Effect of Buoyancy Force on an Unsteady Thin Film Flow of Al2O3/Water Nanofluid over an Inclined Stretching Sheet
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Method
4. Findings and Discussion
5. Conclusions
- Provided that the magnetic parameter M and the slip parameter K rise, the film thickness β reduces.
- The temperature θ(η) enhances as the Biot number Bi boosts. For platelet-shaped particles, the film thickness is high, whereas, for cylinder, brick, and sphere-shaped nanoparticles, it ultimately diminishes.
- On the platelet and sphere shape nanoparticles, the velocity of Al2O3 nanofluid achieves its maximum and minimum, whereas a different pattern can be seen in the temperature.
- The skin friction coefficient lessens when the slip and mixed convection parameters rise. In contrast, incrementally the volume fraction and magnetic parameters increase the skin friction coefficient.
- The local Nusselt number increases as the Biot number Bi, inclination angle, and mixed convection parameters increase, while it declines with an augmentation in the slip and magnetic parameters.
- The assisting buoyancy flow (λ > 0) appears to have a greater local Nusselt number than the opposing buoyancy flow (λ < 0), despite the fact that the skin friction coefficient produces the opposite outcome.
- A decrease in film thickness is produced by a rise in the unsteadiness parameter, as well as the magnetic parameter.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
dimensional constants | |
Biot number | |
uniform magnetic field | |
specific heat of the fluid | |
acceleration due to gravity | |
Grashof number | |
film thickness | |
thermal conductivity of the fluid | |
magnetic parameter | |
Nusselt number | |
Prandtl number | |
Reynolds number | |
unsteadiness parameter | |
time | |
fluid temperature | |
surface temperature at the wall | |
reference temperature | |
ambient temperature | |
surface velocity | |
velocity components in the x and y directions | |
Cartesian coordinates | |
Greek symbols | |
inclination angle | |
dimensionless film thickness | |
thermal expansion coefficient of the fluid | |
similarity variable | |
mixed convection parameter | |
dynamic viscosity of the fluid | |
kinematic viscosity of the fluid | |
dimensionless nanoparticle volume fraction | |
stream function | |
density of the fluid | |
heat capacity of the fluid | |
electrical conductivity of the fluid | |
dimensionless temperature | |
Subscripts | |
base fluid | |
Nanofluid | |
solid nanoparticle | |
condition at the wall | |
Superscript | |
′ | differentiation with respect to |
References
- Waini, I.; Ishak, A.; Pop, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 2019, 136, 288–297. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab.: Lemont, IL, USA, 1995. [Google Scholar]
- Choi, S.U.S. Nanofluids: From vision to reality through research. J. Heat Transfer. 2009, 131, 033106. [Google Scholar] [CrossRef]
- Senthilraja, S.; Karthikeyan, M.; Gangadevi, R. Nanofluid applications in future automobiles: Comprehensive review of existing data. Nano-Micro Lett. 2010, 2, 306–310. [Google Scholar] [CrossRef]
- Saidur, R.; Leong, K.Y.; Mohammed, H.A. A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 2011, 15, 1646–1668. [Google Scholar] [CrossRef]
