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Abstract: This work focuses on functional data presenting spatial dependence. The spatial auto-
correlation of stock exchange returns for 71 stock exchanges from 69 countries was investigated
using the functional Moran’s I statistic, classical principal component analysis (PCA) and functional
areal spatial principal component analysis (FASPCA). This work focuses on the period where the
2015–2016 global market sell-off occurred and proved the existence of spatial autocorrelation among
the stock exchanges studied. The stock exchange return data were converted into functional data
before performing the classical PCA and FASPCA. Results from the Monte Carlo test of the func-
tional Moran’s I statistics show that the 2015–2016 global market sell-off had a great impact on the
spatial autocorrelation of stock exchanges. Principal components from FASPCA show positive spatial
autocorrelation in the stock exchanges. Regional clusters were formed before, after and during
the 2015–2016 global market sell-off period. This work explored the existence of positive spatial
autocorrelation in global stock exchanges and showed that FASPCA is a useful tool in exploring
spatial dependency in complex spatial data.

Keywords: functional data analysis; spatial autocorrelation; principal component analysis; stock
market
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1. Introduction

Functional data analysis (FDA) is widely applied in many disciplines of science, eco-
nomics and so on. FDA expresses discrete observations in the form of functions which
creates functional data. The entire measured function is represented as a single observation.
Statistical concepts from multivariate analysis are then applied to model and perform
analysis from a collection of functional data. A comprehensive overview of the funda-
mental principles and applications of FDA is available in [1]. FDA has found many recent
applications due to its ability to simplify analyses especially in multivariate, spatial and
time series analyses. Some recent works involving FDA include [2,3]. A systematic review
of the applications of FDA is available in [4].

As complex and high-dimensional spatial data have been more readily available over
the past two decades, it prompted many new investigations on spatial dependence of
subjects in various fields. The authors of [5] analyzed the spatial dependence of bankruptcy
in Spain using Moran’s I index and the local association index. A relatively new branch
of statistics known as the spatial functional statistics (SFS) was developed to analyze this
type of data. SFS incorporates the spatial structure in the FDA framework [6]. One of the
earliest developments of SFS can be found in [7], which provides different approaches
to integrating spatial data into FDA based on the type of spatial data, e.g., geostatistical
data, point patterns and areal data. The authors of [8] proposed a spatial FDA approach
where spatial clustering using local spatial autocorrelation was combined with distances
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calculated directly from functional data. The proposed procedure was then applied to areal
diversity profiles. Furthermore, reference [9] devised a dimension reduction technique
appropriate for functional data which is indexed by spatial locations on a grid.

One of the most essential tools in FDA is functional principal component analysis
(FPCA). This work aims to combine FPCA and spatial statistics to analyze spatial autocor-
relations among global stock exchanges. The idea of using PCA for spatial data was first
proposed by [10] by developing multivariate spatial principal component analysis (sPCA)
to find subtle spatial patterns in genetic data. By reducing the dimensionality of the geo-
referenced genetic data, the principal components were used to create maps of projected
PC scores which provided more insights to the spatial patterns. FASPCA is a combination
of sPCA developed by [10] and FDA. Similarly, FASPCA reduces the dimensionality of data
with a spatial component which is an important aspect in investigating spatial autocorrela-
tions among areal data points. Spatial autocorrelation characterizes the spatial relationship
in data. A set of data where data points have similar values as their neighboring data points
will have, by definition, a higher spatial autocorrelation. One of the widely used measures
of spatial autocorrelation is the Moran’s I statistic. The implementation of the Moran’s I
statistic in the FDA framework is implemented in this work.

This study seeks to analyze the spatial autocorrelations of global stock exchanges using
the daily return data. The spatial dependencies of global and regional stock exchanges
represent important information for policy makers and investors to build an optimally di-
versified portfolio. There has been research on the spatial dependencies of stock exchanges
which used spatial econometric methods to investigate the impact of a financial crisis on
the spatial autocorrelations of stock exchanges. Most of these studies in the literature
focused on how financial crises such as the United States (USA) subprime crisis (2008)
and the European sovereign debt crisis (2011) affected the spatial autocorrelations of stock
exchanges [11,12]. The spatial dependence of between risks of stock markets was analyzed
in [13] by studying the impact of systemic risk on spatial dependence related to some of
the most significant financial crises.

