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1. Introduction

Since its publication, Banach’s Contraction Principle has been a permanent source
of inspiration for many thousands of papers. The short statement: “any contraction on a
complete metric space has a fixed point” encapsulates a tremendous amount of mathematics
and has deep consequences which are still being discovered. A mapping F : M → M,
where (M, d) is a metric space, is called contraction if

d(F(x), F(y)) ≤ Cd(x, y),

for any x, y ∈ M and 0 ≤ C < 1. Computing successive compositions of a given contraction,
known as the Picard iterative process, generates a sequence converging to the solution of
the fixed point problem for F (find x such that F(x) = x). A natural extension is to consider
the case C = 1, which leads to the class of nonexpansive mappings. However, as one can
easily see, the Picard iteration for such mappings does not necessarily lead to a fixed point,
as in the case of contractions. This fact has stimulated the search for new iterative schemes
such as, for instance, [1–7]. At the same time, it is important to notice that the metric
structure alone is not sufficient in order to apply more sophisticated iterative schemes. A
richer structure is required, the most frequent one being that of normed spaces. Thus, we
can identify three main aspects: a class of mappings, a space on which the given mappings
act and an iterative scheme used to generate a sequence converging to the solution of the
fixed point problem.

In 2011, Fuster and Gálvez [8] introduced a class of generalized nonexpansive map-
pings by the use of the so-called condition (L), in the context of Banach spaces. The
emergence of this class of mappings can be seen as a natural development starting from
the class of mappings satisfying Suzuki’s condition (C) [9], via the class of those satisfying
condition (E) [10]. For more details, we refer the reader to those original papers. In a more
recent paper [11], in which a similar problem is discussed, the authors considered the class
of operators which are closely related to those satisfying the condition (L), and which they
called (L2) class (for details, please see below). Thus, the class of mappings which we
discuss in this paper is that of (L2) operators.
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The framework for the results of this paper is that of CAT(0) spaces, i.e., metric spaces
which satisfy additional axioms (details are provided in the sequel). Notable particular
cases are Hilbert spaces, R-trees, etc. The structure of a CAT(0) space is such that it allows
the introduction of a notion of convergence, called ∆-convergence, which is more general
than the metric convergence [12]. Moreover, as it has been show by Kirk and Panyanak [12],
many results on Banach spaces, involving weak convergence, have precise counterparts in
the setting of CAT(0) spaces, where ∆-convergence is used instead.

A natural extension of the fixed point problem is the problem of common fixed point
(find x such that F(x) = x = G(x)), thought in various frameworks for diverse classes of
operators [13,14]. As an instrument for approximating the solution of the common fixed
point problem, we introduce a new iterative scheme, inspired by [6], and whose strong
and ∆-convergence is of interest. A distinct feature of this scheme is that using it involves
nonstandard approaches based on equivalent sequences and which we believe could be
useful to other authors as well.

We dedicate this paper to obtaining ∆ and strong convergence results for the common
fixed point problem for two operators F and G of the (L2) class (shortly, L2 operators), in
CAT(0) spaces. For recent related results in this direction, we refer the reader to [13], where
such a problem is studied for the class of (E) operators, or [15] for SKC mappings.

2. Preliminaries

Let (M, d) be a metric space. Given two distinct points x and y in M, a continuous
mapping

γ : [0, a]→ M, with γ(0) = x, γ(a) = y,

such that d(γ(t1), γ(t2)) = |t1 − t2|, for any t1, t2 ∈ [0, a], is called a geodesic path which
joins x and y, while its image, denoted by [x, y], is called the geodesic segment with endpoints
the x and y. A metric space (M, d) is called geodesic space if any pair of distinct point can be
joined by a geodesic. Moreover, if the geodesic is unique, then the space is called uniquely
geodesic.

Three distinct points x, y, z in a uniquely geodesic metric space (M, d) constitute the
vertices of a unique geodesic triangle denoted by ∆(x, y, z), whose sides are the geodesic
segments [x, y], [y, z] and [z, x]. A triangle in the Euclidean plane ∆̄(x̄, ȳ, z̄) such that

d(x, y) = dE(x̄, ȳ), d(y, z) = dE(ȳ, z̄), d(x, z) = dE(x̄, z̄),

where dE is the Euclidean metric, is called a comparison triangle for ∆(x, y, z).