- Sheremet, M.A. Applications of nanofluids. Nanomaterials 2021, 11, 1716. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Nanofluid flow on a shrinking cylinder with Al2O3 nanoparticles. Mathematics 2021, 9, 1612. [Google Scholar] [CrossRef]
- Hamid, K.A.; Azmi, W.H.; Mamat, R.; Sharma, K. V Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Appl. Therm. Eng. 2019, 152, 275–286. [Google Scholar] [CrossRef]
- Safwa Khashi’ie, N.; Md Arifin, N.; Hafidzuddin, E.H.; Wahi, N. Dual stratified nanofluid flow past a permeable shrinking/stretching sheet using a non-Fourier energy model. Appl. Sci. 2019, 9, 2124. [Google Scholar] [CrossRef]
- Anwar, M.I.; Rafique, K.; Misiran, M.; Khan, I. Numerical solution of casson nanofluid flow over a non-linear inclined surface with soret and dufour effects by keller-box method. Front. Phys. 2019, 7, 139. [Google Scholar]
- Bachok, N.; Ishak, A.; Pop, I. Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Therm. Sci. 2010, 49, 1663–1668. [Google Scholar] [CrossRef]
- Zaimi, K.; Ishak, A.; Pop, I. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model. PLoS ONE 2014, 9, e111743. [Google Scholar] [CrossRef]
- Salleh, S.N.A.; Bachok, N.; Arifin, N.M.; Ali, F.M. Numerical analysis of boundary layer flow adjacent to a thin needle in nanofluid with the presence of heat source and chemical reaction. Symmetry 2019, 11, 543. [Google Scholar] [CrossRef]
- Sajjadi, H.; Delouei, A.A.; Atashafrooz, M.; Sheikholeslami, M. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int. J. Heat Mass Transf. 2018, 126, 489–503. [Google Scholar] [CrossRef]
- Atashafrooz, M.; Sajjadi, H.; Amiri Delouei, A.; Yang, T.-F.; Yan, W.-M. Three-dimensional analysis of entropy generation for forced convection over an inclined step with presence of solid nanoparticles and magnetic force. Numer. Heat Transf. Part A Appl. 2021, 80, 318–335. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. Zeitschrift für Angew. Math. und Phys. 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Gupta, P.S.; Gupta, A.S. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 1977, 55, 744–746. [Google Scholar] [CrossRef]
- Sharma, R.; Ishak, A.; Pop, I. Partial slip flow and heat transfer over a stretching sheet in a nanofluid. Math. Probl. Eng. 2013, 2013, 724547. [Google Scholar] [CrossRef]
- Zokri, S.M.; Arifin, N.S.; Salleh, M.Z.; Kasim, A.R.M.; Mohammad, N.F.; Yusoff, W. MHD Jeffrey nanofluid past a stretching sheet with viscous dissipation effect. J. Phys. Conf. Ser. 2017, 890, 12002. [Google Scholar] [CrossRef]
- Kho, Y.B.; Hussanan, A.; Mohamed, M.K.A.; Sarif, N.M.; Ismail, Z.; Salleh, M.Z. Thermal radiation effect on MHD Flow and heat transfer analysis of Williamson nanofluid past over a stretching sheet with constant wall temperature. J. Phys. Conf. Ser. 2017, 890, 12034. [Google Scholar] [CrossRef]
- Daniel, Y.S.; Aziz, Z.A.; Ismail, Z.; Salah, F. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness. J. Comput. Des. Eng. 2018, 5, 232–242. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Mohamed, R.A.; Abd Elraheem, M.A.; Soliman, M.S. Magnetohydrodynamic Maxwell nanofluids flow over a stretching surface through a porous medium: Effects of non-linear thermal radiation, convective boundary conditions and heat generation/absorption. World Acad. Sci. Eng. 2019, 13, 436–443. [Google Scholar]