Particularly, the impacts from these two financial crises were observed to increase
the spatial autocorrelations of global stock exchanges. Most studies relating to the spatial
analysis of stock exchanges focused on the 2008–2013 period. The Asian region, specifically
East and Southeast Asia, witnessed a financial crisis in the late 1990s. The foreign exchange
market data based on the synchrony level of the Canadian Dollars/United States Dollars
and Singapore Dollars/United States Dollars foreign exchange rate time series were ana-
lyzed by [14] before and after the 1999 Asian financial crisis using cross-sample entropy.
It is uncertain how other financial crises such as the 2015–2016 market sell-off impacted
the spatial autocorrelations of global and regional stock exchanges. The 2015–2016 global
market sell-off lasted from approximately June 2015 to June 2016. It was triggered by the
crash of the Shanghai stock exchange in China which was followed by other international
events, for example the Greek debt default in June 2015, the fall in petroleum prices and
the Brexit vote announcement in February 2016. This work aims to use FASPCA to analyze
spatial autocorrelations in global stock exchanges and reveal spatial patterns in the data.
This work also investigates the impact of the 2015–2016 global market sell-off on the spatial
dependencies of global stock exchanges.

2. Data Description

The daily closing prices from 71 stock exchanges of 69 countries worldwide were
obtained from Investing.com and Yahoo Finance for the period from 1 June 2014 to 1 June
2017. As mentioned earlier, one of the recent major global stock market crashes/sell-offs
occurred from June 2015 to June 2016. The sample period was divided into period 1 (one
year before the market-crash), period 2 (during the market crash) and period 3 (one year
after the market crash). This allowed the spatial autocorrelation in the sample period to
be analyzed individually and comparatively. The days where the stock data were not
available due to holidays in any countries were imputed with values of the trading day
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before. Secondly, for stock exchanges which operated from Sunday to Thursday, e.g., the
Saudi stock exchange, the closing price for Friday will be imputed with Sunday’s closing
price. This allows each closing price from the 71 stock indices to be analyzed based on
standardized trading days. This allows each closing price from the 71 stock indices to have
the same sampling date.

3. Methodology
3.1. Data Smoothing for Functional Data Analysis

Consider n spatial locations i, one observed discrete measurement Yi,x,t taken at time
t of location i ∈ I ⊂ Z2, I a lattice region V, for a given x ∈ X = [T1, T2]. In this study,
Yi,x,t is the log return observed on x where x is a date indexed by T1 = 0 and T2 = 259, in
year t ∈ D = {(1 June 14− 1 June 15), (1 June 15− 1 June 16), (1 June 16− 1 June 17)}
for each stock exchange at location i. Assume that, for a given t these measurement points
Yi,x,t are noisy observations of a smooth areal stochastic functional process {Si,t}i∈I, t∈X :

Yi,x,t = µt(x) + Si,t(x) + εi,x,t (1)

where µt is the mean function at time t (year). The n functions Si,t(.) are the centered spatial
squared integral functional random variables on the space–time domain I × D, namely
Si,t(.) is valued in the Hilbert space L2(X) endowed with the inner product 〈 f , g〉 =∫

X f (x)g(x)dx, for f , g in L2(X). The unobserved variables {εi,x,t, i = 1, . . . , n} are i.i.d
with zero mean Gaussian measurement errors with variance σ2.

A Karhunen–Loève expansion for the n functions Si,t(x) [15] is postulated as follows:

Si,t(x) =
∞

∑
k=1

βk,i,tφk(x) (2)

where φk’s are the orthonormal eigenfunctions and βk,i,t are the autocorrelated scores
(functional principal components, FPC, which will serve as a foundation in constructing
FASPCA, are discussed in Section 3.3). In practice, the sum is a truncated finite integer, K
which is to be chosen.