Definition 1 ([16,17]). Let ∆ be a geodesic triangle in a geodesic space (M, d) and let ∆̄ be a
corresponding comparison triangle. We say that ∆ satisfies the CAT(0) inequality if for all x, y ∈ ∆
and the corresponding x̄, ȳ ∈ ∆̄,

d(x, y) ≤ dE(x̄, ȳ). (1)

A geodesic space is said to be a CAT(0) space if all its geodesic triangles satisfy the CAT(0)
inequality.

Other equivalent definitions can be encountered in the literature, for example [16–18].

Lemma 1 ([17]). Let (M, d) be a CAT(0) space. Then

(i) (M, d) is uniquely geodesic.
(ii) For a given pair of distinct points x, y in M and a some t ∈ [0, 1], there exists a unique point

z ∈ [x, y], such that d(x, z) = (1− t)d(x, y) and d(y, z) = td(x, y). We denote this point
by z = tx⊕ (1− t)y.

(iii) [x, y] = {tx⊕ (1− t)y : t ∈ [0, 1]}.
(iv) d(x, z) + d(z, y) = d(x, y) if and only if z ∈ [x, y].
(v) The mapping f : [0, 1]→ [x, y], f (t) = tx⊕ (1− t)ty is continuous and bijective.
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Lemma 2 ([17]). Let (M, d) be a CAT(0) space. Then

d(z, tx⊕ (1− t)y) ≤ td(z, x) + (1− t)d(z, y), (2)

d2(z, tx⊕ (1− t)y) ≤ td2(z, x) + (1− t)d2(z, y)− t(1− t)d2(x, y), (3)

for all x, y, z ∈ M and t ∈ [0, 1].

Definition 2. Let {xn} be a sequence in a complete CAT(0) space (M, d). The set

C(xn) = {x ∈ M
∣∣r(x, xn) = r(xn)}

is called the asymptotic center of the sequence {xn}, where

r(xn) = inf
x∈M

r(x, xn)

is the asymptotic radius, and
r(x, xn) = lim sup

n→∞
d(x, xn).

In a complete CAT(0) space the asymptotic center associated to a given sequence
consists of a single element (for details, please check [19]). This fact has allowed Kirk and
Panyanak [12] to introduce a notion of convergence, called ∆-convergence, which is weaker
than the metric convergence.

Definition 3 ([12]). A sequence {xn} in a CAT(0) space (M, d) is said to be ∆-convergent to some

point x ∈ M and denote it by xn
∆→ x, if x is the unique asymptotic center for every subsequence{

xnk

}
of {xn}.

The remarkable fact about this type of convergence is that many results involving
weak convergence on Banach spaces have precise counterparts in the setting of CAT(0)
spaces involving ∆-convergence. It is worth mentioning that CAT(0) spaces have the Opial
property formulated with respect to ∆-convergence. We recall the below definition of Opial.

Definition 4 ([20]). A Banach space X satisfies the Opial property if for any sequence {xn} in X,
which converges weakly to x, the next inequality holds

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for any y 6= x.

Below are some results involving ∆-convergence which will be used in the sequel.

Lemma 3 ([12,17]). Let (M, d) be a CAT(0) space.

(i) Any bounded sequence in M has a ∆-convergent subsequence.
(ii) If C is a closed and convex subset in M, and {xn} is a bounded sequence in C, then C(xn) ∈ C.

The asymptotic center plays a key role in the following lemma, which will be used in
the sequel to prove the coincidence of certain limits.

Lemma 4 ([17]). Let {xn} be a bounded sequence in aCAT(0) space (M, d) with C(xn) = {x}. If
{un} is a subsequence of {xn} such that C(un) = {u} and the sequence {d(xn, u)} is convergent,
then x = u.
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Fuster and Gálvez introduced, in 2011, the following generalized nonexpansive class
of mappings, which extend the previously introduced classes of operators satisfying the
conditions (C) [9] and (E) [10].

