
Citation: Shcherbakov, R. Analysis of

Weibull Record-Breaking Events.

Mathematics 2023, 11, 635. https://

doi.org/10.3390/math11030635

Received: 21 December 2022

Revised: 19 January 2023

Accepted: 23 January 2023

Published: 27 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Statistics of Weibull Record-Breaking Events
Robert Shcherbakov 1,2

1 Department of Earth Sciences, Western University, London, ON N6A 5B7, Canada
2 Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada

Abstract: The statistics of record-breaking events plays an important role in the analysis of natural
physical systems. It can provide an additional insight into the mechanisms and the occurrence
of extreme events. In this work, the statistical aspects of the record-breaking events drawn from
the Weibull distribution are considered and analyzed in detail. It is assumed that the underlying
sequences of events are independent and identically distributed (i.i.d.). Several statistical measures
of record-breaking events are analyzed. Exact analytical expressions are derived for the statistics
of records. Particularly, the distributions of record magnitudes and the corresponding average
magnitudes of records in case of Weibull distributed events are derived exactly for any specific record
order and time step. In addition, a convolution operation is used to derive a recursive formula for
the distribution of times of the occurrence of records. The analytical results are compared with the
Monte Carlo simulations and their validity is confirmed. The numerical simulations also reveal that
the finite-size effects strongly affect the statistics of records and need to be considered during the
analysis of numerical experiments or empirical data.

Keywords: record-breaking events; interevent times; Weibull distribution; Monte Carlo simulations;
finite-size effects
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1. Introduction

Measurements of physical characteristics in various natural phenomena, in many cases,
can be considered as a sampling of a stochastic process in time and magnitude domains.
This sampling produces time series which reflect the dynamics of the underlying physical
process. From these measurements, sequences of record-breaking events with respect to
their size (magnitude) can be extracted where each such an event is larger (smaller) than all
previous events [1–5]. The most prominent example is the daily temperature measurements
and the corresponding high (low) temperatures which were recorded during a particular
historical time interval. From the sequence of daily temperatures it is possible to extract
a subsequence of record-breaking temperatures. The analysis of these record-breaking
temperatures is of critical importance to understand future trends and variations in weather
patterns and climate changes [3,6–11].

Record-breaking events extracted from the physical measurements, thought experi-
ments, or computer simulations form a subsequence in time and are distinguished based
on their magnitudes. At a given time step a record-breaking event is defined as the largest
among all previous records. Among the following events, the event that exceeds the previ-
ous record becomes a record-breaking event [1,3–5,8]. The statistical analysis of records was
developed for the sequences extracted from the independent and identically distributed
(i.i.d.) random variables and was based on extreme value statistics [1,4,5,12]. For such
i.i.d. sequences it is known that some statistical measures of records are independent of
their underlying distribution and can be derived analytically [2]. However, the effects of
correlations and memory between events introduce complications to the theory.
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In recent years some progress has been made in analyzing i.i.d. random sequences
with time-varying underlying distributions as well as non-i.i.d. random sequences with the
presence of correlations to study the statistics of their record-breaking events. The daily
record temperatures were analyzed in Philadelphia to establish the trends and correlations
in their variations [7]. Records drawn from independent random variables but with
progressively broadening or sharpening distributions were investigated [9]. To consider
the effects of correlations in time series, record-breaking events were extracted from the
sequences generated by random walks and Lévy flights [13]. Record-breaking events were
observed and studied in the models and experiments describing the processes of rupture
and failure [14–19].

The standard model of the occurrence of the records assumes that a single event is
added at each time step. The generalization of this model can also be considered where
the occurrence of events grows stochastically in time. Particularly, several models with
deterministic growth of events were analyzed [20]. The effects of long-term correlations
was studied in the context of extreme events to quantify how the distribution of maxima
is affected by the length and the presence of persistence in the time series [21]. The same
authors also analyzed the statistics of return intervals between extremal events extracted
from the long-term correlated time series [22].