To compute the FPCs, the sample data (Si,t)i=1,...,n can be expressed by means of a
truncated basis expansion:

Si,t(x) =
∞

∑
m=1

ci,m,Bm(x) ≈
p

∑
m=1

ci,mBm(x), x ∈ X (3)

where Bm(.) is some collection of basis functions, ci,m = 〈Si,t, Bm〉 have zero mean.
Two main basis systems for building functions were presented by [1]. The Fourier

basis system is commonly used for period data. The B-spline basis system is preferable
for nonperiodic data. For log return data of stock exchanges, the B-spline basis system
provides more flexibility. Once the basis system is selected, the technique of roughness
penalized least square is adopted to achieve data fitting and smoothing. The criterion of
roughness penalized fitting can be expressed in general as:

F(β) = ∑
j
[Yi,j,t − Si,t

(
xj
)
]
2
+ λ

∫
[L(Si,t(x))]2dx (4)

where λ ≥ 0 is the smoothing parameter, and L(.) is the differential operator. The second
term is often called as the total curvature of the range of x. Therefore, λ controls the
“roughness” of the function relative to the least square specified in the first term. It is
customary in the roughness penalty approach to choose a number of basic functions
comparable to the number of data observed. The value of λ is determined through general
cross validation to ensure that the functions are not over-smoothed or overfitted. The
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fitting and smoothing of the curves with the B-spline basis system was performed using
the fda [16] package in the R software.

3.2. Functional Moran’s I Statistic and Its Implementation on Spatial Weight Matrices

The classical univariate Moran’s I statistic [17] of a n row vector Xm of components
{ci,m}i=1,...,n is expressed as:

∼
I (Xm) =

XT
mWXm

XT
mXm

(5)

where W =
(
Wij
)

is a spatial weight matrix and Wij represents the neighboring relation
between two locations, i and j. Moran’s I statistic is a measure of spatial autocorrelation
which quantifies the spatial dependency among observations in a geographic space [10].
The Moran’s I statistic was extended to the functional context [18] resulting in the func-
tional Moran’s I statistic. The functional Moran’s I statistic of an n row vector S(x) with
components {Si(x)}i=1,...,n can be described as:

I(S(x)) =
Cn(S(x))
σn(S(x))

(6)

where
Cn(S(x)) ≈ 1

n
B(x)TXTWXB(x) (7)

σn(S(x)) ≈ 1
n

B(x)TXTXB(x) (8)

where X is a n× p matrix that consists of the scores (ci,m)i=1,...,n;m=1,...,p of S(x); B(x) is a
p× 1 vector of components Bm(x), m = 1, . . . , p. This study seeks to examine the existence
of spatial autocorrelation in the log returns for 71 global stock exchanges. The functional
Moran’s I statistic (6) is used here.

Choices of Weight Matrices

Spatial weight matrices can be classified into two groups by how the weights are
constructed, i.e., weights based on boundaries (more commonly known as contiguity-based
weights) and weights based on distances. Contiguity-based weights can be used when
neighboring locations share a common boundary and/or vertices. In this study, contiguity-
based weights are unsuitable as there exist countries which have no common boundaries
with any countries in their proximity.

Weights based on distance can generally be constructed using criteria such as KNN,
radial distance weights, power distance decay weights [19] and proximity graphs [10,20,21].
However, weights such as radial distance weights require a specification of a critical
distance which is inappropriate in this study. Therefore, this study proceeded with KNN
and the graph-based Gabriel neighbor which is one of the proximity graphs.

The great-circle distance was chosen to be the measure of distance between countries.
The KNN matrix was constructed by setting k = 4 which selected the four nearest neighbors
for each location i. This was because the average number of links for each country in the
Gabriel graph is more than 3 and less than 4. k = 4 was selected to match it and ensured the
comparison between two weight matrices were fair at this stage. The entries of the KNN
matrix are given as:

wij =

{
Nk(i)−1, i f j ∈ Nk(i)

0, otherwise

where Nk(i) is the set of k closest neighbours of location i. The KNN matrix is standardized
such that the sum of each column and row equals to 1. The graph-based Gabriel neighbor
matrix was constructed using the following inequality:

d(i, j) ≤ min((d(i, q)2 + d(j, q)2)
1
2 | q ∈ Q) (9)
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where Q is the set of all locations. The entries of the graph-based Gabriel neighbor matrix
are given as:

wij =

{
Nk(i)−1, i f (i, j) satis f ies (9)

0, otherwise

where Nk(i) is the set of neighbors of location i. The graph-based Gabriel neighbor matrix
is also standardized such that the sum of each column and row equals to 1.