Definition 5 ([8]). Let C be a nonempty subset of a CAT(0) space (M, d), and consider a mapping
T : C → C. One says that T fulfills the property (L) if the next two conditions are satisfied

(i) For any nonempty, closed, convex D of C, which is T-invariant (that is TD ⊆ C), there
exists an almost fixed point sequence of T (shortly a.f.p.s, i.e., a sequence {xn} such that
{d(xn, Txn)} is convergent to zero);

(ii) For any almost fixed point sequence {xn} of T in C, and x ∈ C, the following inequality
holds true

lim sup
n→∞

d(xn, Tx) ≤ lim sup
n→∞

d(xn, x). (4)

Henceforth, following [11], by L2 mappings we shall mean those mappings which
satisfy the condition (4) of the above definition.

Let C be a nonempty, and convex subset of a CAT(0) space (M, d). For two mappings
F, G : C → C, and x0 ∈ C, we consider the next numerical scheme:

yn = (1− an)xn ⊕ anFxn,
zn = (1− bn)xn ⊕ bnGyn,

xn+1 = (1− cn)Fzn ⊕ cnFyn, n ≥ 0,
(5)

where {an}, {bn}, {cn} are real sequences bounded away by 0 and 1.
Following is a standard and a very useful results which will be used in the sequel and

which ends the section of preliminaries.

Lemma 5 ([21]). In a complete CAT(0) space (M, d), consider a point x, and two sequences {xn},
{yn}. Let {tn} be a sequence of real numbers bounded away from 0 and 1. Suppose there exists
` ∈ R such that

lim sup
n→∞

d(xn, x) ≤ `, lim sup
n→∞

d(yn, x) ≤ ` and lim
n→∞

d(tnxn ⊕ (1− tn)yn, x) = `.

Then the sequence {d(xn, yn)} converges to zero.

3. Main Results

The main goal in this section is to prove that the sequence {xn}, generated by the
algorithm (5) is ∆-convergent to a solution x of the common fixed point problem associated
to two L2 operators F and G. Additionally, we obtain a strong convergence result as well.
We denote by Fix(F, G) the set of common fixed points of two given operators F and G.

Firstly, let us show that a L2 operator satisfies Browder’s demiclosed principle (for details,
please see [22]), where instead of weak convergence we assume ∆-convergence.

Lemma 6. Let C be a subset in a complete CAT(0) space (M, d) and let F : C → M be a L2

operator. If {xn} ⊂ C is an a.f.p.s. for F such that xn
∆→ x ∈ M, then

Fx = x.

Proof. As xn
∆→ x, there exists a subsequence {xnk} such that x is its unique asymptotic

center. On the other hand, being a subsequence of {xn}, {xnk} is an a.f.p.s. for F as well.
Since M has the Opial property and F satisfies the L2 condition, we have

lim sup
n→∞

d(xnk , Fx) ≤ lim sup
nk→∞

d(xnk , x) ≤ lim sup
n→∞

d(xnk , Fx),
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yielding
lim sup

n→∞
d(xnk , Fx) = lim sup

nk→∞
d(xnk , x).

The conclusion follows from the uniqueness of the asymptotic center.

Recall that a mapping F on a metric space M is called quasi-nonexpansive if

d(p, Fx) ≤ d(p, x),

for all x ∈ M, where p is a fixed point of F. It can be esily seen that L2 operators are
quasi-nonexpansive. Thus, the following two results are valid for L2 operators as well.

Lemma 7. Let F, G : C → C, where C is a subset of a CAT(0) space, be two quasi-nonexpansive
operators. Then the set Fix(F, G) is closed and convex.

