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Abstract: The design of analog circuits is a complex and repetitive process aimed at finding the best
design variant. It is characterized by uncertainty and multivariate approaches. The designer has to
make different choices to satisfy a predefined specification with required parameters. This paper
proposes a method for facilitating the design of analog amplifiers based on m-polar fuzzy graphs
theory and deep learning. M-polar fuzzy graphs are used because of their flexibility and the possibility
to model different real-life multi-attribute problems. Deep learning is applied to solve a regression
task and to predict the membership functions of the m-polar fuzzy graph vertices (the solutions),
taking on the role of domain experts. The performance of the learner is high since the obtained errors
are very small: Root Mean Squared Error is from 0.0032 to 0.0187, Absolute Error is from 0.022 to
0.098 and Relative Error is between 0.27% and 1.57%. The proposed method is verified through
the design of three amplifiers: summing amplifier, subtracting amplifier, and summing/subtracting
amplifier. The method can be used for improving the design process of electronic circuits with the
possibility of automating some tasks.

Keywords: m-polar fuzzy graph; machine learning; deep learning; analog amplifier; design pro-
cess; automation
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1. Introduction

The design process of analog circuits is characterized by its complexity and uncertainty,
but also by its multivariate approaches. According to one predefined specification with
initial parameters, it is possible to have multiple solutions that satisfy this assignment. It is
obvious that the designer must find the best design by entering one iterative procedure, and
making one or another decision. In support of the designer, a wide variety of methods and
methodologies are proposed—from the use of standard matrix theory [1] to contemporary
machine learning approaches [2].

The topic related to machine learning-driven design of analog circuits is under ex-
tensive investigation, because of the desire for facilitating the designer and automating as
many engineering tasks as possible. This could reduce the design time, increase the design
quality and decrease the effort of both a beginner and experienced engineer.

Some works show the applicability of evolutionary computing in analog circuit design
and possibilities for time controlling [3], achieving efficient and flexible design [4], and
design optimization [5]. Bayesian optimization techniques are also under investigation,
pointing out another different possible approach for improving the circuit design process
regarding design speed and accuracy [6,7].

Deep learning (DL) as a part of machine learning is based on architectures of artificial
neural networks (ANNs) and is used for solving classification or regression tasks in differ-
ent domains and industries, including electronic circuit design [8] and analysis [9]. This
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popularity of supervised DL is due to its capability to perform predictions and classifica-
tions with high accuracy. This is possible because of the flexibility of ANNs construction
and DL algorithm parameters adjustment.

Nowadays, the theory of fuzzy graphs gets its popularity due to its wide applications
in many areas of real life. The concept of a fuzzy graph was initially introduced by Kauff-
man [10], but the development of the fuzzy graphs theory is due to Rosenfeld [11] and
Yeh and Bang [12]. The fuzzy graphs theory has been developing in different directions,
such as fuzzy tolerance graphs [13], fuzzy threshold graphs [14], interval-valued fuzzy
graphs [15–17], fuzzy k-competition graphs and p-competition fuzzy graphs [18], m−step
fuzzy competition graphs [19], and hesitant fuzzy graphs [20]. In 1994, Zhang [21,22]
introduced the concept of bipolar fuzzy sets as a generalization of fuzzy sets. This theory
was developed by Akram [23] to present bipolar fuzzy graphs. In 2014, Chen et al. [24]
discussed the notion of m-polar fuzzy sets as a generalization of bipolar fuzzy sets. Ghorai
and Pal [25] introduced the m-polar fuzzy graphs as a generalization of bipolar fuzzy
graphs and defined different operations. The theory of m-polar fuzzy graphs was fur-
ther developed in [26–29]. A detailed explanation could be found in two contemporary
monographs [30,31].

This work is the first to use m-polar fuzzy graphs theory with the benefits of deep
learning for the design of analog amplifiers, but we consider the idea to combine the
advantages of fuzzy graphs and deep learning to be very promising. Graphs theory is
used, taking into account its powerful capability for solving different real-life problems.
Modelling of such problems often involves multi-polar information, including uncertainty
and process limits, so attracting m-polar fuzzy graphs for describing such problems is very
useful. Deep learning predictions are utilized in the role of the domain experts to point out
the membership functions of m-polar fuzzy graph vertices. The regression task is solved
with high performance.