In this study, a Shapiro–Wilk test is used to test the normality of the log return data. If
the log return data are shown to violate the normality assumption, a Monte Carlo test is
performed on the Moran’s I statistic. The spdep [22] package in the R software was used to
generate spatial weight matrices as well as perform the Monte Carlo test on the Moran’s
I statistics.

3.3. FASPCA
3.3.1. Spatial Principal Component Analysis (sPCA)

The classical principal component analysis (PCA) finds scaled vectors uk, k = 1, . . . ,
p (‖ uk ‖= 1), such that the variances of the scores ϕk = Xuk (X is a n× p data matrix) are
maximized [10]. This can be expressed as:

‖ Xuk ‖2
1/n =

1
n

uk
TXTXuk (10)

where ‖ Xuk ‖2
1/n = var(ϕk).

The classical PCA is designed to summarize variabilities in the data with the scores
ϕk. However, it is not designed to reveal spatial patterns as it lacks spatial components in
the analysis.

sPCA was designed to produce scores which summarize variability and reveal spatial
structures in the data simultaneously [10]. sPCA finds scaled vectors vk, k = 1, . . . ,
p (‖ vk ‖= 1), such that the scores χk = Xvk are both scattered and spatially autocorrelated.
Instead of maximizing (10), it identifies the extreme values of the following criterion C(vk):

C(vk) = var(Xvk)I(Xvk) =
1
n

vk
TXTWXvk (11)

where I(.) is the Moran’s I statistic. The components of the classical PCA are calculated
based on the positive definite covariance matrix which led to positive eigenvalues. The
components of vk are calculated based on Equation (11) and is related to 1

n XTWX which
is not positive definite because of W (see [10] for more details). This causes some of the
principal component scores to be associated with negative eigenvalues.

C(vk) is highly positive when Xvk has a large variance and exhibits a global spatial
structure and is highly negative when Xvk has a large variance but with a local spatial structure.

3.3.2. Implementation of FASPCA

A study where the sPCA is extended to functional framework to consider spatial auto-
correlation on the variable of interest in the sampling locations is of interest. FASPCA was
developed as a functional version of sPCA which pertains to areal spatial data [18] being
implemented. In FASPCA, discrete sample data (Si,t)i=1,...,n are first fitted into functions
according to the procedure presented in Section 3.1. The functions are expressed as:

Si,t(x) =
∞
∑

m=1
ci,m,Bm(x) ≈

p
∑

m=1
ci,mBm(x)

S(x) ≈ CB(x)

where S(x) is the n× 1 vector of functions Si,t(x), B(x) is the p× 1 vector of components
Bm(x), m = 1, . . . , p, and C = (ci,m)i=1,...,n;m=1,...,p is a n× p coefficient matrix.
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C is then used along with Equation (11) to obtain vk, k = 1, . . . , p and subsequently
the scores χk = Cvk.

C ≈
^
C =

p

∑
k=1

χkvT
k (12)

S(x) ≈
^
CB(x) =

(
p

∑
k=1

χkvT
k

)
B(x) (13)

where
^
C is the approximation of C using orthonormal vectors vk and the scores χk.