Proof. Let {yn} be a sequence in Fix(F, G), convergent to some y ∈ C. It is, of course,
an approximate fixed point sequence for both operators F and G. Since F and G are
quasi-nonexpansive, we have that

lim
n→∞

d(yn, Fy) ≤ lim
n→∞

d(yn, y) = 0,

implying y = Fy. Similarly, we obtain that y = Gy and thus Fix(F, G) is a closed set.
Let now x, y ∈ Fix(F, G) and take z a point on the geodesic segment [x, y]. Suppose

that Fz 6= z. Then

d(x, y) < d(Fz, x) + d(Fz, y) ≤ d(z, x) + d(z, y) = d(x, y),

a contradiction which completes the proof.

Lemma 8. Let (M, d) be a CAT(0) space and C be a nonempty, closed and convex subset of M.
Let F, G : C → C be two quasi-nonexpansive mappings such that Fix(F, G) 6= ∅. Then for
the sequences {xn}, {yn}, {zn}, generated by the algorithm (5) and for any q ∈ Fix(F, G), the
following limits

lim
n→∞

d(xn, q), lim
n→∞

d(yn, q), lim
n→∞

d(zn, q)

exist and are equal.

Proof. Let q ∈ Fix(F, G). Applying Lemma 2 and noticing that both F and G are quasi-
nonexpansive mappings, it follows that

d(yn, q) = d((1− an)xn ⊕ anFxn, q) ≤ (1− an)d(xn, q) + and(Fxn, q)

≤ (1− an)d(xn, q) + and(xn, q) = d(xn, q), n ≥ 0. (6)

A similar argument leads to

d(zn, q) = d((1− bn)xn ⊕ bnGyn, q) ≤ (1− bn)d(xn, q) + bnd(Gyn, q)

≤ (1− bn)d(xn, q) + bnd(yn, q) ≤ (1− bn)d(xn, q) + bnd(xn, q)

= d(xn, q), n ≥ 0. (7)

Finally, both inequalities (6) and (7), yield

d(xn+1, q) = d((1− cn)Fzn ⊕ cnFyn, q) ≤ (1− cn)d(Fzn, q) + cnd(Fyn, q)

≤ (1− cn)d(zn, q) + cnd(yn, q) ≤ (1− cn)d(xn, q) + cnd(xn, q)

= d(xn, q), n ≥ 0. (8)
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The existence of lim
n→∞

d(xn, q) follows immediately from the fact the sequence of posi-

tive numbers {d(xn, q)} is decreasing.
According to (8), we have that

d(xn+1, q) ≤ (1− cn)d(zn, q) + cnd(yn, q) ≤ d(xn, q), n ≥ 0.

Taking n→ ∞ in the last inequalities, leads to

lim
n→∞

((1− cn)d(zn, q) + cnd(yn, q)) = `,

where ` := lim
n→∞

d(xn, q). On the other hand, from (6) and (7) we also have that

lim sup
n→∞

d(yn, q) ≤ lim sup
n→∞

d(xn, q) ≤ `, and lim sup
n→∞

d(zn, q) ≤ lim sup
n→∞

d(xn, q) ≤ `.

Applying now Lemma 5 for the sequences {yn} and {zn}, yields lim
n→∞

d(yn, zn) = 0,

which shows that
lim

n→∞
d(yn, q) = lim

n→∞
d(zn, q).

Letting n→ ∞ in (8), while keeping in mind that the sequence {cn} is bounded away
by 0 and 1, we obtain that

lim
n→∞

d(xn, q) = lim
n→∞

d(zn, q),

which completes the proof.

A closer look to our iterative scheme reveals the fact that it does not contain any term
of the form Gxn. This circumstance makes it rather difficult to establish whether {xn} is an
approximate fixed point sequence for the mapping G, than for the mapping F. As we will
see below, actually we do not need to show that xn is an approximate fixed point sequence
for both mappings. We will circumvent this obstacle by working with the sequence {yn}.

Recall that two sequences {xn} and {yn} in a metric space are called equivalent if
lim

n→∞
d(xn, yn) = 0. Clearly, two equivalent sequences either converge to the same limit, or

are both divergent. In fact, the same is true for the ∆-convergence.

Lemma 9. If {xn} and {yn} are two equivalent sequences in a metric space (M, d), then

C(xn) = C(yn). Moreover, if xn
∆→ p ∈ M, then yn

∆→ p as well.