The aim of the paper is to present a method for designing analog amplifiers by dis-
cussing some basic concepts regarding m-polar fuzzy graphs and considering the advantages
of deep learning. The following is a summary of the research work’s main contribution:

1. The activity for designing analog amplifiers is defined as a multi-attribute problem,
which is solved here using the m-polar fuzzy graphs and deep learning.

2. For the verification of the proposed method, three electronic circuits are designed:
an inverting summing amplifier, a subtracting amplifier (differential amplifier), and a
summing/subtracting amplifier with an operational amplifier.

3. The predictive models are experimentally evaluated using data sets collected
considering the functional and electrical behavior of the examined circuits.

The paper is organized as follows: In Section 2, a review of the basic concept of fuzzy
graphs theory and m-polar fuzzy graphs as well as different types of product operations
for m-polar fuzzy graphs are presented. Section 3 is dedicated to discussing the usage of
ANNs in solving circuit design problems. Section 4 considers the proposed method. In
Section 5, the presented method for analog circuit design is demonstrated and verified in
the real-life application of analog amplifier design. The conclusion is driven in the last
section.

2. Fuzzy Graphs Theory
2.1. Basic Concepts of Fuzzy Graphs

A graph is a pair G = (V, E) of a nonempty set of vertices V (or nodes) and a set of
edges E. Each edge has either one or two vertices associated with it, called its endpoints.
An edge is said to connect its endpoints. A graph is called simple if it has no loops and no
multiple edges.

Definition 1 [32]. A fuzzy graph G = (V, σ, µ) is a triple consisting of a nonempty set V
together with a pair of functions σ : V → [0, 1] and µ : E→ [0.1] such that for all x, y ∈ V,
µ(xy) ≤ σ(x) ∧ σ(y), where ∧ stands for the minimum.
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Definition 2 [33]. A fuzzy graph G = (V, σ, µ) is complete if µ(xy) = σ(x) ∧ σ(y) for all
x, y ∈ V.

Definition 3 [24]. An m-polar fuzzy set (or a [0, 1]m -set) on X is mapping M : X → [0, 1]m .

The [0, 1]m (m-power of [0, 1]) is considered to be a poset with point-wise order ≤
(m is natural), where ≤ is defined by x ≤ y⇔ Pi(x) ≤ Pi(y) for each i = 1, 2, . . . , m,
x, y ∈ [0, 1]m, and Pi : [0, 1]m → [0, 1] is the i−th projection mapping (i = 1, 2, . . . , m). Here,
1 = (1, 1, ..., 1) is the greatest value and 0 = (0, 0, ..., 0) is the smallest value in [0, 1]m.

Definition 4 [24]. Let σ be an m-polar fuzzy set on a set V. An m-polar fuzzy relation on σ is
an m-polar fuzzy set µ of V × V such that µ(xy) ≤ σ(x) ∧ σ(y) for all x, y ∈ V, i.e., for each
i = 1, 2, . . . , m, for all x, y ∈ V: Pi ◦ µ(xy) ≤ Pi ◦ σ(x) ∧ Pi ◦ σ(y).

Definition 5 [30]. An m-polar fuzzy graph G = (V, σ, µ) is a triple consisting of a nonempty set
V together with a pair of functions σ : V → [0, 1]m and µ : E = V ×V →[0, 1]m, where σ is an
m-polar fuzzy set on the set of vertices V and µ is an m-polar fuzzy relation in V such that for all
x, y ∈ V, µ(xy) ≤ σ(x) ∧ σ(y), where ∧ stands for minimum.

It can be noted that µ(x, y) = 0 for all x, y ∈ V ×V − E.

2.2. Products in m-Polar Fuzzy Graphs
2.2.1. Direct (Tensor) Product

Definition 6 [30]. Let G1 = (σ1, µ1) of G∗1 = (V1, E1) and G2 = (σ2, µ2) of G∗2 = (V2, E2)
be two m-polar fuzzy graphs. The direct product of G1 and G2 is denoted by G1 × G2 and is defined
as a pair G1 × G2 = (σ1 × σ2, µ1 × µ2), such that for each i = 1, 2, . . . , m:

Pi ◦ (σ1 ∧ σ2)(x1, x2) = Pi ◦ σ1(x1) ∧ Pi ◦ σ2(x2) for all (x1, x2) ∈ V1 ×V2

Pi ◦ (µ1 ∧ µ2)((x1, x2)(y1, y2)) = Pi ◦ µ1(x1y1) ∧ Pi ◦ µ2(x2y2)

for all x1y1 ∈ E1, x2y2 ∈ E2.

