, functions with screws and co-screws are computed to satisfy the Lyapunov
theory and thus obtain the law of control. The main advantages of our approach are:

- Due to the use of GA, vector calculus knowledge is not required [29,30].
- Using the screw theory, the Denavit–rtenberg (D–H) representation and the homoge-

neous matrices are avoided. It is well known that with the traditional method, it is possible
to have multiple results (this is due to the D–H technique). The above could be a risk of
confusion by different designers [20].

- As the proposed technique is iterative, it is possible to be implemented in serial
robots with any degrees of freedom. In addition, the Euler–Lagrange and Newton–Euler
methods are avoided. Therefore, robot dynamics and control can be computed easily.

- Due to the laws of control being computed directly using screw theory, they are
intuitive and can be programmed easily.

- Using sliding mode control, the robustness of the system under matched perturba-
tions is obtained [31].

The document is organized as follows: In Section 2, we illustrate the theoretical bases
of geometric algebra. In Section 3, the mathematical development necessary to construct
the controllers is presented. In Section 4, we show the laws of control and their stability. In
Section 5, we present a numerical example with a simulation to prove the designed located
controllers. Finally, in Section 6, we illustrate the conclusions.

2. Geometric Algebra

In mathematics, geometric algebra is a term applied to Clifford’s theory of alge-
bras [29,32]. The GA of an n-dimensional space is denoted by Gp,q,r, where p, q and r
represent the orthonormal basis vectors that square to 1,−1 and 0, respectively. On the
other hand, in additional to scalar multiplication and vector addition, GA is endowed with
a noncommutative product, this product is the Clifford product (or geometric product). For
example, the Clifford product for two vectors a, b are:

ab = a · b + a ∧ b (1)

In Equation (1), the right side illustrates two elements: the first one is the inner product
or dot product (symmetric part); the second one is the wedge product or exterior product
(antisymmetric part), where the wedge product is a distributive, associative, and anti-
commutative operator. The elements computed by the exterior product of k independent
vectors span the k-th exterior power. In this space, each element is called a k − vector.
The diverse multi-vectors are entities computed by the sum of elements of the set of Gn,
written as:

A = 〈A〉1 + 〈A〉2 + · · ·+ 〈A〉n (2)

In addition to Equation (2), contemplate two homogeneous multi-vectors A and B of
grade r and s, respectively. The Clifford product can be shown as:

AB = 〈AB〉r+s + 〈AB〉r+s−2 + · · ·+ 〈AB〉|r−s| (3)

where 〈AB〉t, indicate the t-grade part of the multi-vector AB. Suppose a n-dimensional
space with diverse orthonormal basis vectors {ei}, i = 1, . . . , n, such that ei · ej = δi,j, where
δi,j = 1 | i = j and δi,j = 0 | i 6= j. The basis vectors for the entire GA are:

{1; ei; ei ∧ ej; ei ∧ ej ∧ ek; · · · ; I = e1 ∧ · · · ∧ en} (4)

where I is called the pseudoscalar. Below, we include some important definitions that are
useful in geometric algebra, for details consult [8,29,32,33].
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Definition 1. Let a multi-vector A of grade r. After, the reverse of A, written as Ã, is defined by:

Ã =
r

∑
i=0

(−1)
i(i−1)

2 〈A〉i (5)

Definition 2. Let a multi-vector A of grade r. After, the Clifford conjugate of A, written as Ā, is
defined by:

Ā =
r

∑
i=0

(−1)
i(i+1)

2 〈A〉i (6)

Definition 3. Let a ∈ G3. The rotation of a, written as a′, is defined by the following versor
product:

a′ = RθaR̃θ = e−
θ
2 Lae

θ
2 L (7)

where Rθ is the rotor operator, θ is the rotation angle, and L is the Lie algebra generator. The 2-vector
L is the operator of rotation used in quaternions; in a different way, just consider e2e3 → i, e3e1 → j
and e1e2 → k.