Record-breaking statistics has been also applied to seismicity. To analyze clustering
both in space and time, the record-breaking statistics was used to quantify the recurrence
times between earthquakes [23]. This was generalized to events occurring in space and time
by analyzing their recurrences which form a record-breaking process [24]. By assuming that
global earthquakes are independent and their magnitudes follow exponential distribution,
the sequences of record-breaking earthquakes were extracted and analyzed for world-wide
earthquakes with magnitudes greater than 5.5 [25,26]. Record-breaking events can also be
studied in the context of natural time analysis [27–30]. Recently, there has been interest in
developing the forecasting or nowcasting approaches related to natural seismicity where
record-breaking events can also play a prominent role [31–38].

In the present work, the sequences of i.i.d. random numbers following the Weibull
distribution were generated and the corresponding subsequences of record-breaking events
were extracted to analyze their statistical properties. The main goal of the work was
to derive analytically and confirm through numerical Monte Carlo simulations several
statistical measures describing the distribution of magnitudes and the temporal structure
of record-breaking events. The temporal structure of the record-breaking events does not
depend on the underlying distribution function from which the records are extracted. In the
work, a convolution operation was used to derive the recursive formula for the distribution
of times of the occurrence of records. In addition, the non-normalized cumulative log-
normal distribution function was used to approximate the average time of the occurrence
of the kth record. On the other hand, the distribution of magnitudes and the corresponding
averages of record-breaking events are distribution specific. In this respect, the Weibull
distribution was used to study several statistical measures of records. As a result, the
distribution of the magnitudes of the records, the average magnitudes, the average of the
values of records at given time steps, were derived analytically and confirmed through
numerical simulations.

The Weibull distribution plays a prominent role in the studies of various problems
in physics, geophysics, and engineering. It has been reported that the interoccurrence of
characteristic earthquakes on a single fault follows the Weibull distribution [39,40]. It has
been also shown that recurrence statistics in the long-range correlated time series follows
the stretched exponential distribution. The stretched exponential distribution is the Weibull
distribution with the shape parameter β in the range 0 < β < 1. The stretched exponential
distribution also plays an important role in the context of the nucleation phenomena [41].

The paper has the following structure. In Section 2, the basic known facts concerning
the statistics of record-breaking events extracted from sequences of i.i.d. random variables
are introduced. Several fundamental expressions for different measures of records are
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derived. In Section 3 the analysis of record-breaking events generated from the Weibull
distribution is presented. Several analytical results are presented and confirmed through
numerical simulations. Section 4 concludes the analysis.

2. Statistics of Record-Breaking Events

In this section, I provide an overview of several known fundamental statistical mea-
sures that characterize the record-breaking events. This measures are independent of the
underlying distribution from which the records are drawn and valid when events are i.i.d..
In addition, I derive an expression for . . .

Physical observations or computer simulations can produce a sequence of measure-
ments of a particular observable, {m(ti)}, at specific instances of time ti. Examples abound
such as daily temperature measurements, concentrations of carbon dioxide in the atmo-
sphere, flood areas, sport events with the corresponding records, occurrence of earthquakes
and volcanic eruptions, etc. These measurements can be considered as a stochastic variable.
A record-breaking event x(tn) up to time tn, has the largest magnitude among all previ-
ous events, x(tn) = max{m(t1), m(t2), . . . , m(tn−1)} [1]. A subsequent event becomes a
record-breaking one if it exceeds the current record-breaking event. In this work, a discrete
time n = 1, 2, 3, . . . is assumed to mark the times of the occurrence or generation of events
with the simplified notation: x(tn) ≡ x(n). A subscript k = 1, 2, 3, . . . is used to mark the
record-breaking events in a sequence. For example, xk specifies the magnitude of the kth
record-breaking event. As a result, for a given sequence of random events one can extract
the subsequence of the record-breaking events: {xk(n)} = x1(n1), x2(n2), x3(n3), . . ., where
n1 < n2 < n3 < ...

Several fundamental measures can be defined to study the statistics of record-breaking
events. The theory of record-breaking events typically assumes that they are i.i.d. random
numbers [4,5]. This is a direct result that the records are extracted from the sequence of i.i.d.
events drawn from a given distribution with a density function f (x). The distribution can
be bounded or unbounded depending on the problem. Record-breaking events extracted
from a bounded distribution will be bounded as well. The probability for the records to not
exceed x can be written as

F(x) =
∫ x

xmin

f (x′)dx′ (1)

where xmin specifies the lower bound of the distribution function.

