Some Functionals and Approximation Operators Associated with a Family of Discrete Probability Distributions
Abstract
:1. Introduction
2. A Quadrature Formula
3. A Random Variable
4. Two Sequences of Operators
5. A Heun Function
6. Stochastic Convex Orderings
7. Conclusions and Directions for Further Work
Author Contributions
Funding
Conflicts of Interest
References
- Acu, A.M.; Raşa, I. A discrete probability distribution and some applications. Mediterr. J. Math. 2023, 20, 34. [Google Scholar] [CrossRef]
- Ong, S.H.; Ng, C.M.; Yap, H.K.; Srivastava, H.M. Some probabilistic generalizations of the Cheney-Sharma and Bernstein approximation operators. Axioms 2022, 10, 537. [Google Scholar] [CrossRef]
- Lupaş, A.; Lupaş, L. Polynomials of binomial type and approximation operators. Stud. Univ. Babeş-Bolyai Math. 1987, 32, 61–69. [Google Scholar]
- Lupaş, A. The Approximation by Means of Some Linear Positive Operators. In Approximation Theory, Proc. IDoMAT 95; Müller, M.W., Felten, M., Mache, D.H., Eds.; Mathematical Research; Academic Verlag: Berlin, Germany, 1995; Volume 86, pp. 201–229. [Google Scholar]
- Stancu, D.D. Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl. 1968, 13, 1173–1194. [Google Scholar]
- Acu, A.M.; Raşa, I. Estimates for the differences of positive linear operators and their derivatives. Numer. Algor. 2020, 85, 191–208. [Google Scholar] [CrossRef]
- Mühlbach, G. Verallgemeinerungen der Bernstein- und der Lagrangepolynome, Bemerkungen zu einer Klasse linearer Polynomoperatoren von D.D. Stancu. Rev. Roum. Math. Pure Appl. 1970, 15, 1235–1252. [Google Scholar]
- Mühlbach, G. Rekursionsformeln für die zentralen Momente der Polya- und der Beta-Verteilung. Metrika 1972, 19, 171–177. [Google Scholar] [CrossRef]
- Lupaş, A. Die Folge der Beta-Operatoren. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 1972. [Google Scholar]
- Rajba, T. On Some Recent Applications of Stochastic Convex Ordering Theorems to Some Functional Inequalities for Convex Functions: A Survey. In Developments in Functional Equations and Related Topics; Brzdek, J., Cieplinski, K., Rassias, T.M., Eds.; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2017; Chapter 11; Volume 124, pp. 231–274. [Google Scholar]
- Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | |||||||||
1 | ||||||||||
2 | ||||||||||
3 | ||||||||||
4 | ||||||||||
5 | ||||||||||
6 | ||||||||||
7 | ||||||||||
8 | ||||||||||
9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acu, A.M.; Raşa, I.; Srivastava, H.M. Some Functionals and Approximation Operators Associated with a Family of Discrete Probability Distributions. Mathematics 2023, 11, 805. https://doi.org/10.3390/math11040805
Acu AM, Raşa I, Srivastava HM. Some Functionals and Approximation Operators Associated with a Family of Discrete Probability Distributions. Mathematics. 2023; 11(4):805. https://doi.org/10.3390/math11040805
Chicago/Turabian StyleAcu, Ana Maria, Ioan Raşa, and Hari M. Srivastava. 2023. "Some Functionals and Approximation Operators Associated with a Family of Discrete Probability Distributions" Mathematics 11, no. 4: 805. https://doi.org/10.3390/math11040805
APA StyleAcu, A. M., Raşa, I., & Srivastava, H. M. (2023). Some Functionals and Approximation Operators Associated with a Family of Discrete Probability Distributions. Mathematics, 11(4), 805. https://doi.org/10.3390/math11040805