Global Stability of a MERS-CoV Infection Model with CTL Immune Response and Intracellular Delay
Abstract
:1. Introduction
2. Preliminaries
2.1. The Well-Posedness and Dissipativeness
2.2. The Equilibria
3. Local Stability
3.1. Local Stability of the Infection-Free Equilibrium
3.2. Local Stability of the Immunity-Inactivated Equilibrium
3.3. Local Stability of the Immunity-Activated Equilibrium
4. Global Stability
4.1. Global Stability of the Infection-Free Equilibrium
4.2. Global Stability of the Immunity-Inactivated Equilibrium
- (i)
- for all sufficiently large t;
- (ii)
- oscillates about for all sufficiently large t.
4.3. Global Stability of the Immunity-Activated Equilibrium
5. Numerical Simulations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in saudi arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Middle East Respiratory Syndrome Coronavirus (MERS-CoV), World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov) (accessed on 6 September 2022).
- Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2021, 2, e13–e22. [Google Scholar] [CrossRef]
- Kim, K.S.; Ejima, K.; Iwanami, S.; Fujita, Y.; Ohashi, H.; Koizumi, Y.; Asai, Y.; Nakaoka, S.; Watashi, K.; Aihara, K.; et al. A quantitative model used to compare withinhost SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2. PLoS Biol. 2021, 19, e3001128. [Google Scholar] [CrossRef]
- Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Muller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.A.; Zaki, A.; Fouchier, R.A.M.; et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013, 495, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Hu, Y.; Wang, Q.; Qi, J.; Gao, F.; Li, Y.; Zhang, Y.; Zhang, W.; Yuan, Y.; Bao, J.; et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013, 500, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Yang, Y.; Zhou, Y.; Lu, L.; Li, F.; Jiang, S. MERS-CoV spike protein: A key target for antivirals. Expert Opin. Ther. Targets 2017, 21, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Lambeir, A.M.; Durinx, C.; Scharpè, S.; Meester, I.D. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 2003, 40, 209e294. [Google Scholar] [CrossRef]
- Choudhry, H.; Bakhrebah, M.A.; Abdulaal, W.H.; Zamzami, M.A.; Baothman, O.A.; Hassan, M.A.; Zeyadi, M.; Helmi, N.; Alzahrani, F.; Ali, A.; et al. Middle East respiratory syndrome: Pathogenesis and therapeutic developments. Future Virol. 2019, 14, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Nowak, M.A.; Bangham, C.R.M. Population dynamics of immune responses to persistent virus. Science 1996, 272, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Perelson, A.S.; Neumann, A.U.; Markowitz, M.; Leonard, J.M.; Ho, D.D. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582–1586. [Google Scholar] [CrossRef] [Green Version]
- Perelson, A.S.; Nelson, P.W. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999, 41, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Nowak, M.A.; May, R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Tang, S.; Ma, W.; Bai, P. A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidy peptidase 4. Comput. Math. Method Med. 2017, 2017, 5285810. [Google Scholar] [CrossRef] [Green Version]
- Keyoumu, T.; Ma, W.; Guo, K. Existence of positive periodic solutions for a class of in-host MERS-CoV infection model with periodic coefficients. AIMS Math. 2021, 7, 3083–3096. [Google Scholar] [CrossRef]
- Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; et al. Coronavirus infections and immune responses. J. Med. Virol. 2020, 92, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Keyoumu, T.; Guo, K.; Ma, W. Periodic oscillation for a class of in-host MERS-CoV infection model with CTL immune response. Math. Biosci. Eng. 2022, 19, 12247–12259. [Google Scholar] [CrossRef]
- Wodarz, D. Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses. J. Gen. Virol. 2003, 84, 1743–1750. [Google Scholar] [CrossRef]