- Kho, Y.B.; Hussanan, A.; Sarif, N.M.; Ismail, Z.; Salleh, M.Z. Thermal radiation effects on MHD with flow heat and mass transfer in Casson nanofluid over a stretching sheet. In Proceedings of the MATEC Web of Conferences, Penang, Malaysia, 6–7 December 2017; EDP Sciences: Ulis, France, 2018; Volume 150, p. 6036. [Google Scholar]
- Ibrahim, W.; Negera, M. MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction. J. Egypt. Math. Soc. 2020, 28, 7. [Google Scholar] [CrossRef] [Green Version]
- Prasannakumara, B.C. Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect. Partial Differ. Equ. Appl. Math. 2021, 4, 100064. [Google Scholar] [CrossRef]
- Hazarika, S.; Ahmed, S.; Chamkha, A.J. Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: A numerical modeling. Math. Comput. Simul. 2021, 182, 819–837. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, D.; Singh, J. MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation. Int. J. Heat Mass Transf. 2018, 118, 378–387. [Google Scholar] [CrossRef]
- Usman, M.; Soomro, F.A.; Haq, R.U.; Wang, W.; Defterli, O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. Int. J. Heat Mass Transf. 2018, 122, 1255–1263. [Google Scholar] [CrossRef]
- Kumar, B.; Srinivas, S. Unsteady hydromagnetic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet with joule heating and thermal radiation. J. Appl. Comput. Mech. 2020, 6, 259–270. [Google Scholar]
- Soomro, F.A.; Usman, M.; El-Sapa, S.; Hamid, M.; Haq, R.U. Numerical study of heat transfer performance of MHD Al2O3-Cu/water hybrid nanofluid flow over inclined surface. Arch. Appl. Mech. 2022, 92, 2757–2765. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; ISBN 3540662707. [Google Scholar]
- Smith, F.T. Steady and unsteady boundary-layer separation. Annu. Rev. Fluid Mech. 1986, 18, 197–220. [Google Scholar] [CrossRef]
- White, F.M.; Majdalani, J. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Ishak, A.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica 2009, 44, 369–375. [Google Scholar] [CrossRef]
- Ishak, A. Unsteady MHD flow and heat transfer over a stretching plate. J. Appl. Sci. 2010, 10, 2127–2131. [Google Scholar] [CrossRef]
- Daniel, Y.S.; Aziz, Z.A.; Ismail, Z.; Salah, F. Slip effects on electrical unsteady MHD natural convection flow of nanofluid over a permeable shrinking sheet with thermal radiation. Eng. Lett. 2018, 26, 1–13. [Google Scholar]
- Dzulkifli, N.F.; Bachok, N.; Yacob, N.A.; Md Arifin, N.; Rosali, H. Unsteady stagnation-point flow and heat transfer over a permeable exponential stretching/shrinking sheet in nanofluid with slip velocity effect: A stability analysis. Appl. Sci. 2018, 8, 2172. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Unsteady hybrid nanofluid flow on a stagnation point of a permeable rigid surface. ZAMM-J. Appl. Math. Mech. für Angew. Math. und Mech. 2021, 101, e202000193. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Stability Analysis of Unsteady Hybrid Nanofluid Flow Past a Permeable Stretching/Shrinking Cylinder. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 86, 64–75. [Google Scholar] [CrossRef]
