On Some Expansion Formulas for Products of Jacobi’s Theta Functions
Abstract
:1. Introduction
2. Main Results
3. Powers of
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebooks, Part I; Springer Science+Business Media, Inc.: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Berndt, B.C. Ramanujan’s Notebooks, Part III; Springer: New York, NY, USA, 1991. [Google Scholar]
- Jacobi, C.G.J. Fundamenta Nova Theoriae Functionum Ellipticarum; Borntrager: Stuttgart, Germany, 1829. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Schiefermayr, K. Some new properties of Jacobi’s theta functions. J. Comput. Appl. Math. 2005, 178, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. Addition formulas for Jacobi theta functions, Dedekind’s eta function, and Ramanujan’s congruences. Pacific J. Math. 2009, 240, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Tsumura, H. Double series identities arising from Jacobi’s identity of the theta function. Results Math. 2018, 73, 10–12. [Google Scholar] [CrossRef]
- Tsumura, H. On series identities arising from Jacobi’s identity of the theta function. Int. J. Number Theory 2018, 14, 1317–1327. [Google Scholar] [CrossRef]
- Schneider, R. Jacobi’s triple product, mock theta functions, unimodal sequences and the q-bracket. Int. J. Number Theory 2018, 14, 1961–1981. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Yadav, R.K.; Yadav, V. Certain properties of Jacobi’s theta functions. South East Asian J. Math. Math. Sci. 2021, 17, 119–130. [Google Scholar]
- Berndt, B.C.; Chan, S.H.; Liu, Z.-G.; Yesilyurt, H. A new identity for with an application to Ramanujan’s partion congruence modulo 11. Quart. J. Math. 2004, 55, 13–30. [Google Scholar] [CrossRef]
- Chan, H.H.; Cooper, S.; Toh, P.C. Ramanujan’s Eisenstein series and powers of Dedekind’s eta-function. J. Lond. Math. Soc. 2007, 75, 225–242. [Google Scholar] [CrossRef]
- Chu, W. Theta function identites and Ramanujan’s congruence on partion function. Quart. J. Math. 2005, 56, 491–506. [Google Scholar] [CrossRef]
- He, B. A theta function identity and its applications. Ramanujan J. 2015, 38, 423–433. [Google Scholar] [CrossRef]
- Ma, H.-N.; He, B. On a theta function identity. Integral Transform. Spec. Funct. 2016, 27, 365–370. [Google Scholar] [CrossRef]
- Liu, Z.-G. A theta function identity and its implications. Trans. Am. Math. Soc. 2005, 357, 825–835. [Google Scholar] [CrossRef]
- Liu, Z.-G. A three-term theta function identity and its applications. Adv. Math. 2005, 195, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.-C. Additive formulae of theta functions with applications in modular equations of degree three and five. Integral Transform. Spec. Funct. 2009, 20, 769–773. [Google Scholar] [CrossRef]
- Shen, L.-C. On the products of three theta functions. Ramanujan J. 1999, 3, 343–357. [Google Scholar] [CrossRef]
- Winquist, L. An elementary proof of p(11m + 6) ≡ 0(mod11). J. Comb. Theory 1969, 6, 56–59. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, H.-C.; Cao, J.; Arjika, S. On Some Expansion Formulas for Products of Jacobi’s Theta Functions. Mathematics 2023, 11, 588. https://doi.org/10.3390/math11030588
Zhai H-C, Cao J, Arjika S. On Some Expansion Formulas for Products of Jacobi’s Theta Functions. Mathematics. 2023; 11(3):588. https://doi.org/10.3390/math11030588
Chicago/Turabian StyleZhai, Hong-Cun, Jian Cao, and Sama Arjika. 2023. "On Some Expansion Formulas for Products of Jacobi’s Theta Functions" Mathematics 11, no. 3: 588. https://doi.org/10.3390/math11030588
APA StyleZhai, H. -C., Cao, J., & Arjika, S. (2023). On Some Expansion Formulas for Products of Jacobi’s Theta Functions. Mathematics, 11(3), 588. https://doi.org/10.3390/math11030588