The FASPCA decomposition is then achieved by setting φ̂k(x) = vT
k B(x) to be the

estimated eigenfunctions and the n row vector of functional scores
^
βk = S(.), φ̂k(.). For

each entry Si,t(x) of S(x), this can be summarized as:

Si,t(x) ≈ µ̂t(x) +
p

∑
k=1

β̂k,i,tφ̂k(x) (14)

where µ̂t(x) = 1
n ∑n

i=1 Si,t(x), is the empirical mean with β̂k,i,t =
∫ T

0 Si,t(x)φ̂k(x)dx.

3.4. Summary

In summary, the first part of the study consists of fitting and smoothing the log
return data of the stock exchanges using a suitable basis system. The next step involves the
calculation of the functional Moran’s I statistic to check if there exists spatial autocorrelation
in log return data. Monte Carlo tests are performed on the Moran’s I statistic to verify if
the log return data violate the normality assumption. For the second part of this study,
the classical PCA is used on the log return data. However, the classical PCA cannot
provide information about the spatial dependency in the data. Therefore, FASPCA is used
to generate PCs which contain information about global and local structures in the log
return data [18]. A global structure corresponds to a positive eigenvalue resulting from a
strong variance and positive spatial autocorrelations. Thus, it is a pattern where each data
point has a PC score similar to its neighbors. A local structure corresponds to a negative
eigenvalue resulting from a strong variance but a negative spatial autocorrelation. It is
a pattern where each data point has a PC score dissimilar to its neighbor (Jombart et al.
2008). FASPCA was implemented using the fda [16], adegenet [23], adespatial [24] and
ade4 [25–28] packages from the R software.

4. Results and Discussions
4.1. Stationarity in Time and Space

From both spatial and temporal perspectives, stationarity indicates whether the data
have constant mean and variance in each location or time. It is important for the space and
time variables to be stabilized before applying PCA. Daily closing prices of each stock were
converted into daily logarithmic returns using ln pt − ln pt−1, where pt is the closing price
at time t. This transformation is essential to ensure stationarity in time. The stationarity
in time of daily logarithmic returns for each stock exchange was inspected using three
tests, namely, the Augmented Dickey–Fuller test [29], the KPSS test for level and trend
stationarity. The test results of all the data indicated that all daily logarithmic returns of the
stock indices were stationary in time.

Spatial stationarity of the functional data was examined using a trace variogram [30]
with the aid of the geofd package [31]. These findings showed that an exponential trace
variogram fits the functional data best. Then the functional spatial data are not far from
satisfying the spatial stationarity requirement from a Gaussian field with exponential trace
variogram. This is applicable to all three time periods investigated.
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4.2. Functional Moran’s I Statistic

The log return data were transformed into functions using Equation (3) where the basis
system had been chosen to be B-spline. The presence of spatial autocorrelation in the data
was verified for the three periods separately. The Shapiro–Wilk test [32] was performed to
assess the normality of the log return data. It was found that the log return data violated
the normality assumption. Therefore, Monte Carlo permutation tests were performed using
999 random permutations of the log return data. The Monte Carlo permutation tests were
carried out for both KNN and graph-based Gabriel connection networks. Table 1 shows
the existence of positive spatial correlations in the log return data with both connection
networks. In Table 1, a classical Moran’s I statistic was calculated by viewing the log return
data matrices as panel datasets. Moreover, the classical Moran’s I statistic indicates that
the spatial autocorrelation increased in period 2 which subsequently decreased in period 3.
The same behavior is observed for both connection networks.

Table 1. Classical Moran’s I statistic for log return data of stock exchanges in 71 countries based on
KNN and Gabriel connection network.

Weight Matrix Period 1 Period 2 Period 3

KNN 0.242 ** 0.375 ** 0.283 **
Gabriel 0.258 ** 0.399 ** 0.306 **

Note: ** p-value < 0.001.

Functional Moran’s I Statistics—Results and Discussions

Figure 1 illustrates the functional Moran’s I statistic for both the KNN and graph-based
Gabriel connection networks. It can be seen that the functional Moran’s I statistic of both
connection networks show comparable movements. In period 1 (black curves) which is a
year before the start of the global market sell-off, the spatial autocorrelation was fluctuating
at a relatively low level until October 2014 where the spatial autocorrelation increased
substantially. This could be explained by the end of the quantitative easing program in the
USA in October 2014. According to [33], the quantitative easing program from 2008–2014
led to positive spillover effects on emerging market countries such as Brazil, India and
Indonesia, as well as other smaller emerging markets. The spatial autocorrelation dropped
quickly to almost zero and then steadily increased until June 2015 (end of the black curves).
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In period 2 (red curves), the spatial autocorrelation was fluctuating at a relatively high
level with period 1. The Chinese stock market crash in June 2015 corresponded to the
increase in spatial autocorrelations. Results from [34] suggested that financial spillovers
on regional stock markets have been steadily growing through increasing trade linkages
with other countries prior to the stock market crash. Furthermore, the announcement of the
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Brexit referendum was found to increase the spatial autocorrelations noticeably in February
2016. According to [35], the announcement increased all the market co-volatilities in the
eurozone where the co-movements between Germany, France and Italy (Western Europe)
increased the most.