Proof. For any x ∈ M, taking lim sup in the inequalities d(xn, x) ≤ d(xn, yn) + d(yn, x)
and d(yn, x) ≤ d(xn, yn) + d(xn, x), respectively, yields

r(x, xn) = r(x, yn),

implying C(xn) = C(yn).
For the second part of the assertion, take an arbitrary subsequence {s′nk

} of {yn}
and suppose that xn

∆→ p ∈ M, i.e., p is the unique asymptotic center of any subse-
quence of {xn}. There exists a corresponding subsequence {snk} of {xn}, obtained by

taking the elements with the exact same indexes, such that lim
n→∞

d
(

snk , s′nk

)
= 0. Thus,

C(s′nk
) = C(snk ) = {p}.

Lemma 10. Let (M, d) be a complete CAT(0) space and C be a nonempty, closed and convex
subset of M. Consider F, G : C → C be two quasi-nonexpansive mappings which have at least
one common fixed point and let the sequences {xn}, {yn} and {zn} be generated by the iterative
scheme (5). Then
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(i) lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, zn) = lim
n→∞

d(zn, xn) = 0;

(ii) lim
n→∞

d(xn, Fxn) = lim
n→∞

d(yn, Gyn) = 0.

Proof. (i) Let q ∈ Fix(F, G) and let ` = lim
n→∞

d(xn, q), which exists according to Lemma 8.

From the proof of Lemma 8 we already know that lim
n→∞

d(yn, zn) = 0.

Using the fact that G is a quasi-nonexpansive mapping and Lemma 2 in the second
line of the algorithm (5), we obtain that

d(zn, q) ≤ (1− bn)d(xn, q) + bnd(Gyn, q) ≤ (1− bn)d(xn, q) + bnd(yn, q) ≤ d(xn, q).

Letting n→ ∞, it follows that

` = lim sup
n→∞

d(zn, q) ≤ lim sup
n→∞

(1− bn)d(xn, q) + bnd(yn, q) ≤ lim sup
n→∞

d(xn, q) = `.

As lim sup
n→∞

d(yn, q) = ` and the sequence {bn} is bounded away from 0 and 1,

Lemma 5 can be applied for the sequences {xn} and {yn}, leading to lim
n→∞

d(xn, yn) = 0.

The last limit from the statement is obtained by taking n→ ∞ in

d(xn, zn) ≤ d(xn, yn) + d(yn, zn).

(ii) Using a similar argument as above, from the first line of the algorithm we have that

d(yn, q) = d((1− an)xn ⊕ anFxn, q) ≤ d(xn, q).

Taking lim sup gives

lim sup
n→∞

d((1− an)xn ⊕ anFxn, q) = `,

where we have used the fact that F is quasi-nonexpansive implying that

lim sup
n→∞

d(Fxn, q) ≤ lim sup
n→∞

d(xn, q) ≤ `.

Thus, according to Lemma 5, applied for the sequences {xn} and {Fxn}, it follows that

lim
n→∞

d(xn, Fxn) = 0,

i.e., {xn} is an approximate fixed point sequence for the mapping F. By an almost identical
argument, from the second line of the algorithm (5) it follows that

lim
n→∞

d(xn, Gyn) = 0.

On the other hand, we have that lim
n→∞

d(xn, yn) = 0 which implies that

lim
n→∞

d(yn, Gyn) = 0,

i.e., {yn} is an approximate fixed point sequence for the mapping G.

We now have everything prepared in order to show that the sequence {xn} generated
by the iterative scheme (5) is ∆-convergent to a common fixed point of two mappings F
and G which satisfies condition L2, provided it exists.
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Theorem 1. Let (M, d) be a complete CAT(0) space and C be a nonempty, closed and convex subset
of M. If F, G : C → C are two mappings satisfying the condition (L2) such that Fix(F, G) 6= ∅,
then the sequence {xn}, generated by the algorithm (5), is ∆-convergent to an element of Fix(F, G).

