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Abstract: Statistical population reconstruction models based on maximum likelihood and minimum
chi-square objective functions provide a robust and versatile approach to estimating the demographic
dynamics of harvested populations of wildlife. These models employ numerical optimization
techniques to determine which set of model parameters best describes observed age-at-harvest, catch-
effort, and other auxiliary field data. Although numerous optimization methods have been used in
the past, the benefits of using particle swarm optimization (PSO) have yet to be explored. Using a
harvested population of North American river otter (Lontra canadensis) in Indiana as a case study,
we investigated the performance of population reconstruction using particle swarm optimization,
spectral projected gradient (SPG), Nelder–Mead, and Broyden–Fletcher–Goldfarb–Shanno (BFGS)
methods. We used Monte Carlo studies to simulate populations under a wide range of conditions
to compare the relative performance of population reconstruction models using each of the four
optimization methods. We found that using particle swarm optimization consistently and significantly
improved model stability and precision when compared with other numerical optimization methods
that may be used in statistical population reconstruction. Given that these models are frequently used
to guide management decisions and set harvest limits, we encourage management agencies to adopt
this more precise method of estimating model parameters and corresponding population abundance.
These results illustrate the benefits of using particle swarm optimization, caution against relying on
the results of population reconstruction based on optimization methods that are highly dependent
on initial conditions, and reinforce the need to ensure model convergence to a global rather than a
local maximum.

Keywords: population analysis; abundance estimation; age-at-harvest; harvest mortality; statistical
population reconstruction; maximum likelihood estimation; numerical optimization; particle swarm
optimization
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1. Introduction

Statistical population reconstruction (SPR) using integrated population models (IPMs)
is a robust and cost-effective means of estimating wildlife population abundance across an
entire state or other large spatial scale at which harvest-related management typically occurs.
By incorporating relevant information from multiple sources, such as age-at-harvest and
catch-effort data, as well as auxiliary information from index surveys [1], mark–recapture
analyses [2], and radio-telemetry studies [3] when available, these models provide a flexible
framework to simultaneously estimate various demographic parameters (e.g., annual
abundance, recruitment, and survival). Such models continue to see increased use as a
valuable tool for monitoring wildlife population trends throughout the world, including
moose (Alces alces) in Minnesota [4], grizzly bears (Ursus arctos) in British Columbia [5],
and rock ptarmigans (Lagopus muta) in Iceland [6].
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Population reconstruction typically begins by specifying a state–space model that links
yearly estimates of population abundance with demographics rates, such as recruitment,
natural (i.e., non-harvest) survival, and harvest vulnerability. An objective function is then
defined to quantify the likelihood of observing the age-at-harvest data collected in the field
given the demographic rates in the state–space model [7–10]. The most common approach
to defining this objective function is to construct a product-multinomial likelihood for
each cohort in the state–space model, using initial cohort abundance, natural survival,
and harvest vulnerability as model parameters [1,11,12]. An alternative to this maximum
likelihood (ML) formulation is instead to use a minimum chi-square (MCS) objective
function to achieve the same goal [2,4,10]. Although MCS is used less frequently than ML,
it does provide several advantages, including being more likely to converge to a global
optimum and avoiding potential numerical problems associated with large combinatoric
terms used in multinomial likelihoods [2]. Further, preliminary simulation studies suggest
that both approaches yield similar levels of accuracy and precision under a range of
conditions [10].

Regardless of whether an ML or an MCS model is employed, numerical optimization is
then used to find either the maximum or minimum of the corresponding objective function
in a multidimensional space to determine which set of model parameters best describes
the observed age-at-harvest data, as well as any auxiliary data from radio-telemetry, mark–
recapture, or index surveys. Several different optimization algorithms have been used to
estimate these model parameters in the past, including a bounded form of the Nelder–Mead
method [3] and a spectral projected gradient method [4,10]. Unfortunately, very little attention
has been devoted to how these different optimization methods may influence the precision
and stability of statistical population reconstruction. Complex nonlinear models, such as
those used in population reconstruction, can be very difficult to numerically optimize, and
problems of false maxima and unstable variance estimates are common to many numerical
optimization methods [13]. This would suggest that the choice of numerical optimization
method is an important consideration in statistical population reconstruction.