- Wang, C.Y. Liquid film on an unsteady stretching surface. Q. Appl. Math. 1990, 48, 601–610. [Google Scholar] [CrossRef]
- Andersson, H.I.; Aarseth, J.B.; Dandapat, B.S. Heat transfer in a liquid film on an unsteady stretching surface. Int. J. Heat Mass Transf. 2000, 43, 69–74. [Google Scholar] [CrossRef]
- Khan, N.S.; Islam, S.; Gul, T.; Khan, I.; Khan, W.; Ali, L. Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer. Alexandria Eng. J. 2018, 57, 1019–1031. [Google Scholar] [CrossRef]
- Naganthran, K.; Hashim, I.; Nazar, R. Triple Solutions of Carreau Thin Film Flow with Thermocapillarity and Injection on an Unsteady Stretching Sheet. Energies 2020, 13, 3177. [Google Scholar] [CrossRef]
- Naganthran, K.; Nazar, R.; Siri, Z.; Hashim, I. Entropy Analysis and Melting Heat Transfer in the Carreau Thin Hybrid Nanofluid Film Flow. Mathematics 2021, 9, 3092. [Google Scholar] [CrossRef]
- Ali, R.; Shahzad, A.; us Saher, K.; Elahi, Z.; Abbas, T. The thin film flow of Al2O3 nanofluid particle over an unsteady stretching surface. Case Stud. Therm. Eng. 2022, 29, 101695. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Alabdulhadi, S.; Waini, I.; Ahmed, S.E.; Ishak, A. Hybrid Nanofluid Flow and Heat Transfer Past an Inclined Surface. Mathematics 2021, 9, 3176. [Google Scholar] [CrossRef]
- Nasir, S.; Shah, Z.; Islam, S.; Bonyah, E.; Gul, T. Darcy Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet. AIP Adv. 2019, 9, 15223. [Google Scholar] [CrossRef] [Green Version]
- Vajjha, R.S.; Das, D.K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 2009, 52, 4675–4682. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106, 14304. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Shampine, L.F.; Gladwell, I.; Thompson, S. Solving ODEs with MATLAB; Cambridge University Press: Cambridge, UK, 2003; ISBN 9780521824040. [Google Scholar]
- Abel, M.S.; Mahesha, N.; Tawade, J. Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Appl. Math. Model. 2009, 33, 3430–3441. [Google Scholar] [CrossRef] [Green Version]
Physical Properties | Al2O3 | H2O |
---|---|---|
3970 | 997.1 | |
40 | 0.613 | |
765 | 4179 | |
16.5 | 5.50 | |
0.85 | 21 |
Nanoparticle Shapes | Platelets | Cylinder | Brick | Sphere | |
---|---|---|---|---|---|
Parameters | |||||
A1 | 37.1 | 13.5 | 1.9 | 2.5 | |
A2 | 612.6 | 904.4 | 471.4 | 6.5 | |
Shape factors () | 5.72 | 4.82 | 3.72 | 3.0 |
Abel et al. [54] | Ali et al. [45] | Present Result | ||||
---|---|---|---|---|---|---|
S | β | f″(0) | β | f″(0) | β | f″(0) |
0.4 | 4.981455 | −1.134098 | 4.981468 | −1.1340957 | 4.981466 | −1.1340953 |
0.6 | 3.131710 | −1.195128 | 3.131711 | −1.1951252 | 3.131662 | −1.1951202 |
0.8 | 2.151990 | −1.245805 | 2.152021 | −1.2458064 | 2.152011 | −1.2458089 |
1.0 | 1.543617 | −1.277769 | 1.543615 | −1.2777693 | 1.543456 | −1.2777079 |
1.2 | 1.1227780 | −1.279171 | 1.127779 | −1.2791718 | 1.127490 | −1.2789750 |
1.4 | 0.8221033 | −1.233545 | 0.8210317 | −1.2335453 | 0.821016 | −1.2335280 |
1.6 | 0.576176 | −1.114941 | 0.5761743 | −1.1149368 | 0.576061 | −1.1147574 |
1.8 | 0.356390 | −0.867416 | 0.3563871 | −0.86741049 | 0.356236 | −0.8670686 |
Physical Parameters | Platelets | Cylinder | Brick | Sphere | |||
---|---|---|---|---|---|---|---|
0.3 | 0.02 | 1.0 | −2.0 | 1.681268266 | 1.489536298 | 1.247831761 | 1.133526940 |