2.1. Frequency-Magnitude Statistics of Record-Breaking Events

It is possible to compute the distribution of record magnitudes for each order k. The
probability density function for the kth record has the form [7]:

pk(x) =

 x∫
xmin

pk−1(x′)
1− F(x′)

dx′

 f (x) (2)

where F(x) is the distribution function given in Equation (1) from which the records are
drawn. Equation (2) is a recursive formula to compute the distribution of magnitudes
for the kth record given the distribution for the (k − 1)st record-breaking event. The
distribution of the first record, p1, coincides with the distribution from which the random
variables are drawn, p1(x) = f (x). For the second record order k = 2, by noticing that
p1(x) = f (x) = dF

dx , one can compute

p2(x) =

 x∫
xmin

dF(x′)
1− F(x′)

 f (x) =

− F(x)∫
0

d[ln(1− F)]

 f (x)

= − ln[1− F(x)] f (x) . (3)
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This generalizes for an arbitrarily order k and can be proved by induction that the
general form of Equation (2) is [42]

pk(x) = f (x)
{− ln[1− F(x)]}k−1

(k− 1)!
. (4)

Equation (4) is valid for records drawn from i.i.d. random variables with the underlying
distribution function F(x).

Using the above derived Equation (4), one can also compute the average magnitude,
〈xk〉, of the kth record-breaking event

〈xk〉 =
∫

S
x′pk(x′) dx′

=
1

(k− 1)!

∫
S

x′
{
− ln

[
1− F(x′)

]}k−1dF(x′) k = 1, 2, . . . , (5)

where S = [xmin, xmax] is the support of the distribution function F(x). In the next section
we will show that the integral in Equation (5) can be computed exactly in the case of Weibull
distributed random variables.

Similarly, the average magnitude 〈x(n)〉 of a record-breaking event at a given time
step n has the form:

〈x(n)〉 =
∫

S
x q(x, n) dx (6)

where q(x, n) specifies the probability density function for the records to occur at time n.
Therefore, q(x, n)dx is a probability to have the magnitude of the record to be between x
and x + dx at a time step n. This probability density function q(x, n) is related to F(x) as [8]

q(x, n) = n[F(x)]n−1 f (x) . (7)

Noticing that f (x) = dF
dx , Equation (6) can be written in the following form

〈x(n)〉 = n
∫

S
x [F(x)]n−1 dF(x) =

1∫
0

x d[F(x)]n . (8)

The reviewed results, Equations (4)–(8), are valid only for i.i.d. random variables.

2.2. Temporal Structure of Record-Breaking Events

To characterize the occurrence of records in time, one can estimate the average number
of record-breaking events, 〈Nn〉, that occurred up to a time step n. The quantity Nn is a
random variable. In case of i.i.d. events from which the sequence of record-breaking events
is extracted, the probability for the jth record-breaking event is Pj =

1
j [4]. Therefore, the

probability decreases harmonically with increasing time steps.
It can be shown that the average number of records, 〈Nn〉, is [4]

〈Nn〉 =
n

∑
j=1

Pj = Hn ' γ + ln(n) +O(1/n) for n→ ∞ (9)

where γ ≈ 0.577215665 . . . is the Euler–Mascheroni constant and Hn is a harmonic number,
Hn = ∑n

j=1
1
j , Ref. [43]. This signifies that the average number of records increases as

〈Nn〉∼ln n for large n and is independent of the underlying distribution function F(x).
When the records are extracted from processes with memories or long range correlations,
the average number can deviate from the growth given in Equation (9).
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To quantify the variability of the average number of records, one can compute the
variance [9]

Var(Nn) = 〈(Nn − 〈Nn〉)2〉 =
n

∑
j=1

(
1
j
− 1

j2

)

' γ + ln(n)− π2

6
+O(1/n), n→ ∞ . (10)

For i.i.d. record-breaking events, the ratio of the variance, Equation (10), to the mean,
Equation (9), approaches unity as n → ∞ and the distribution of the number of events
at each time step Nn become Poisson with the mean value ln n. This signifies that the
occurrence of records follows a log-Poisson process [9].