Proposition 1 [30]. The direct product of two m-polar fuzzy graphs is an m-polar fuzzy graph.

2.2.2. Semi-Strong Product

Definition 7 [31]. Let G1 = (σ1, µ1) of G∗1 = (V1, E1) and G2 = (σ2, µ2) of G∗2 = (V2, E2) be
two m-polar fuzzy graphs. The semi-strong product of G1 and G2 (denoted by G1 � G2) is defined as
a graph G1 � G2 = (σ1 � σ2, µ1 � µ2) of G∗ = (V1 ×V2, E) (here E = {(x1, y1)(x1, y2) | x1
∈ V1, y1y2 ∈ E2} ∪ {(x1, y1)(x2, y2) | x1x2 ∈ E1, y1y2 ∈ E2}) such that for each i = 1, 2, . . . , m:

Pi ◦ (σ1 � σ2)(x, y) = Pi ◦ σ1(x) ∧ Pi ◦ σ2(y) for all (x, y) ∈ V1 ×V2;
Pi ◦ (µ1 � µ2)(x1, x2)(x1, y2) = Pi ◦ σ1(x)∧ Pi ◦ µ2(x2y2) for all x1 ∈ V1 and x2y2 ∈ E2;
Pi ◦ (µ1 � µ2)(x1, x2)(y1, y2) = Pi ◦ µ1(x1y1) ∧ Pi ◦ µ2(x2y2) for all x1x2 ∈ E1 and

x2y2 ∈ E2;

Proposition 2 [26]. The semi-strong product of two m-polar fuzzy graphs is an m-polar fuzzy
graph.

2.2.3. Strong Product

Definition 8 [31]. Let G1 = (σ1, µ1) of G∗1 = (V1, E1) and G2 = (σ2, µ2) of G∗2 = (V2, E2)
be two m-polar fuzzy graphs. The strong product of G1 and G2 (denoted by G1 ⊗ G2) is defined as
a graph G1 ⊗ G2 = (σ1 ⊗ σ2, µ1 ⊗ µ2) of G∗ = (V1 ×V2, E) where
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E = {(x1, y1)(x1, y2) | x1 ∈ V1, y1y2 ∈ E2} ∪ {(x1, y)(x2, y) | x1x2 ∈ E1, y ∈ V2}
∪{(x1, y1)(x2, y2) | x1x2 ∈ E1, y1y2 ∈ E2}

such that for each i = 1, 2, . . . , m:
Pi ◦ (σ1 ⊗ σ2)(x, y) = Pi ◦ σ1(x) ∧ Pi ◦ σ2(y) for all (x, y) ∈ V1 ×V2;
Pi ◦ (µ1 ⊗ µ2)(x1, x2)(x1, y2) = Pi ◦ σ1(x1) ∧ Pi ◦ µ2(x2y2) for all x1 ∈ V1 and x2y2 ∈

E2;
Pi ◦ (µ1 ⊗ µ2)(x1, x2)(y1, x2) = Pi ◦ µ1(x1y1) ∧ Pi ◦ σ2(x2) for all x1y1 ∈ E1 and

x2 ∈ V2;
Pi ◦ (µ1 ⊗ µ2)(x1, x2)(y1, y2) = Pi ◦ µ1(x1y1) ∧ Pi ◦ µ2(x2y2) for all x1y1 ∈ E1 and

x2y2 ∈ E2.

Proposition 3 [31]. The strong product of two m-polar fuzzy graphs is an m-polar fuzzy graph.

2.2.4. Lexicographic Product

Definition 9 [30]. Let G1 = (σ1, µ1) of G∗1 = (V1, E1) and G2 = (σ2, µ2) of G∗2 = (V2, E2)
be two m-polar fuzzy graphs. The lexicographic product of G1 and G2 (denoted by G1•G2) is defined
as a pair G1•G2 = (σ1•σ2, µ1•µ2) such that for each i = 1, 2, . . . , m:

Pi ◦ (σ1•σ2)(x1, x2) = Pi ◦ σ1(x1) ∧ Pi ◦ σ2(x2) for all (x1, x2) ∈ V1 ×V2;
Pi ◦ (µ1•µ2)((x1, x2)(x1, y2)) = Pi ◦ σ1(x1) ∧ Pi ◦ µ2(x2y2) for all x1 ∈ V1 and x2y2 ∈

E2;
Pi ◦ (µ1•µ2)(x1, x2)(y1, y2) = Pi ◦ µ1(x1y1) ∧ Pi ◦ µ2(x2y2) for all x1y1 ∈ E1 and

x2y2 ∈ E2;

Proposition 4 [30]. The lexicographic product of two m-polar fuzzy graphs is an m-polar fuzzy
graph.