Proof. Let W∆(xn) be the reunion of all asymptotic centers associated to all subsequences
of {xn} and take a subsequence {pn} whose asymptotic center is p. Let q be a common
fixed point of F and G. Since lim

n→∞
d(xn, q) exists, the sequence {xn} is bounded and thus

{pn} is bounded too. According to Lemma 3, there exists a subsequence {pnk} of {pn}
which is ∆-convergent to some s ∈ C, which is actually a fixed point for F. Indeed, {pnk}
being a subsequence of {xn}, is an approximate fixed point sequence for F as well. Thus,
according to Lemma 6, it follows that

Fs = s.

Let us show now that s is a fixed point for the mapping G as well. As before, take
a subsequence of {yn}, corresponding to {pnk}, by choosing the elements with exactly
the same indexes. This gives us a subsequence {p′nk

} equivalent to {pnk}, which is also
∆-convergent to s. On the other hand, being a subsequence of {yn}, {p′nk

} is an approximate
fixed point sequence for the mapping G as well. Applying once again Lemma 6, yields

Gs = s.

Thus, we have proven that s is actually a common fixed point of F and G. This
means, according to Lemma 8, that the sequence {d(xn, s)} is convergent and consequently,
the same is true for the subsequence {d(pn, s)}. Now, since C(p′nk

) = {s}, according to
Lemma 4, we have that s = p = x, where C(xn) = {x}. Since the subsequence {pn} was
chosen arbitrarily, it follows that

{x} = C(xn) = W(xn) ⊆ Fix(F, G),

which completes the proof.

Remark 1. Taking G as the identity mapping, the scheme (5) reduces to the scheme of Sintunavarat
and Pitea [6], whereas the generated sequence is ∆-convergent to a fixed point of the mapping F.

Turning now to the strong convergence, i.e., with respect to the metric topology, it is
clear that if a sequence {xn} generated by the iterative scheme (5) converges to an element
of Fix(F, G), then necessarily lim inf

n→∞
d(xn, Fix(F, G)) = 0, where

d(xn, Fix(F, G)) = inf{d(xn, p)|p ∈ Fix(F, G)}.

The next result shows that this condition is actually sufficient.

Proposition 1. Let (M, d) be a CAT(0) space and C be a nonempty, closed, convex subset of M
and let F, G : C → C be two operators having the property (L2). Then, the iterative sequence {xn}
converges to a point in Fix(F, G) if and only if lim inf

n→∞
d(xn, Fix(F, G)) = 0.

Proof. Suppose that lim inf
n→∞

d(xn, Fix(F, G)) = 0. According to Lemma 8, the sequence

{d(xn, q)} is decreasing, for any q ∈ Fix(F, G). Thus,

d(xn+1, Fix(F, G)) = inf
x∈Fix(F,G)

d(xn+1, x) ≤ inf
x∈Fix(F,G)

d(xn, x) = d(xn, Fix(F, G)),
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meaning that {d(xn, Fix(F, G))} is decreasing and therefore, convergent to 0. This means
that, given ε > 0, there is a rank N and a point p ∈ Fix(F, G) such that d(xn, p) < ε, for
n ≥ N. In addition, from the inequalities

d(xn, xm) ≤ d(xn, p) + d(xm, p) ≤ 2ε, n, m ≥ N,

it follows that {xn} is a Cauchy sequence and, since M is complete, it is convergent to
some x ∈ C. Now, from the continuity of the metric, we have that d(x, Fix(F, G)) = 0.
To complete the proof, it remains to show that Fix(F, G) is closed. Indeed, let {yn} be a
sequence in Fix(F, G), convergent to some y. It is, of course, an approximate fixed point
sequence for both mappings F and G. Applying the L2 condition, say for F, we have that

lim sup
n→∞

d(yn, Fy) ≤ lim sup
n→∞

d(yn, y) = 0,

which, by the uniqueness of the limit, it follows that y = Fy. Similarly, we obtain that
y = Gy, and thus y ∈ Fix(F, G), which completes the proof.