- Herz, A.V.M.; Bonhoeffer, S.; Anderson, R.M.; May, R.M.; Nowak, M.A. Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 1996, 93, 7247–7251. [Google Scholar] [CrossRef] [Green Version]
- Culshaw, R.V.; Ruan, S. A delay-differential equation model of HIV infection of CD4+ T-cells. Math. Biosci. 2000, 165, 27–39. [Google Scholar] [CrossRef]
- Dixit, N.M.; Perelson, A.S. Complex patterns of viral load decay under antiretroviral therapy: Influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 2004, 226, 95–109. [Google Scholar] [CrossRef]
- Li, M.Y.; Shu, H. Impact of intracellular delays and target-cell dynamics on in vivo viral infections. SIAM J. Appl. Math. 2010, 70, 2434–2448. [Google Scholar] [CrossRef]
- Xu, R. Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl. 2011, 375, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Ma, W.; Takeuchi, Y. Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 2011, 24, 1199–1203. [Google Scholar] [CrossRef] [Green Version]
- Pawelek, K.A.; Liu, S.; Pahlevani, F.; Rong, L. A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data. Math. Biosci. 2012, 235, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Dong, Y.; Takeuchi, Y. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete Contin. Dyn. Syst.-Ser. B 2019, 24, 783–800. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, R. Mathematical analysis of a delayed HIV infection model with saturated CTL immune response and immune impairment. J. Appl. Math. Comput. 2022, 68, 2365–2380. [Google Scholar] [CrossRef]
- Kuang, Y. Delay Differential Equations with Applications in Population Dynamics; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Korobeinikov, A. Global properties of basic virus dynamics models. Bull. Math. Biol. 2004, 66, 879–883. [Google Scholar] [CrossRef]
- McCluskey, C.C. Using Lyapunov functions to construct Lyapunov functionals for delay differential equations. SIAM J. Appl. Dyn. Syst. 2014, 14, 1–24. [Google Scholar] [CrossRef]
- Song, C.; Xu, R. Mathematical analysis of an HTLV-I infection model with the mitosis of CD4+ T cells and delayed CTL immune response. Nonlinear Anal.-Model Control 2021, 26, 1–20. [Google Scholar] [CrossRef]
- Guo, K.; Ma, W.; Qiang, R. Global dynamics analysis of a time-delayed dynamic model of Kawasaki disease pathogenesis. Discrete Contin. Dyn. Syst.-Ser. B 2022, 27, 2367–2400. [Google Scholar] [CrossRef]
- Saito, Y.; Hara, T.; Ma, W. Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays. J. Math. Anal. Appl. 1999, 236, 534–556. [Google Scholar] [CrossRef] [Green Version]
- Wang, W. Global behavior of a SEIRS epidemic model with time delays. Appl. Math. Lett. 2002, 15, 423–428. [Google Scholar] [CrossRef]
- Guo, K.; Ma, W. Permanence and extinction for a nonautonomous Kawasaki disease model with time delays. Appl. Math. Lett. 2021, 122, 107511. [Google Scholar] [CrossRef]
- Barbǎlat, I. Systèmes d’équations différentielles d’oscillations non lineairés. Rev. Roumaine Math. Pures Appl. 1959, 4, 267–270. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keyoumu, T.; Ma, W.; Guo, K. Global Stability of a MERS-CoV Infection Model with CTL Immune Response and Intracellular Delay. Mathematics 2023, 11, 1066. https://doi.org/10.3390/math11041066
Keyoumu T, Ma W, Guo K. Global Stability of a MERS-CoV Infection Model with CTL Immune Response and Intracellular Delay. Mathematics. 2023; 11(4):1066. https://doi.org/10.3390/math11041066
Chicago/Turabian StyleKeyoumu, Tuersunjiang, Wanbiao Ma, and Ke Guo. 2023. "Global Stability of a MERS-CoV Infection Model with CTL Immune Response and Intracellular Delay" Mathematics 11, no. 4: 1066. https://doi.org/10.3390/math11041066
APA StyleKeyoumu, T., Ma, W., & Guo, K. (2023). Global Stability of a MERS-CoV Infection Model with CTL Immune Response and Intracellular Delay. Mathematics, 11(4), 1066. https://doi.org/10.3390/math11041066