In period 3 (green curves), the spatial autocorrelation peaked at the start of the period
(June 2016) which slowly decreased and fluctuated at a similar level as period 1. The
peak matched the release of the Brexit referendum results. The analysis presented by [36]
indicated that the neighboring equity markets in the eurozone, specifically the PIIGs group
(Portugal, Ireland, Italy, Greece and Spain), were most affected. On the other hand, the
BRICs countries (Brazil, Russia, India, China and South Africa) experienced positive returns
during this period. A similar trend in spatial autocorrelations was observed during the
financial crisis in 2008, where negative shocks emanating from the USA stock markets led
to the increase in spatial autocorrelations among the global equity markets. This eventually
decreased to the pre-crisis level after the financial crisis subsided [11].

4.3. FASPCA’s Results

Three cases were performed for comparative purpose. The first case uses functional
PCA (FPCA) to generate functional PCs. The second case uses the FASPCA with KNN
connection network to generate positive and negative functional PCs. Similarly, the third
case uses FASPCA with the graph-based Gabriel connection network to generate positive
and negative functional PCs.

4.3.1. FPCA

In the first case, four PCs were calculated using the classical FPCA. From Table 2, the
first PC accounts for approximately 20–32% of the total variabilities of the data for three
separate periods. Figure A1 shows the magnitudes of the eigenvalues generated from
FPCA. Figure A2 shows the maps of projected first PC scores onto a world map where
the positive and negative scores of the PCs are represented by black and white squares of
different sizes, respectively. The size of the squares is proportional to the absolute values of
the PC scores. The maps of projected first PC scores in the three periods do not unravel any
spatial patterns in the data due to the lack of spatial factors in the model.

The classical FPCA was performed for comparative purposes to identify significant
autocorrelations in all principal components as shown in Table 2. Insignificance in some of
the spatial autocorrelations when viewed from a classical perspective proves the importance
of adding the spatial aspect in FPCA. Therefore, this is not an approximation of the original
process. As a matter of fact, it paves the way to using FASPCA as the right dimensionality
reduction approach used when dealing with functional spatial data.

4.3.2. FASPCA with KNN Connection Network

In the second case, two positive and two negative PCs were generated from FASPCA
using the KNN connection network. The magnitudes of the generated eigenvalues are
displayed in Figure 2. From Table 2, significant positive spatial autocorrelations exist for
the first two global structures. The four functional PCs account for approximately 55% of
the total variability in the data. Similar to the first case, the two positive PC scores in the
three periods were mapped to identify any spatial patterns in the data.

Figure 3a illustrates the map of the first PC scores in period 1. Approximately six major
clusters were formed. These include Central and South America, the Middle East and South
Asia, East Asia, Southeast Asia (SEA) and Europe. In Europe, Southern European countries
including Hungary, Romania, Bulgaria, Turkey, Greece, Serbia, Bosnia and Herzegovina
formed a cluster while the remaining European countries formed another cluster. In
period 2, the two clusters in East Asia and SEA became indistinguishable as the PC scores
of several SEA countries changed sign. The two major European clusters were observed
to merge together and formed a single cluster. Other clusters remained similar compared
to period 1 (Figure 3b). Hence, there are three major clusters remaining in period 2. In
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period 3, many neighboring clusters became more integrated compared to periods 1 and 2
(Figure 3c). The variability explained by the first PC decreased from approximately 31% in
period 1 to 27% in period 2 and decreased further to approximately 22% in period 3.