4. Example

In this section we illustrate the results of the paper by means of an example. Let C be a
point the Poincaré half-plane H2 = {(x, y) ∈ R|y > 0} in which the distance between two
points p1 = (x1, y1) and p2 = (x2, y2) is given by the formula:

dH2(p1, p2) = 2 ln

(√
(x2 − x1)2 + (y2 − y1)2 +

√
(x2 − x1)2 + (y2 + y1)2

2
√

y1y2

)
. (9)

Let D be the disk centered at C with some fixed radius r and consider the mappings:

G(x, y) = (−x, y), (x, y) ∈ D,

and

FX =


1
2

C⊕ 1
2

X, X = (x, y) ∈ intD,

SC

(
1
2

C⊕ 1
2

X
)

, X = (x, y) ∈ ∂D,

where SC(Y) denotes the symmetric of the point Y w.r.t. the point C. In other words, SC(Y)

is such that C =
1
2

Y⊕ 1
2

SC(Y).
From (9) it follows that the mapping G is nonexpansive and hence satisfies the condi-

tion L2 as well.
Let us show that the mapping F is a L2 mapping as well. Indeed, let {Xn} ⊂ D be an

a.f.p.s. for F, i.e., lim
n→∞

d(Xn, FXn) = 0. It follows that there exists some n0 ≥ 0, such that

Xn /∈ ∂D, for n ≥ n0. On the other hand, for Xn /∈ ∂D one has d(Xn, FXn) = d(C, FXn) =
1
2

d(C, Xn), for n ≥ n0. However, this means that, necessarily, lim
n→∞

d(C, Xn) = 0. Let

now x ∈ D. Taking into account that d(C, FX) =
1
2

d(C, X), while applying the triangle
inequality, we have, for all n ≥ 0,

d(Xn, FX) ≤ d(Xn, C) + d(C, FX) ≤ d(Xn, C) +
1
2

d(C, Xn) +
1
2

d(Xn, X)

=
3
2

d(C, Xn) + d(Xn, X).

Taking lim sup of the first and the last term of the above relation, and keeping in mind
that lim

n→∞
d(Xn, FXn) = 0, leads to

lim sup
n→∞

d(Xn, X) ≤ lim sup
n→∞

d(Xn, FX),
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showing that F is a L2 mapping.
Let us discuss now the convergence of the proposed algorithm. Since our further

discussion does not involve the coordinates of the half-plane, we will use small letters to
denote the points for simplicity (except the center). In addition, for simplicity, we will use

the sequences {an}, {bn} and {cn}, with an = bn = cn =
1
2

, n ≥ 0.

Denote by dn = dH2(C, xn), n ≥ 0. For any xn ∈ intD, we have the following distances
estimates:

d(C, yn) = d(C,
1
2

xn ⊕
1
2

Fxn) =
3
4

dn

d(C, zn) = d(C,
1
2

xn ⊕
1
2

Gyn) ≤
1
2

d(C, xn) +
1
2

d(C, Gyn) =
7
8

dn

d(C, Fzn) ≤
7

16
dn

d(C, Fyn) =
1
2

d(C, yn) =
3
8

dn

d(C, xn+1) = d(C,
1
2

Fzn ⊕
1
2

Fyn) ≤
1
2

d(C, Fzn) +
1
2

d(C, Fyn) =
12
32

dn,

where we have used the inequality (2).
It can be noticed that, starting with x0 such that d(C, x0) < r, all the points xn,yn,zn,

Fzn, Fyn, Gyn, appearing at each iteration, belong to the interior of the disk D.
Thus, it follows that the sequence {xn} converges strongly to the point C. This fact

implies the ∆-convergence as well.

5. Conclusions

In this article, we introduced a new iterative scheme for the approximation of the
solution of the common fixed point problem associated to two L2 operators acting on
CAT(0) spaces. The class of L2 operators has been recently introduced and extends many
other well known classes such Suzuki type of operators. As the main result, we establish the
∆-convergence of the introduced algorithm. In addition, we provide a sufficient condition
for strong convergence. Our study uses a new iterative algorithm and the technique based
on the equivalent sequences represents a novel approach. As a natural development, we
envision that the problem of best proximity point, or common best proximity point, could
be studied in this setting [23].
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