Some applications of m-polar fuzzy graphs for facilitating the decision-making process
in a wide variety of studied domains are discussed in [31,34,35]. It is obvious that the
presented methods and techniques have the potential to deal with multi-attribute, multi-
criteria, and multi-objective problems in uncertain and fuzzy environments. This is the
reason such an approach is chosen for application in the field of electronic circuit design.

3. Deep Learning and Applications in Electronic Circuit Design

Deep Learning (DL) comprises multiple methods and techniques, based on ANNs,
which are utilized for different purposes—from studying a process, event, or facts to
analyzing, predicting, or optimizing some parameters. Contemporary surveys summarize
approaches, types, and architectures of deep learning algorithms, as well as discuss their
applications in the context of supervised, unsupervised, and reinforcement learning [36,37].
The advantages of DL, such as universal usage, robustness, workability with different data
types, and scalability are also described. The cases in which DL is suitable for usage are
explained to show its usefulness in the unavailability of domain experts, the impossibility
to gather the expertise and the complexity of the problem.

In the automation of electronic circuit design, a few papers are devoted to the advan-
tages of ANNs utilization in support of the designers’ tasks.

Dieste-Velasco et al. propose a methodology for assisting the analytical design of
analog circuits as it combines the statistical technique factorial design of experiments and
ANNs [38]. Such an approach allows the behavioral modelling of circuits to be done with
high accuracy.

The work of Devi et al. is focused on the automated design of analog circuits through
the usage of ANN-based supervised learning [39]. The method is verified in the design of
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two different analog circuits and the obtained results are characterized by high accuracy
and small mean squared error.

Wang et al. applied deep learning to solve the sizing problem of analog circuits [40].
Two ANNs architectures are proposed, Recurrent Neural Network (RNN) and DL, which
are proven to possess the capability to predict the transistor size with high accuracy.

More sophisticated solutions for automating the design process of complex analog
systems [41] and for improving the circuit synthesis [42] point out the possibility of reducing
the design process resources and decreasing the designer’s effort.

Budak et al. deal with the speed of the design of integrated analog circuits proposing
an efficient method for sizing [43]. The method is verified in the design of analog amplifiers
and a comparator, and the results show its benefit.

It seems that DL possesses a big potential for the implementation of a supportive,
automated, and smart design process that facilitates decision-making and problem-solving.
All these advantages and possibilities are considered when choosing the DL for creating
predictive models and speeding up the circuit design.

4. Proposed Method

The design of analog amplifiers could be defined as a multi-attribute problem, which
is solved here through the utilization of the m-polar fuzzy graphs theory and deep learning.
The developed method for amplifier design is presented in Figure 1 and includes three
stages:

• In the first stage, a dataset is prepared according to a predefined specification regarding
the designed amplifier. All possible variants of the designed electronic circuit are
found and membership functions of attributes are predicted through a deep learning
algorithm.

• The second stage points out the suitable design solutions, considering the requested
parameters, and after obtaining the membership values of vertices and edges, an
m-polar fuzzy graph is constructed.

• In the third stage, the most suitable solutions are prioritized, finding the best one,
according to the user’s specifications and certain requirements.
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5. Experimentation and Results

The problem related to finding the most useful designs of an electronic circuit is
examined as a multi-attribute problem for solving. The typical attributes of a given circuit
that better explain its electrical and functional behavior are chosen, as they have to be
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adjusted considering an input specification. For the verification of the proposed method,
comprising m-polar fuzzy graphs theory and DL, three electronic circuits are designed:
an inverting summing amplifier, a subtracting amplifier (differential amplifier), and a
summing/subtracting amplifier with an operational amplifier.