Definition 4. Let I ∈ Gn. After, the inverse of I, written as I−1, is defined by:

I−1 =
Ĩ
I Ĩ

(8)

Definition 5. Let a multi-vector A of grade r. After, the dual of A, written as A∗, is defined by:

A∗ =
r

∑
i=0
〈A〉i I−1 (9)

Definition 6. Consider two homogeneous multi-vectors A and B. After, the commutator product
between A and B is defined by:

A×B =
1
2
(AB− BA) (10)

Definition 7. Consider two homogeneous multi-vectors A and B. After, the anti-commutator
product between A and B is defined by:

A×B =
1
2
(AB + BA) (11)

3. Mathematical Development
3.1. Screws

Suppose the following Lie group:

SE(3) :=
{(

R x
0 1

)
: R ∈ SO(3), x ∈ R3

}
(12)

The Lie algebra of SE(3) is:

se(3) :=
{(

w vs.
0 0

)
: w ∈ so(3), vs. ∈ R3

}
(13)
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where se(3), w and v represent the Lie algebra of the Lie group SE(3), the angular velocity,
and the linear velocity, respectively [18]. On the other hand, the Lie algebra elements are
often illustrated as follows:

s =
(

w
vs.

)
(14)

where s is constructed by two three-dimensional vectors called screws.

Lie Algebra Elements

Consider a path through the identity (e) in a group (G):

γ : R→ G (15)

where γ(0) = e. The Lie algebra element is calculated by following a path γ(t) starting
at the identity element of SE(3) and evaluating d

dt |t=0γ(t) [14,17]. Therefore, suppose the
following path:

t = x− Rθ x R̃θ (16)

where t is the translation vector. After, computing the Lie algebra element:

v = −
(

d
dt
(Rθ) x R̃θ + Rθ x

d
dt

(
R̃θ

))
(17)

Considering d
dt (Rθ) = − θ̇

2 LRθ and d
dt

(
R̃θ

)
= θ̇

2 LR̃θ :

v = −
((
− θ̇

2
LRθ

)
x R̃θ + Rθ x

(
θ̇

2
LR̃θ

))
(18)

Now, evaluating around the entity, where Rθ(0) = R̃θ(0) = 1:

v(0) = −1
2
(xL− Lx)θ̇ (19)

Finally, using Definition 6:

v(0) = (L×x)θ̇ (20)

Therefore, the linear velocity is the commutator between the Lie algebra generator of the
rotor and the point x. On the other hand, the angular velocity is solved using the same
methodology. The path through the identity is γ(t) = Rθ , where Rθ(0) = 1 and Rθ R̃θ = 1.
Differentiating the last relation:

d
dt
(Rθ)R̃θ + Rθ

d
dt

(
R̃θ

)
= 0 (21)

Now, evaluating around the entity:

Lθ̇ − Lθ̇ = 0 (22)

Hence, the Lie algebra element consists of a 2− vector L. In consequence, the angular
velocity is expressed by the Lie algebra generator of the rotor. However, traditionally, the
angular velocity is written as a unit vector [34–36]. Thus, this notation can be used by
Definition 5. Therefore, the angular velocity is:

w(0) = L∗ θ̇ (23)

Finally, with our approach, the screw described above can be written as:

s(0) =
(

L∗

L×x

)
θ̇ (24)
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It is possible to see that each screw can be computed easily with the previous equation. In
each DoF, it is only necessary to record the Lie algebra element and its Cartesian position.

3.2. Velocity Kinematics

In robotics, the screws express the velocities of the diverse joints, where the velocity
for a robot with n degrees of freedom (DoF) can be illustrated by:

Vn(0) =
n

∑
j=1

sj(0)θ̇j (25)

where the previous velocity is only valid in the identity or in the home position. To find the
velocity in the current position of the robot, it is necessary to compute the current screw (s).
To write the current screw, it is indispensable to use the following notation:

sj = eθiad(si)sj(0)θ̇ (26)

Here, we use the adjoint representation and the exponential mapping to compute the
current screw [37]. Therefore, the velocity of a serial robot with n DoF, in any position, is:

Vn =
n

∑
j=1

sj θ̇j (27)

From Equation (27), you can see that the different screws are the columns of the Jacobian
matrix in robotics.