The distribution of times between two subsequent record-breaking events (interevent
times) characterizes the process of the occurrence of records. The interevent time between
kth and (k − 1)st record-breaking event is defined as m = tk − tk−1. For the records
drawn from i.i.d. random events, the distribution of interevent times is independent of the
underlying distribution of magnitudes and the corresponding non-normalized histogram
follows a power law: G(m) = 1/m, [8]. This power-law distribution is obtained by
considering all interevent times between records in a given sequence.

In addition, it is possible to consider the probability that the kth record is broken after
m time steps. The corresponding distribution function, wk(m), provides a more detailed
structure of times between consecutive records [5,7]

wk(m) =

∞∫
0

pk(x) [F(x)]m−1[1− F(x)] dx for m ≥ 1 (11)

where F(x) is the underlying distribution function of the random variables from which
records are drawn. The expression, Fm−1(xk)[1− F(xk)], gives the probability that the
previous record, kth, is broken after m ≥ 1 time steps and the new (k + 1)st record has the
value xk+1. Equation (11) is obtained by averaging this probability over all possible values
of x.

The probability that the 1st record (k = 1) is broken after m time steps, w1(m), can
be computed explicitly. This can be achieved by using the fact that p1(x) = f (x) = dF

dx .
Substituting this into Equation (11) and performing integration by parts, one has

w1(m) =

1∫
0

Fm−1(1− F) dF =
1

m(m + 1)
for m ≥ 1 . (12)

This distribution is a power-law; as a result, the average interevent time between the first
and the second records is infinite, 〈m1〉 = ∑∞

m=1 m w1(m) = ∞.
Using Equation (4), Equation (11) can be written using the cumulative distribution

function F(x) with the result

wk(m) =
1

(k− 1)!

1∫
0

[− ln(1− F)]k−1 Fm−1(1− F) dF . (13)

The integration can be performed explicitly and one obtains [42]:

wk(m) =
m

∑
l=1

(−1)l+1 (m− 1)!
(m− l)!(l − 1)!

1
(l + 1)k . (14)
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For k = 2 and 3, one has

w2(m) =
Hm

m
− Hm+1

m + 1
(15)

w3(m) = − 1
2(m + 1)3 +

π2

12m(m + 1)

+
H2

m
2m
−

H2
m+1

2(m + 1)
− Ψ(m + 1)

2m(m + 1)
(16)

where Hm is a harmonic number and Ψ(m + 1) = −γ + Hm is a digamma function [43].
The obtained results illustrate that, for the records drawn from the i.i.d. random variables,
the probability distribution wk(m) is independent of the magnitude distribution F(x)
of records.

Finally, it is also possible to define and analyze the probability distribution, uk(n), for
the time of the occurrence of the kth record-breaking event at a given time step n. By know-
ing this probability distribution, one can compute the average time 〈nk〉 = ∑∞

n=1 n uk(n) of
the occurrence of the kth record-breaking event. It is obvious that the first event is always
a record-breaking event; as a result, 〈n1〉 = 1. The distribution for the time of the occur-
rence of the second record-breaking event, u2(n), is the same as the distribution, w1(n), of
interevent times between the first (k = 1) and second (k = 2) records. The occurrence times
of the kth record, nk, is a random variable. It can be computed as a sum of two random
variables, nk = nk−1 + mk−1, where nk−1 is the occurrence time of the (k− 1)st record and
mk−1 is the interevent time between (k− 1) and k records. Therefore, the distribution of
times of the occurrence of the kth record, uk(n), can be computed recursively using the
discrete convolution of the two densities uk−1(n) and wk−1(m) with the result:

uk(n) =
∞

∑
m=1

uk−1(n−m)wk−1(m) . (17)

In practice, this distributions cannot be evaluated explicitly, except for k = 2, where it
coincides with w1(n). Instead, one can use a numerical approximation by using long
but finite sequences of events to perform the convolution operation and computing the
distributions recursively for specific values of k. This can also be achieved through Monte
Carlo simulations of events drawn from a well-known distribution to compute explicitly
the distributions of the occurrence times. This is going to be illustrated in the next section.

Next, I consider the record-breaking events extracted from the sequences of random
variables drawn from the Weibull distribution.