5.1. Design of Inverting Summing Amplifier

Summing amplifiers are very often implemented through operational amplifiers with
negative feedback and topology shown in Figure 2. They are used for solving equations
such as [44]:

vout = −(k1v1 + k2v2 + . . . + knvn) (1)

where scaling coefficients k1, k2, . . . , kn are defined as the ratio between the feedback
resistor RF and the input resistors R1, R2, . . . , Rn, v1, v2, . . . , vn are input voltage signals,
and vout is the output voltage.
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One of the challenges for designers is how to satisfy Equation (1), taking into account
the possible ranges of input values v1, v2, . . . , vn and output signal vout and considering
the allowed range of power dissipation PD typical for the used operational amplifier for a
given load RL.

Power dissipation has to possess appropriate values for the normal functioning of
the operational amplifier. Otherwise, the operational amplifier will be damaged and the
realized analog circuit will not work as expected or will stop working. The amplifier power
dissipation PD is found by knowing the supply voltage VS, maximal quiescent current IQ,
output current Io, load current IL, and output voltage vout [45].

The design process of summing amplifiers Is related to finding the values of input
resistors R1, R2, . . . , Rn, taking into account the given scaling coefficients k1, k2, . . . , kn in
Equation (1), the output voltage vout at given input voltages v1, v2, . . . , vn, and at certain
values of the feedback resistor RF and the load resistor RL.

Let us suppose that the used operational amplifier is OPA 322 [46] and the equation to
be solved when designing an inverting summing amplifier, taking into consideration the
allowed power dissipation is:

vout = −(3v1 + 6v2) (2)

During the first stage of the proposed method, a dataset in the form of Table 1 is
prepared, considering a predefined specification. The investigated range of RF is from 60 kΩ
to 6 kΩ, v1 and v2 have values from 0.01V to 0.5V, and RL takes values from 0.5 kΩ to 10 kΩ.
During the design process multiple solutions S1, S2, . . . , Sn are possible, which must first be
found. All solutions possess common attributes A1 = R1, A2 = R2, A3 = v1, A4 = v2,
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A5 = vout, A6 = RF, A7 = RL, A8 = PD, e.g., S1 = f (A1, A2, A3, A4, A5, A6, A7, A8),
S2 = f (A1, A2, A3, A4, A5, A6, A7, A8), . . . , Sn = f (A1, A2, A3, A4, A5, A6, A7, A8).

Table 1. Prepared dataset with possible solutions.

S RF,kΩ R1,kΩ R2,kΩ v1,V v2,V vout,V RL,kΩ PD,mW σ(PD)

S1 60 20 10 0.01 0.01 0.09 10 10.511 0.999
S2 60 20 10 0.05 0.01 0.21 10 10.590 0.992
S3 60 20 10 0.1 0.01 0.36 10 10.684 0.983
S4 60 20 10 0.15 0.01 0.51 10 10.772 0.975
S5 60 20 10 0.2 0.01 0.66 10 10.855 0.968
. . . . . . . . . . . . . . . . . . . . . . . . . . .

All obtained solutions are assigned membership values for each attribute σSi
(

Aj
)

corresponding to the membership functions. The created dataset is presented in Table 1 and
the last column includes the membership values of power dissipation PD. The membership
values of other attributes are not shown, but they are predicted in a similar way through a
deep learning algorithm with a regression task. The ANN includes two hidden layers with
50 neurons at each layer. The utilized activation function is Rectifier. The dataset contains
13,090 records, of which 70% are used for training and 30% for testing.

The achieved accuracy of the predictive model is assessed considering standard
metrics such as Root mean squared error (RMSE) = 0.0098, Absolute error (AE) = 0.0053,
and Relative error (RE) = 0.98%. Figure 3 presents the prediction chart and the linear
regression result.
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Figure 3. Prediction chart of the power dissipation PD membership values (sigma) at inverting
summing amplifier design.

In the second stage, the designer is looking for solutions with maximal membership
function of power dissipation PD, e.g., minimal values of power dissipation PD and allow-
able values of the rest of the examined attributes. It is found that these requirements are
satisfied by 51 of 13,090 designs: SS1, SS2, .., SS51. The membership functions of vertices
(solutions) of the fuzzy graph are predicted through deep learning as ten random solutions
are shown in Figure 4. For further exploration, five solutions which are the most appropri-
ate, are considered. Thus, effort and resources are reduced, selecting and examining the
closest to the user specification solutions.
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Figure 4. Membership values of ten random solutions at design of inverting summing amplifier.