3.3. Co-Screws

Properly speaking, co-screws are linear functional on the velocities, satisfying the
following:

F : se(3)→ R where F (as1 + bs2) = aF (s1) + bF (s2) (28)

Here, a, b ∈ R, and F (s) are often called the evaluation map. The co-screws are constructed
using two three-dimensional vectors, but, contrary to screws, these elements are computed
by the dual Lie algebra se∗(3). Thus, in robotics, the momentum co-screw (P) can be
written as follows:

P =

(
j
p

)
(29)

where j and p represent the angular and linear momentum, respectively, [17]. Furthermore,
the evaluation map is illustrated as:

P(V) = PTV (30)

Another choice to construct the momentum co-screw is using the inertia operator,
where the inertia provides an isomorphism as:

N : se(3)→ se∗(3) (31)

and it is computed by:

N = e−θiadT(si)N(0)e−θiad(si) and N(0) =
(
I mC

mCT mI3

)
(32)

Here I represents the inertia tensor, m the mass of the link, C the adjoint representation of
the center of mass and I3 the identity matrix in R3. Hence, the momentum co-screw can be
written as [17]:

P = NV (33)
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3.4. Lagrangian Formulation of Dynamics Using Screw Theory

The kinetic energy can be described, in the context of the screw theory, as a combination
of the momentum co-screw and the screw:

Ek
(
θ, θ̇
)
=

n

∑
j=1

1
2
(

jj · wj + pj · vj
)
=

n

∑
j=1

1
2
Pj(Vj) =

n

∑
j=1

1
2

NjVj(Vj) (34)

Using the evaluation map, Equation (34) changes to:

Ek
(
θ, θ̇
)
=

n

∑
j=1

1
2

VT
j NjVj (35)

On the other hand, the potential energy is written by:

Ep(θ) =
n

∑
j=1

g̃T c̃j (36)

where:

g̃ =

(
−ge2

0

)
c̃j =

(
mjcj
mj

)
(37)

Here, g is the gravitational force, mj is the mass of each link and cj is the position of the
center of mass. Then, using the Euler–Lagrange equation, it is computed the dynamic
equations of the robotic system (for details see the Appendix A). Therefore:

τi =
d
dt

(
∂L
(
θ, θ̇, t

)
∂θ̇i

)
−

∂L
(
θ, θ̇, t

)
∂θi

(38)

where:
d
dt

(
∂L
(
θ, θ̇, t

)
∂θ̇i

)
=

n

∑
j=i

sT
i NjV̇j + VT

j Nj
[
si, Vj

]
+ VT

j Nj[Vi, si] (39)

∂L
(
θ, θ̇, t

)
∂θi

=
n

∑
j=i
GT

j si −VT
j Nj[si, Vi] (40)

Therefore, the robot dynamics are described by:

τi =
n

∑
j=i

V̇T
j Njsi + VT

j Nj
[
si, Vj

]
− GT

j si (41)

where G is the co-screw of the gravitational forces and
[
si, Vj

]
is the Lie bracket [17,25].

3.5. Hamilton’s Equations

Hamilton’s equations can be computed using the Legendre transformation [1]:

H(θ, p, t) =
n

∑
i=1

pi θ̇i −L
(
θ, θ̇, t

)
(42)

where the partial derivation with respect to pi provides:

∂H(θ, p, t)
∂pi

= θ̇i (43)
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The previous equation is one of Hamilton’s equations. To compute the second equation
is necessary to use the partial derivation of Equation (42) with respect to θi:

∂H(θ, p, t)
∂θi

= −
∂L
(
θ, θ̇, t

)
∂θi

(44)

Finally, the third Hamilton’s equation is computed using Equation (38) with Equa-

tion (44) and pi =
∂L(θ,θ̇,t)

∂θ̇i
:

ṗi = τi −
∂H(θ, p, t)

∂θi
(45)

4. Hamilton Control Using Screw Theory

With our approach using screw theory, Hamilton’s equations can be written as (for
details see Appendix A):

∂H(θ, p, t)
∂pi

= θ̇i (46)

∂H(θ, p, t)
∂θi

=
n

∑
j=i
PT

j

[
si, N−1

i Pi

]
− GT

j si (47)

ṗi = τi +
n

∑
j=i
GT

j si −PT
j

[
si, N−1

i Pi

]
(48)

The previous equations could be used to compute the dynamic equations of robots
in the phase space. After, to ensure that the robot reaches the desired position using the
Hamiltonian approach, it is necessary to consult the following theorems.