3. Weibull Record-Breaking Events

A particular example of record-breaking events can be analyzed by constructing the
sequence of i.i.d. random numbers drawn from the Weibull distribution. The probability
density function, f (x), for the Weibull distribution is

f (x) =
β

τ

( x
τ

)β−1
exp

[
−
( x

τ

)β
]

(18)

where β and τ are the shape and scaling parameters, respectively. When β = 1, this
reduces to the exponential distribution. In the case of 0 < β < 1, this defines the stretched-
exponential distribution. The corresponding distribution function is given by

F(x) =
∫ x

xmin

f (x′)dx′ = 1− exp
[
−
( x

τ

)β
]

. (19)

In order to investigate various statistical measures of record-breaking events drawn
from the Weibull distribution, I performed Monte Carlo simulations and compared numeri-
cal results with theoretical ones. As stated in the previous section, the temporal structure
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of record breaking events is independent from the underlying distribution. On the other
hand, the distribution of magnitudes and the corresponding averages are not. In the case of
the Weibull distribution, they can be derived analytically. This is illustrated in this section.

First, I illustrate the known results for the evolution of the records drawn from any
underlying distribution. The average number of record-breaking events 〈Nn〉, which
occurred up to time step n, is shown in Figure 1a and follows Equation (9). Next, the index
of dispersion of record average numbers, which is defined as the ratio of the variance to
the mean value of records, is shown in Figure 1b as solid symbols and is computed as the
ratio of Equation (10) to Equation (9) at any time step n.

The probability density function, pk(x), for the magnitude of the kth record-breaking
event can be computed analytically using Equations (4), (18), and (19) and has the form:

pk(x) =
1

(k− 1)!
β

τ

( x
τ

)kβ−1
exp

[
−
( x

τ

)β
]

k = 1, 2, . . . , (20)

with

p1(x) = f (x) and p2(x) =
β

τ

( x
τ

)2β−1
exp

[
−
( x

τ

)β
]

. (21)

The comparison of the Monte Carlo simulations of the Weibull random variables and
Equation (20) for the several record orders k = 1, 2, . . . , 10 is given in Figure 2a for β = 4.0
and τ = 1.0. This confirms the validity of our simulation results. It also shows the
deviations from the theoretical distributions given by Equation (20) starting for orders
larger than k ≥ 8. This is attributed to the finiteness, T = 106, of the generated sequences.

100 101 102 103 104 105 106

0

2

4

6

8

10

12

14  < Nn > - average number,  Eq. (9)

 Varn = < Nn
2 > - < Nn >

2 - variance,  Eq. (10)

 

< 
N
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n

a)
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0.0

0.2

0.4

0.6

0.8

1.0
b)

 Varn / < Nn >

 

V
ar

n /
 <

 N
n >

n

Figure 1. (a) The average number, 〈Nn〉, of record-breaking events versus time step n by Equation (9).
(b) The index of dispersion of the record numbers is defined as the ratio of the variance to the mean
value of the record numbers Nn. This is given as the ratio of Equation (10) to Equation (9).
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Figure 2. (a) The distribution of values of the kth record breaking event, pk(x). Symbols are from
Monte Carlo simulations of Weibull random variables with β = 4.0 and τ = 1.0 for sequences of
T = 106 time steps and averaged over 105 realizations. The solid curves are given by Equation (20) for
different values of record orders k = 1, 2, . . .; (b) the mean value 〈xk〉 of the kth record-breaking event
versus record order, k. The dashed curves are given by Equation (22); (c) the average magnitude, 〈xn〉,
of record-breaking events versus a time step n. The symbols correspond to the numerical evaluation
of Equation (24) for the corresponding values of the Weibull parameters.
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The mean value, 〈xk〉, of the kth record-breaking event can be evaluated exactly using
Equation (20) with the result:

〈xk〉 =
∞∫

0

x′pk(x′) dx′ = τ
Γ
(

k + 1
β

)
(k− 1)!

k = 1, 2, . . . , (22)

where Γ(x) is the gamma function. When β = 1, this reduces to the known result for the
exponential distribution, 〈xk〉 = τk, [7]. The comparison of the record-breaking events
constructed from the Monte Carlo simulations of the Weibull random variables and a plot
of Equation (22) is given in Figure 2b for several values of β and τ = 1.0. The simulated
values start to deviate from the theoretical ones starting from the 8th record order for these
particular simulations where I have used sequences of T = 106 time steps. The finiteness of
the sequences plays an important role in the statistics of the record breaking events and has
to be taken into account when comparing with the analytical results. This is also evident in
Figure 2a where the distributions of magnitudes of record-breaking events deviate from
ones given by Equation (20) starting from the record order k = 8.