An m-polar fuzzy graph is constructed with five vertices (the most suitable five
solutions with minimal power dissipation PD–SS1, SS2, . . . , SS5 and edges between them
(Figure 5). The membership functions of the edges (SSi, SSk), with respect to the attributes
A1 ÷ A8 are found according to the following equation [31] (Table 2):

µ(SSi, SSk) = σSSi
(

Aj
)
∧ σSSk

(
Aj

)
(3)
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Figure 5. M-polar fuzzy graph at design of inverting summing amplifier.

Table 2. Membership values of the edges.

SSi⊗SSk A1 A2 A3 A4 A5 A6 A7 A8

E12 = SS1 ⊗ SS2 0.1 0.1 0.1 1 1 1 0.4 0.999

E23 = SS2 ⊗ SS3 0.12 0.12 0.12 1 1 1 0.4 0.999

E34 = SS3 ⊗ SS4 0.1 0.1 0.1 1 1 1 0.4 0.999

E45 = SS4 ⊗ SS5 0.1 0.1 0.1 1 1 1 0.444 0.999

E15 = SS1 ⊗ SS5 0.1 0.1 0.1 1 1 1 0.4 0.999
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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In the third stage, the membership values of the solutions considering the membership
values of every attribute, are calculated through the weight function:

w(Si) =
∑ σSSi

(
Aj

)
n

(4)

where n is the number of attributes.
Figure 6 gives information on the calculated weights of every candidate for the best so-

lution. It seems that the SS3 is the best-found design considering the specified requirements.
The best design could be used for amplifier prototyping with priorities in comparison to
the other four designs.
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5.2. Design of Subtracting Amplifier (Differential Amplifier)

The function realized from the subtracting amplifier (differential input amplifier),
presented in Figure 7, is described by the following equation [44]:

vout = k(v2 − v1) (5)

where k = RF
R1

, e.g., the output voltage is proportional to or equal to the difference between
the input voltages.
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Figure 7. Subtracting amplifier [44].

Let us suppose that the specification requires the subtracting amplifier to realize the
following function at minimal power dissipation PD:

vout = 3(v2 − v1) (6)

The suggestion is that the used operational amplifier is OPA 322 [46] and the explored
range of RF is from 60 kΩ to 3 kΩ, v1 and v2 have values from 0.01V to 0.5V, RL takes
values from 0.5 kΩ to 10 kΩ. The design solutions are characterized by seven attributes:
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A1 = R1, A2 = v1, A3 = v2, A4 = vout, A5 = RF, A6 = RL, A7 = PD,
e.g., S1 = f (A1, A2, A3, A4, A5, A6, A7), S2 = f (A1, A2, A3, A4, A5, A6, A7), . . . ,
Sn = f (A1, A2, A3, A4, A5, A6, A7).

The prepared dataset is similar to Table 1. The membership values of the rest of the
attributes are also predicted through a deep-learning algorithm. The learning records are
5710 and the prediction chart of the membership values of power dissipation (sigma) is
presented in Figure 8. The created predictive model is characterized by very small errors:
RMSE = 0.0032, AE = 0.0022, RE = 0.27%.
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Figure 8. The prediction chart of the membership values of power dissipation (sigma) at subtracting
amplifier design.

Figure 9 depicts the membership values of ten randomly chosen designs.
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Figure 9. Membership values of randomly chosen solutions at design of subtracting amplifier.

At the second stage, out of all possible 5710 designs, eight are selected—these with the
maximal membership values of power dissipation PD.

For fuzzy graph construction, in addition to the membership values of vertices, it is
necessary to know the membership values of the edges, which are calculated similarly to
the previous demonstration and are presented in Table 3. The m-polar fuzzy graph itself
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is shown in Figure 10. Its structure points out the most suitable designs found, which are
eight SS1 ÷ SS8. They are connected because they share common attributes.

Table 3. Membership values of the edges.

SSi⊗SSk A1 A2 A3 A4 A5 A6 A7 A8

E12 = SS1 ⊗ SS2 1 1 0.222 0.3 1 1 1 1

E23 = SS2 ⊗ SS3 1 1 0.25 0.333 1 1 1 1

E34 = SS3 ⊗ SS4 1 1 0.285 0.375 1 1 1 1

E45 = SS4 ⊗ SS5 1 1 0.333 0.428 1 1 1 1

E56 = SS5 ⊗ SS6 1 1 0.4 0.5 1 1 1 1

E67 = SS6 ⊗ SS7 1 1 0.5 0.6 1 1 1 1

E78 = SS7 ⊗ SS8 1 1 0.666 0.75 1 1 1 1
. . . . . . . . . . . . . . . . . .
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Figure 10. M-polar fuzzy graph at design of subtracting amplifier.