The maps of projected second positive PC scores (Figure A3) indicate that the second
positive PC were dominated by the two sub-clusters formed in Europe. These two sub-
clusters are the Western and Eastern Europe clusters. This can be observed throughout
the three periods. The spatial autocorrelations of the second positive PCs are found to be
positive and significant throughout the three periods. The variability explained by the
second PC increased from 11% in period 1 to 15% in period 2 and dropped to approximately
13% in period 3 (Table 2).

Table 2. Moran’s test on principal components using FPCA and FASPCA, using KNN and Gabriel
spatial weight matrices for log return data.

Period 1 (Pre-Crisis Period) Period 2 (Crisis Period) Period 3 (Post-Crisis Period)
Moran’s I Variability (%) Moran’s I Variability (%) Moran’s I Variability (%)

Classical FPCA

1st PC 0.061 25.46 −0.004 31.82 0.164 * 20.41

2nd PC 0.375 *** 11.92 0.119 * 12.77 0.045 12.78

3rd PC 0.079 10.06 0.416 ** 9.45 −0.027 8.12

4th PC 0.053 *** 8.62 0.146 8.58 0.276 ** 6.88

Total 56.06 62.62 48.19

FASPCA
(KNN (2,2))

1st positive PC 0.561 *** 31.43 0.509 *** 27.55 0.476 *** 21.99

2nd positive PC 0.279 *** 10.75 0.210 ** 15.29 0.359 *** 13.3

1st negative PC −0.162 ** 7.32 −0.187 ** 7.63 −0.214 ** 8.54

2nd negative PC −0.203 *** 5.51 −0.164 * 3.98 −0.216 *** 5.27

Total 55.01 54.45 49.1

FASPCA
(Gabriel (2,2))

1st positive PC 0.483 *** 22.37 0.434 ** 23.9 0.450 *** 17.93

2nd positive PC 0.320 *** 13.68 0.376 *** 14.36 0.445 *** 12.09

1st negative PC −0.297 ** 9.56 −0.369 *** 12.21 −0.329 *** 11.14

2nd negative PC −0.434 *** 6.39 −0.308 ** 5.19 −0.415 *** 8.75

Total 52 55.66 49.91

Note: * p < 0.05, ** p < 0.01; *** p < 0.001.

4.3.3. FASPCA with Gabriel Graph-Based Connection Network

In the third case, two positive and two negative PCs were obtained from FASPCA
using the graph-based Gabriel connection network. The magnitudes of the eigenvalues are
displayed in Figure A4. From Table 2, there exist significant spatial autocorrelations for
the first two global structures, and the four functional PCs account for more than 50% of
the total variability in the data throughout the three periods. The purpose of examining
the third case is to compare the effects of different choices of connection network on the
PCs and see whether they yield similar spatial patterns. From the map of the projected first
positive PC scores in period 1 (Figure A5), several major clusters were formed during this
period. These include Central and South America, East Asia, SEA and Europe. Similarly,
many Southern European countries form a cluster while the remaining European countries
form a separate cluster. In period 2, the demarcation of two clusters in East Asia and
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SEA became unclear as the PC scores of most of the SEA countries changed signs. The
two major European clusters were observed to merge and formed a single cluster. Other
clusters remained similar compared to period 1 (Figure A5b). In period 3, neighboring
clusters became more integrated compared to periods 1 and 2 (Figure A5c). The variability
explained by the first PC decreased slightly from approximately 22% in period 1 to 24% in
period 2 and decreased further to approximately 18% in period 3.