The probability density function q(x, n), Equation (7), can be computed analytically in
the case of the Weibull random variables. Using Equations (7), (18), and (19), one obtains:

q(x, n) = n
β

τ

( x
τ

)β−1
exp

[
−
( x

τ

)β
]{

1− exp
[
−
( x

τ

)β
]}n−1

. (23)

The average value 〈x(n)〉 of the record-breaking events at time step n can be derived
by substituting Equation (23) into Equation (6)

〈x(n)〉 = n β

∞∫
0

( x
τ

)β
exp

[
−
( x

τ

)β
]{

1− exp
[
−
( x

τ

)β
]}n−1

dx . (24)

The integral in Equation (24) can be evaluated analytically with the result (see Appendix A):

〈x(n)〉 = τ

β
Γ
(

1
β

) n

∑
k=1

(−1)k+1
(

n
k

)
k−

1
β . (25)

It is worthwhile to note that 〈x(1)〉 = τ
β Γ
(

1
β

)
is equal to the mean of the Weibull distribu-

tion for given parameters τ and β.
For β = 1 and β = 1/2, Equation (25) has the form:

〈x(n)〉 = τ Hn for β = 1 (26)

〈x(n)〉 = τ

[
π2

6
+ H2

n − ψ(1)(n + 1)
]

for β =
1
2

(27)

where ψ(1)(n + 1) is a polygamma function [43].
It is also possible to obtain the asymptotic limit of Equation (24) in the case of large

time steps:

〈x(n)〉 ' τ

β
Γ
(

1
β

)
(Hn)

1/β ' τ

β
Γ
(

1
β

)
[γ + ln(n)]1/β for n→ ∞ . (28)

Using the above Equation (24), one can compute the average value 〈x(n)〉 of the
record-breaking events at different time steps n. The results are illustrated in Figure 2c
where the values are computed using the numerical integration of Equation (24) for several
values of β and fixed τ = 1.0.

In addition, I estimated the distributions for which the kth record is broken after m
time steps, wk(m), from the numerical simulations of Weibull random variables. I also
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compared them with ones given by Equation (13), which is valid for i.i.d. random variables
drawn from any underlying distribution function. The results of Monte Carlo simulations
and evaluation of Equation (13) are shown in Figure 3a for the first several orders of
k = 1, 2, . . . , 10, which confirm the derived formulas.

I also computed the distribution of interevent times between all subsequent record-
breaking events, g(m). These distributions were constructed by counting all interevent
times for all record orders k. The results are illustrated in Figure 3b for the Weibull random
variables for several values of β and τ = 1.0. For comparison, I also plot as a dashed line
the non-normalized distribution G(m) = 1/m. The finite size effects are also present in
the distributions g(m). For large values of m, they are influenced by the finiteness of the
interval T = 106.
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Figure 3. (a) The probability density functions, wk(m) of records for a given order k which are
broken after m time steps. Numerical simulations (symbols) as well as analytical results (solid
curves, Equation (13)) are shown for the first several orders of k = 1, 2, . . . , 10. (b) The distribution
of interevent times, g(m), between successive record-breaking events for several values of model
parameters are given. For reference, the non-normalized histogram G(m) = 1/m is given as a
dashed line.

The probability density functions, uk(n), for the time of occurrences of the kth record-
breaking event versus a time step n are shown in Figure 4a for the first several orders
of k = 2, . . . , 10. As mentioned above, the distribution function u2(n) coincides with the
distribution function w1(m). This is confirmed by plotting Equation (12) as a solid purple
line in Figure 4a. The subsequent solid green curve for the (k = 3)th record breaking
event was computed using the recursive formula, Equation (17). For higher-order record
distributions, the computations using the recursive formula become very time consuming.
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In addition, the average times 〈nk〉 of the occurrence of the kth record-breaking event
are given in Figure 4b. These times are independent of the parameters of the Weibull
distribution. This is related to the fact that the temporal structure of the record-breaking
events drawn from i.i.d. random variables does not depend on the underlying distribution
from which random variables are drawn.