Theorem 1. A serial robot system reaches a desired position using the following control law:

τi = Kisign(Si) + KS iSi −
∂H(θ, p, t)

∂pi
−

n

∑
j=i
PT

j

[
N−1

i Pi, si

]
− GT

j si (49)

where Si = p̃i + θ̃i is the sliding surface, p̃i = pdi − pi is the error between the desired and
measured momentum, θ̃i = θdi − θi is the error between the desired and the measured joint position,
and Ki, KS i ∈ R+.

Proof. In sliding mode control, the convergence of the surface needs to be satisfied [38].
Hence, the following Lyapunov function is proposed:

V(Si) =
1
2
Si×Si (50)

Now, use Definition 7 and differentiate the Lyapunov function in terms of time:

˙V(Si) = Si×Ṡi = Si×
d
dt

(
p̃i + θ̃i

)
(51)

Using ˙̃θi = −θ̇i, Equations (46) and (48):

˙V(Si) = Si×
(
−τi −

n

∑
j=i
PT

j

[
N−1

i Pi, si

]
− GT

j si −
∂H(θ, p, t)

∂pi

)
(52)

Applying the controller in Equation (49):

˙V(Si) = −Ki|Si| − KS iSi×Si (53)
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Thus, as the derivative of the Lyapunov function is negative definite, the convergence of
the sliding surface is satisfied. Then, Si = 0 → θ̃i = 0. Hence, the serial robot with the
proposed controller will reach the desired position [38]. On the other hand, the closed-loop
system can be computed applying Equation (49) into Equation (48):

˙̃pi =
∂H(θ, p, t)

∂pi
− Kisign(Si)− KS iSi (54)

Theorem 2. A serial robotic arm will track a desired smooth function by applying the following
law of control:

τi = Kpi θ̃i + Kvi p̃i + ṗdi −
n

∑
j=i
PT

j

[
N−1

i Pi, si

]
− GT

j si (55)

where Si = p̃i + θ̃i is the sliding surface, p̃i = pdi − pi is the error between the desired and
measured momentum, θ̃i = θdi − θi is the error between the desired and the measured joint position,
and Kpi, Kvi ∈ R+.

Proof. The proof of this theorem is easily solved. If one converts the law of control in
Equation (55) into Equation (48), it provides:

Kpi θ̃i + Kvi p̃i + ˙̃pi = 0 (56)

The previous equation is linear and the closed-loop system is globally asymptotically
stable, if and only if, Kpi, Kvi ∈ R+[39]. This law of control is similar to the traditional
PD-CTC (computed-torque control with a proportional-derivative action), but the proposed
controller is in the phase space [35]. On the other hand, the closed-loop system can be
represented as follows:

˙̃pi = −Kpi θ̃i − Kvi p̃i (57)

5. Examples
5.1. Single Degree-of-Freedom Robot

Consider the manipulator in Figure 1. After, using Equation (48), the dynamic equation
of the robot in the phase space is:

ṗ1 = τ1 + GT
1 s1 −PT

1

[
s1, N−1

1 P1

]
= τ1 + GT

1 s1 (58)

The screw can be computed as s1(0) =

(
L∗

L×x

)
=

(
e1e2∗

e1e2×0

)
=

(
e3
0

)
and the

wrench of gravitational forces as G1 =

(
−mgc(0) × e2
−mg e2

)
. Therefore:

ṗ1 = τ1 +

(
−mgc(0) × e2
−mg e2

)T( e3
0

)
(59)

ṗ1 = τ1 −mg e1 · c(0) (60)

The previous equation is in the initial position, to transform to the actual position is
necessary to change the initial position of the center of mass to the actual. Hence, as the
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center of mass is concentrated at the end of the link, the dynamic equations of the system
are:

ṗ1 = τ1 −mg e1 · l(cos(θ1) e1 + sin(θ1) e2) = τ1 −mglcos(θ1) (61)

The above result is the dynamic equation of the robot in the phase space, demonstrating
the ease of computing the motion equation. Remember that if we use another approach, it
is necessary to develop the Euler–Lagrange equation and then use the Legendre transform,
the traditional process is tedious instead of the proposed technique. Now, to illustrate the
behavior of the previous system with Theorem 1, it is necessary to apply Equation (49) in
Equation (61). Therefore, the system can be written as:

ṗ1 = K1sign(S1) + KS 1S1 −
∂H(θ, p, t)

∂p1
= K1sign(S1) + KS 1S1 −

p
ml2 (62)

where:
S1 = θ̃1 + p̃1 (63)

Based on the above, it is possible to conclude that the behavior of the system will
be determined by the constant values. However, it is easy to check that the previous
second-order differential equation is stable if and only if the constant values are positive
and then the desired position will be reached. On the other hand, the behavior of Equation
(61) with Theorem 2 can be written as:

ṗ1 = Kp1θ̃1 + Kv1 p̃1 + ṗd1 (64)

Similar as Equation (62), the previous second-order differential equation is stable if and
only if the constant values are positive.

Figure 1. Single degree-of-freedom robot.

Comparison with Other Techniques

In the above section, the dynamic equations of the example were computed. It was seen
the advantages of the proposed work instead of the traditional method. However, in this
section, the diverse proposed laws of control are compared with other traditional techniques.
To simulate the results of the example, it is necessary to implement the parameters in Table 1,
where these elements are the proposed components for the robot. The laws of control to be
compared are shown in Table 2, where it is possible to see the most famous controllers in
the industry (PD and PID). The diverse gains for the controllers were calculated according
to [40].
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Table 1. Parameters of the robot.

Parameter Value Unit

m 0.25 kg
l 0.5 m
g 9.81 m

s2

Table 2. Feedback controllers for the single degree-of-freedom robot.

Law of Control Law of Control Gains

Theorem 1 See Equation (49) K1 = 1, KS 1 = 10
Theorem 2 See Equation (55) Kp1 = 25, Kv1 = 25
PD τ = Kp e(t) + Kv

de(t)
dt Kp = 25, Kv = 25

PID τ = Kp e(t) + KI
∫

e(t)dt + Kv
de(t)

dt Kp = 25, KI = 15, Kv = 25

The simulations were conducted using the Euler integration method, with a step size
of 0.001 s. The initial conditions were selected as θ1(0) = p1(0) = 0 and the desired value as
θd1 = 45◦. Thus, the behavior of the error, with diverse controllers, can be seen in Figure 2.

Figure 2. Error signals with diverse controllers in θ1 for a single degree of freedom robot arm.

In Figure 2, the performances of the robot with different controllers are shown, where
the two proposed laws of control reach convergence to zero. In addition, our approaches
are faster than traditional techniques. Thus, the methodology proposed can be used to
compute the dynamic equations of the robot in a simple manner and the controllers are
efficient to be implemented physically.

5.2. Two Degrees-of-Freedom Robot

Suppose the two-link manipulator with pivot joints of Figure 3. The link lengths
of the manipulator are l1 and l2 and the link masses are m1 and m2, with these masses
concentrated at the end of each link.
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Figure 3. Two-link manipulator.

The Hamilton equations of the proposed robot are calculated using Equation (48).
Therefore, these equations are written as follows:

ṗ1 = τ1 + GT
1 s1 + GT

2 s1 −PT
1

[
s1, N−1

1 P1

]
−PT

2

[
s1, N−1

1 P1

]
(65)

ṗ2 = τ2 + GT
2 s2 −PT

2

[
s2, N−1

2 P2

]
(66)

Now, to illustrate the behavior of the previous system with the Theorem 1 is necessary
to apply Equation (49). Therefore, the system can be written as:

ṗ1 = K1sign(S1) + KS 1S1 −
∂H(θ, p, t)