0.5 | − | − | − | 1.433346676 | 1.258667526 | 1.039679801 | 0.937343360 |
0.7 | − | − | − | 1.253631522 | 1.093801740 | 0.893877800 | 0.802628774 |
0.5 | 0.02 | 1.0 | −2.0 | 1.433346676 | 1.258667526 | 1.039679801 | 0.937343360 |
− | 0.04 | − | − | 2.089089107 | 1.898450286 | 1.378306537 | 0.986750837 |
− | 0.06 | − | − | 2.818098130 | 2.694112995 | 1.851288272 | 1.039162880 |
0.5 | 0.02 | 0.0 | −2.0 | 1.163871057 | 1.028890432 | 0.859696435 | 0.778968598 |
− | − | 0.5 | − | 1.318507553 | 1.161161807 | 0.961312098 | 0.869720683 |
− | − | 1.0 | − | 1.433346676 | 1.258667526 | 1.039679801 | 0.937343360 |
0.5 | 0.02 | 1.0 | −2.0 | 1.433346676 | 1.258667526 | 1.039679801 | 0.937343360 |
− | − | − | 0.0 | 1.336031466 | 1.165473257 | 0.952085341 | 0.853015117 |
− | − | − | 2.0 | 1.243847795 | 1.078097824 | 0.871460777 | 0.776276122 |
Physical Parameters | Platelets | Cylinder | Brick | Sphere | ||||
---|---|---|---|---|---|---|---|---|
2.0 | 0.5 | 1.0 | −2.0 | 1.471184404 | 1.433486292 | 1.384283501 | 1.353043680 | |
2.5 | − | − | − | − | 1.670669380 | 1.628171211 | 1.572161775 | 1.536832098 |
3.0 | − | − | − | − | 1.836441722 | 1.789956021 | 1.728163960 | 1.689397686 |
3.0 | 0.5 | 1.0 | −2.0 | 1.833310838 | 1.786265359 | 1.723415633 | 1.683998156 | |
− | − | − | − | 1.836441722 | 1.789956021 | 1.728163960 | 1.689397686 | |
− | − | − | − | 1.840419312 | 1.794618692 | 1.734099222 | 1.696099546 | |
3.0 | 0.3 | 1.0 | −2.0 | 1.878381703 | 1.833316358 | 1.773533127 | 1.735593784 | |
− | − | 0.5 | − | − | 1.836441722 | 1.789956021 | 1.728163960 | 1.689397686 |
− | − | 0.7 | − | − | 1.802096137 | 1.754817989 | 1.692274249 | 1.652735779 |
3.0 | 0.5 | 0.0 | −2.0 | 1.875238410 | 1.830120581 | 1.770130660 | 1.732319575 | |
− | − | − | 0.5 | − | 1.853305927 | 1.807347347 | 1.746879653 | 1.708144155 |
− | − | − | 1.0 | − | 1.836441722 | 1.789956021 | 1.728163960 | 1.689397686 |
3.0 | 0.5 | 1.0 | −2.0 | 1.836441722 | 1.789956021 | 1.728163960 | 1.689397686 | |
− | − | − | − | 0.0 | 1.849584549 | 1.805260139 | 1.747406942 | 1.710956457 |
− | − | − | − | 2.0 | 1.861624634 | 1.819046955 | 1.764227314 | 1.729451205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabdulhadi, S.; Abu Bakar, S.; Ishak, A.; Waini, I.; Ahmed, S.E. Effect of Buoyancy Force on an Unsteady Thin Film Flow of Al2O3/Water Nanofluid over an Inclined Stretching Sheet. Mathematics 2023, 11, 739. https://doi.org/10.3390/math11030739
Alabdulhadi S, Abu Bakar S, Ishak A, Waini I, Ahmed SE. Effect of Buoyancy Force on an Unsteady Thin Film Flow of Al2O3/Water Nanofluid over an Inclined Stretching Sheet. Mathematics. 2023; 11(3):739. https://doi.org/10.3390/math11030739
Chicago/Turabian StyleAlabdulhadi, Sumayyah, Sakhinah Abu Bakar, Anuar Ishak, Iskandar Waini, and Sameh E. Ahmed. 2023. "Effect of Buoyancy Force on an Unsteady Thin Film Flow of Al2O3/Water Nanofluid over an Inclined Stretching Sheet" Mathematics 11, no. 3: 739. https://doi.org/10.3390/math11030739
APA StyleAlabdulhadi, S., Abu Bakar, S., Ishak, A., Waini, I., & Ahmed, S. E. (2023). Effect of Buoyancy Force on an Unsteady Thin Film Flow of Al2O3/Water Nanofluid over an Inclined Stretching Sheet. Mathematics, 11(3), 739. https://doi.org/10.3390/math11030739