To approximate the functional form of the variability of the average times 〈nk〉, the
following function was considered and fitted to the simulated data given in Figure 4b:

φ(x) = A
x∫

0

1√
2π σ u

e−
[ln(u)−µ]2

2σ2 du . (29)

The estimated parameters from the fit were A = 634, 263± 216, 565, µ = 2.87± 0.35, and
σ = 0.44± 0.42 with the corresponding 95% confidence intervals. The corresponding
Equation (29) is plotted as a solid black line in Figure 4b. As a result, the average time
for the occurrence of the kth record is 〈nk〉 = φ(k). Equation (29) is in fact the cumulative
distribution function of the log-normal distribution multiplied by the parameter A.
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Figure 4. (a) The distribution of times of the kth record breaking event, uk(n), are shown for the
first several orders of k = 2, 3, . . . , 10. The solid lines were computed using the recursive formula,
Equation (17); (b) the average time 〈nk〉 of the occurrence of the kth record-breaking event for several
values of the Weibull model parameters.

4. Conclusions

In this work, I analyzed both analytically and numerically the statistics of record-
breaking events extracted from the sequences of i.i.d. random variables drawn from
the Weibull distribution. I derived several analytical results concerning the magnitude
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distribution and the corresponding averages of records and confirmed them through
numerical simulations. The numerical simulations revealed that the finiteness of the
sequences considered, T, played an important role for higher record orders, k. This is
particularly evident in Figure 2a,b, where one observes significant deviations from the
theoretical results for orders larger than k ≥ 8. This is attributed to the fact that the statistics
for higher order records come from the entries generated closer to the end of the sequences.
Therefore, the finiteness of the sequences influences these statistics.

I derived exact analytical expressions for the distribution of magnitudes, Equation (20),
and the average magnitude, Equation (22), of the record-breaking events of a given order
k. Similarly, I derived an exact analytical expression for the average record magnitude at
a given time step n reported in Equation (25). This formula has simpler representations
for particular values of β, and the expressions are reported in Equations (26) and (27) for
β = 1 and 1/2, respectively. I also provided the asymptotic form of Equation (25) for large
values of n given in Equation (28). In addition, a recursive formula was derived for the
distribution of record times, Equation (17). All these obtained results were compared to
numerical simulations to confirm their validity.

The presented analysis confirmed that the temporal structure of the studied record-
breaking events extracted from the Weibull random variables did not depend on the
underlying distribution function. On the other hand, the magnitude distributions and the
corresponding average values were controlled by the shape of the underlying distribution
from which record sequences were extracted.

Funding: This research was funded by an NSERC Discovery grant.

Data Availability Statement: No new data were created in this work.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of Equation (25)

To evaluate the integral in Equation (24), I first rewrite it in terms of a new variable
y =

( x
τ

)β

〈x(n)〉 = n β

∞∫
0

( x
τ

)β
exp

[
−
( x

τ

)β
]{

1− exp
[
−
( x

τ

)β
]}n−1

dx

= n τ

∞∫
0

y
1
β e−y (1− e−y)n−1 dy . (A1)

Then, I expand the term which depends on n as a binomial sum and exchange the operations
of integration and summation with the result:

〈x(n)〉 = n τ

∞∫
0

y
1
β e−y

[
n−1

∑
k=0

(−1)k (n− 1)!
(n− 1− k)!k!

e−ky

]
dy

= n τ
n−1

∑
k=0

(−1)k (n− 1)!
(n− 1− k)!k!

∞∫
0

y
1
β e−y(k+1) dy . (A2)

One can observe that the integral in Equation (A2) is proportional to the gamma function.
By shifting the index of summation, I finally obtain:

〈x(n)〉 = τ

β
Γ
(

1
β

) n

∑
k=1

(−1)k+1
(

n
k

)
k−

1
β . (A3)
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