In the third stage, the best solution found is SS8, after calculating the values of the
weighting function (ordinate axes) as it is shown in Figure 11. It seems that SS8 is the
design, which satisfies the user requirements in the best way. Moreover, the remaining
seven also could be applied because of the closest weighting values to the most suitable
design.
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5.3. Summing and Subtracting Amplifier

The electronic circuit of the summing and subtracting amplifier is presented in
Figure 12. The output voltage vout is calculated as the sum of the input voltages applied
to the non-inverting input v11, v12, . . . , v1n, and the subtraction of the input voltages at
the inverting input v21, v22, . . . , v2n. So, the implemented function of this amplifier can be
presented in the following form [44]:

vout = (k11v11 + k12v12 + · · ·+ k1nv1n)− (k21v21 + k22v22 + · · ·+ k2nv2n) (7)
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The sizing coefficients are defined as the ratio between the feedback resistor and the
respective input resistor k1j = RF1

R1j
and k2j = RF

R2j
.

If the specification says that the amplifier must satisfy the following equation:

vout = (9v11 + 2v12)− (6v21 + 3v22) (8)

then the first stage includes the dataset preparation, which is similar to the one shown in Table 1
and the aim is the design with minimal power dissipation PD to be found considering a given
load RL. The examined design solutions are 144,414: S1 ÷ S144414 as they possess 11 common
attributes: A1 = RF, A2 = R1, A3 = R2, A4 = R3, A5 = R4, A6 = v1, A7 = v2,
A8 = v3, A9 = v4, A10 = vout, A11 = PD. All obtained solutions are assigned
predicted membership values for each attribute σSi

(
Aj

)
through the usage of a deep

learning algorithm. The prediction chart of membership values of power dissipation PD is
presented in Figure 13. The predictive model is evaluated, and it is characterized by very
small errors: RMSE = 0.0187, AE = 0.0098, RE = 1.57%.
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The membership values of ten random solutions out of 144,414 found solutions are
presented in Figure 14.
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Stage two includes selecting the most suitable solutions from 144,414 designs. The
membership values of the most appropriate 39 designs SS1 ÷ SS39 are calculated, as well
as the membership functions of the edges (SSi, SSk) taking into account the attributes
A1 ÷ A11. Then, the m-polar fuzzy graph is constructed.

In the third stage, for every attribute, the membership values of the edges between the
vertices are calculated and the weights of the solutions are presented in Figure 15. The best
solution found is SS1 according to the predefined user specification.
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6. Conclusions

The paper presents a novel method for supporting the design process of analog ampli-
fiers based on the concepts of m-polar fuzzy graphs and deep learning techniques. For the
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verification of the proposed method, three electronic circuits are designed: an inverting sum-
ming amplifier, a subtracting amplifier (differential amplifier), and a summing/subtracting
amplifier with an operational amplifier as the solved problem is related to finding the de-
signs with the smallest power dissipation and performing a certain mathematical function.
The findings point out that:

• The synergetic combination of m-polar fuzzy graphs theory and DL leads to obtaining
the most suitable solutions only in three stages, extremely reducing the number of
repetitive tasks concerning the calculation of the values of designs’ attributes, their
comparison, and design selection.

• DL is a suitable approach when expert opinion could be predicted and used for further
analysis. In this work, the membership functions of attributes are predicted instead
of the expert votes to be gathered. The created predictive models are evaluated, and
it is proved that they are characterized with high precision since the obtained errors
are very small: RMSE is from 0.0032 to 0.0187, AE is from 0.022 to 0.098, and RE is
between 0.27% and 1.57%.

• Fuzzy graph construction gives a possibility for very fast finding the eligible designs,
proposes apparatus for their prioritization, and an opportunity for reaching the best
design according to a given predefined user specification.

The method can be applied to the design of any electronic circuit to assist a designer
in decision-making when the task is multivariate and the environment is complex and
uncertain. A promising future work includes further exploration of the advantages and
applicability of the m-polar fuzzy graphs theory and deep learning in support of circuit
designers and analysts.
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