The projected maps of the second positive PC scores in the third case (Figure A6)
appear to indicate that the second positive PCs were dominated by the two sub-clusters
formed in Europe. The two sub-clusters are the Western and Eastern Europe clusters. The
spatial autocorrelations of second positive PC are found to be significant throughout the
three periods. The variability explained by the second positive PC increased from 13.5% in
period 1 to 14% in period 2 and decreased to approximately 12% in period 3 (Table 2).
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4.3.4. FASPCA—Discussions

Several conclusions can be made by comparing the second and third case of this
work. The neighbor-selecting mechanisms of the KNN and graph-based Gabriel connection
networks are fundamentally different. KNN (K = 4) chooses four nearest neighbors for
each data point while the graph-based Gabriel connection network selects the neighbor
based on nine (9). Therefore, it was expected for the second and third case not to yield
exactly the same spatial patterns. However, it was also expected that both cases would
produce similar spatial patterns if significant spatial autocorrelations existed among the
data. The two positive PCs in both cases were tested to be significant during the three
periods (Table 2). The maps of projected positive PC scores in both cases also produced
similar spatial clustering. Comparing the projected maps of the first positive PC scores in
both cases, similar clusters formed in the major regions throughout the three periods.

In Europe, the northern and southern regions formed clusters respectively in period 1.
These two clusters did not last as the signs of the first PC scores (see Figure 3a,b) suggested
that they became more integrated in periods 2 and 3. Results from [37] which used
minimum spanning trees with partial correlations on 57 global equity markets (2005–2014)
observed that the European equity markets could be viewed as two separate clusters.
During period 2, the magnitudes and signs of the first PC scores of the Western and
Northern European equity markets changed considerably. This could be attributed to the
fear of Greece’s eurozone exit due to the Greek debt crisis as well as the Chinese equity
market crash [38]. The Western European countries were more affected by the Chinese
equity market crash compared to the southern European countries due to higher bilateral
trades [34].

Maps of the second positive PC scores in both cases (see Figures A3 and A6) were
dominated by the formation of the Western and Eastern Europe clusters throughout the
three periods. This implies that the spatial autocorrelations among the Western and Eastern
European equity markets were only slightly affected by the events that happened during
the period from June 2015 to June 2016.

The East Asian and SEA countries formed two separate clusters during period 1.
Results from the analysis by [39] showed that, from 1991 to 2014, the equity market
movement in the SEA region was predominantly affected by the economic situations in the
SEA region. Notwithstanding, the market integration of the SEA equity markets with other
East Asian equity markets could not be neglected. Particularly, China showed stronger
market integration with the SEA countries compared to the USA.

In period 2, the East Asian and SEA clusters weakened and became more integrated
in period 3. China’s influence on regional equity markets was observed to be comparable
to that of Japan’s [34]. Moreover, the integration between the Chinese and the SEA equity
markets was foreseen to strengthen due to increasing trades between China and the SEA
countries [40]. Hence, the Chinese equity market crash in June 2015 may have produced
negative spillovers to its neighboring countries as well as the SEA countries and caused
adverse effects on their returns in the equity markets.

5. Concluding Remarks

The functional Moran’s I statistic, classical PCA and spatial functional PCA were used
to analyze the spatial autocorrelation of the log returns of 71 stock exchanges in 69 countries.
The functional Moran’s I statistic showed that the spatial autocorrelation of stock exchanges
was exacerbated by the occurrences of a financial crisis/bear market such as the 2015–2016
global market sell-off. Moran’s tests of the spatial functional PCs indicated that positive
spatial autocorrelation existed in the data throughout the three separate periods.

The projected maps of the first and second positive spatial functional PC scores showed
that spatial clusters were formed in all three periods. Moreover, it was found that similar
spatial cluster patterns were formed in three periods even when different spatial weight
matrices were considered. The findings of this study show that the inferences drawn based
on the functional Moran’s I statistic and FASPCA correspond well with the events that



Mathematics 2023, 11, 674 14 of 24

happened in all three periods. This verifies the effectiveness of these tools in measuring
continuous spatial autocorrelations of global equity markets and identifying spatial patterns
in complex spatial data, respectively.

This study emphasized the viability of FASPCA as an exploratory technique on com-
plex spatial data by reducing the dimensionality of data with spatial information. It can
further be enhanced to be applied in the spatio-temporal framework where the implemen-
tation of FDA reduces the space–time dimensions simultaneously, involving traditional
time series forecasting and spatial prediction. This study involves a two-stage approach
where discrete data are first converted into functional data before performing FASPCA. A
simultaneous approach similar to [41] can be applied in future works to further enhance
the study.
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