∂p1
(67)

ṗ2 = K2sign(S2) + KS 2S2 −
∂H(θ, p, t)

∂p2
(68)

where:
S1 = θ̃1 + p̃1
S2 = θ̃2 + p̃2

(69)

On the other hand, the behavior of the robot with the Theorem 2 can be written as:

ṗ1 = Kp1θ̃1 + Kv1 p̃1 + ṗd1 (70)

ṗ2 = Kp2θ̃2 + Kv2 p̃2 + ṗd2 (71)

Comparison

In the same way as the previous example, to simulate the results of the example, it
is necessary to implement the parameters in Table 3. However, in this example, the robot
has two DoFs. Therefore, the system has two laws of control, where the constant values
and equations are chosen as Table 4 (the gains were calculated using [40]). The simulations
were performed using Euler’s integration method, with a step size of 0.01 s. The initial
conditions were selected as θ1(0) = θ2(0) = 0◦, p1(0) = p2(0) = 0 kg

m
s and the desired

values as θd1 = 175◦, θd2 = 45◦. Hence, Figures 4 and 5 illustrate the results.
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Table 3. Parameters of the robot.

Parameter Value Unit

m1, m2 0.25 kg
l1, l2 2 m
g 9.81 m

s2

Table 4. Feedback controllers.

Law of Control Law of Control Gains

Theorem 1 See Equation (49) K1 = K2 = 1; KS 1 = KS 2 = 10
Theorem 2 See Equation (55) Kp1 = Kp2 = 25; Kv1 = Kv2 = 25

PD τ = Kp e(t) + Kv
de(t)

dt Kp = Kv =

[
25 0
0 25

]

PID τ = Kp e(t) + KI
∫

e(t)dt + Kv
de(t)

dt Kp = Kv =

[
25 0
0 25

]
, KI =

[
15 0
0 15

]

Figure 4. Error signals with diverse controllers in θ1 for a two degrees-of-freedom robot.

In this example, the efficiency of the algorithm is proved instead of the traditional
techniques. The dynamic equations are computed in an iterative form and are easy to
develop, which is an advantage for new researchers in the robotic field. On the other hand,
in accordance with the simulations, the controllers are faster than the typical laws of control
in the industry and they are easy to program in hardware.



Mathematics 2023, 11, 572 14 of 17

Figure 5. Error signals with diverse controllers in θ2 for a two degrees-of-freedom robot.

6. Conclusions and Future Work

In the present article, the capacity of the proposed method for the modeling and
control of robots in phase space is demonstrated. The dynamic equations, in phase space,
of an articulated robot can be developed easily and iteratively (which cause it to be easy
to program) using the suggested technique. In the examples, it is clearly seen that, with a
few simple steps, the equations of motion of the system can be computed; otherwise, when
using the traditional method, it is necessary to develop the Euler–Lagrange or Newton–
Euler Equations (in addition, the kinematic model should be contemplated before) to
later use the Legendre transform; this causes it to be a long and tedious process for new
researchers in the field. Talking about the controllers, it is observed how easy it is to build
controllers using the screw theory, such as the dynamic equations, where the control laws
are obtained iteratively with a few steps. In the simulation, it was shown that the proposed
controllers have a better performance than traditional techniques in phase space. Thus, it
is illustrated that this technique can be used for the dynamic model and its control in the
phase space.

On the other hand, this paper only contemplates the dynamic equations of the robot
and its controller. However, the perturbations, unknown parameters, or other external
elements are not added to the algorithm. Thus, the previous analysis and the dynamic
equations of more complex robots will be taken into account for future work.
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Appendix A

Appendix A.1. Robot Dynamics Using Screw Theory

The Lagrangian is written as:

L
(
θ, θ̇, t

)
=

n

∑
j=1

1
2

VT
j NjVj − g̃T c̃j (A1)

Using the Euler–Lagrange equation
(

τi =
d
dt

(
∂L(θ,θ̇,t)

∂θ̇i

)
− ∂L(θ,θ̇,t)

∂θi

)
. Hence:

∂L
(
θ, θ̇, t

)
∂θ̇i

=
∂
(

∑n
j=1

1
2 VT

j NjVj − g̃T c̃j

)
∂θ̇i

(A2)

Here, Vj = sj θ̇j:

∂L
(
θ, θ̇, t

)
∂θ̇i

=
∂
(

∑n
j=1

1
2

((
sj θ̇j
)T Njsj θ̇j

)
− g̃T c̃j

)
∂θ̇i

(A3)

Therefore:
∂L
(
θ, θ̇, t

)
∂θ̇i

=
n

∑
j=i

sT
i NjVj (A4)

Now, differentiating with respect to time:

d
dt

(
∂L
(
θ, θ̇, t

)
∂θ̇i

)
=

n

∑
j=i

d
dt

(
sT

i NjVj

)
(A5)

d
dt

(
∂L
(
θ, θ̇, t

)
∂θ̇i

)
=

n

∑
j=i

d
dt

(
sT

i

)
NjVj + sT

i
d
dt
(

Nj
)
Vj + sT

i Nj
d
dt
(
Vj
)

(A6)

d
dt

(
∂L
(
θ, θ̇, t

)
∂θ̇i

)
=

n

∑
j=i

VT
j Njad(Vi)si − sT

i adT(Vj)NjVj − sT
i Njad(Vj)Vj + sT

i NjV̇j (A7)

d
dt

(
∂L
(
θ, θ̇, t

)
∂θ̇i

)
=

n

∑
j=i

VT
j Nj[Vi, si] + sT

i
{

Vj, NjVj
}
− sT

i Nj
[
Vj, Vj

]
+ sT

i NjV̇j (A8)

where
{

Vj, NjVj
}

represent the co-bracket. Considering {V2, N2V2}Ts1 = VT
2 N2[s1, V2]:

d
dt

(
∂L
(
θ, θ̇, t

)
∂θ̇i

)
=

n

∑
j=i

V̇T
j Njsi + VT

j Nj
[
si, Vj

]
+ VT

j Nj[Vi, si] (A9)

On the other hand:

∂L
(
θ, θ̇, t

)
∂θi

=
∂
(

∑n
j=1

1
2 VT

j NjVj − g̃T c̃j

)
∂θi

(A10)

∂L
(
θ, θ̇, t

)
∂θi

=
n

∑
j=1

1
2

∂VT
j

∂θi
NjVj + VT

j
∂Nj

∂θi
Vj + VT

j Nj
∂Vj

∂θi
−

∂g̃T c̃j

∂θi
(A11)

∂L
(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

VT
j Njad(si)

(
Vj −Vi

)
+ sT

i Gj −
1
2

(
VT

j adT(si)NjVj + VjNjad(si)Vj

)
(A12)

∂L
(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

VT
j Nj

[
si, Vj −Vi

]
+ sT

i Gj −
1
2

(
VjNj

[
si, Vj

]
−VT

j
{

si, NjVj
})

(A13)
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∂L
(
θ, θ̇, t

)
∂θi

=
n

∑
j=i

VT
j Nj

[
si, Vj −Vi

]
+ sT

i Gj + VT
j Nj

[
Vj, si

]
(A14)

∂L
(
θ, θ̇, t

)
∂θi

=
n

∑
j=i
GT

j si −VT
j Nj[si, Vi] (A15)

Finally, applying Equations (A9) and (A15) into the Euler–Lagrange equation:

τi =
n

∑
j=i

V̇T
j Njsi + VT

j Nj
[
si, Vj

]
− GT

j si (A16)

Appendix A.2. Hamilton’s Equations Using Screw Theory

Hamilton’s equation in Equation (44) can be easily computed using Equation (A15).
Thus, it can be illustrated by:

∂H(θ, p, t)
∂θi

=
n

∑
j=i
PT

j

[
si, N−1

i Pi

]
− GT

j si (A17)

In addition to the foregoing, Hamilton’s equation in Equation (45) can be computed
using Equation (A17):

ṗi = τi +
n

∑
j=i
GT

j si −PT
j

[
si, N−1

i Pi

]
(A18)
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