Although previous population reconstruction models have used only a few different
numerical optimization methods to estimate model parameters, there is a wide range
of other methods that should also be explored. Particle swarm optimization (PSO), for
example, is a heuristic optimization method inspired by the social behavior and movement
of animals in a flock of birds or a school of fish. Developed in 1995, this method employs
a group of random particles meant to represent individual birds or fish, each of which
searches the multidimensional parameter space of the objective function for a global
maximum [14]. Although each particle is treated as an individual, their movements are
guided not just by their own best-known position but also by the best-known position
of other particles in the swarm [15–17]. This balance of global and local exploration
allows particle swarm optimization to be used in nonlinear models that contain many
parameters, and it does not require initial parameter guesses or derivatives of the objective
function [18]. The use of this method has been explored in disciplines ranging from
chemical engineering [18] to finance [19] and may provide a suitable alternative to the
optimization methods currently employed in statistical population reconstruction.

The purpose of our paper is to provide wildlife managers and agencies with guidance
on how the choice of a specific numerical optimization method may influence the accu-
racy of population reconstruction and, by extension, the efficacy of management decisions
regarding season lengths and catch limits. To the best of our knowledge, this is the first com-
prehensive assessment of how the choice of numerical optimization methods can impact
the results of reconstruction models. We used Monte Carlo simulations of populations with
varying levels of abundance, natural survival, and harvest rates to compare the accuracy
and precision of ML statistical population reconstruction results derived using different
numerical optimization methods. We also investigate the effectiveness of PSO as a more
efficient and accurate optimization method for identifying the best set of model parameters
in population reconstruction. Finally, we illustrate how these results can be applied to
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help guide management and population reconstruction of a harvested population of North
American river otter (Lontra canadensis) in Indiana, USA. The main contributions of this
paper can be summarized as follows:

• Discussing the role of numerical optimization methods in statistical population recon-
struction models.

• Providing a quantitative comparison of how different numerical optimization methods
impact the precision of reconstruction estimates.

• Recommending the use of particle swarm optimization as a more effective alternative
to other numerical optimization methods that may be used in reconstruction models.

• Presenting a reconstruction model of river otter in Indiana as a case study of how
using other numerical optimization methods may result in less accurate assessments
of population abundance.

The remainder of this paper is organized as follows. The underlying model structure,
numerical optimization, and demographic data used in the population reconstruction
is detailed in Section 2. The results of the corresponding simulation and cases studies
are presented in Section 3. Section 4 describes implications of the results to future and
ongoing reconstructions efforts, as well as a detailed discussion of the population estimates
produced for the case study of river otter in Indiana. Finally, Section 5 presents a conclusion
and recommendations for wildlife management agencies.

2. Materials and Methods
2.1. Formulation of the Population Reconstruction Model
2.1.1. Available Demographic Data

From 2015 to 2020, the Indiana Department of Fish and Wildlife Resources (IN DNR)
recorded all river otter harvested in Indiana during the regulated furbearer trapping
seasons and aged harvested otter that were mandatorily submitted by trappers by us-
ing a combination of microscopic counts of cementum annuli and X-ray examination of
pulp cavities. Because not all harvested river otter were successfully aged due to loss
in transit and limited noncompliance by trappers (mean number aged annually = 98%,
range = 94–100%), age-at-harvest numbers were inflated accordingly by assuming that the
aged sample is representative of the overall harvest [2,3,10].

IN DNR also began sending annual surveys in 2017 to individuals who purchased a
trapping license (mean response rate = 24%, range = 21–31%) to estimate the mean number
of trap nights per licensed trapper, scaled to a mean of one. When survey results were
unavailable, we assumed that the mean number of trap nights was equal to one (indicating
average number of trap nights per licensed trapper when compared with other years) and
used the combination of number of licenses sold and scaled mean number of trap nights
per licensed trapper as an estimate of yearly catch effort (Table 1).

Table 1. Age-at-harvest numbers (and percentages) and estimated catch effort (in terms of total
trap-nights, scaled to a mean of one) for North American river otter in Indiana, USA, 2015–2020.

Year Young-of-the-Year Yearlings Adults Total Catch Effort

2015 242 (40.1%) 181 (30.0%) 180 (29.9%) 603 1.155
2016 158 (30.5%) 208 (40.2%) 152 (29.3%) 518 0.959
2017 232 (46.7%) 179 (36.0%) 86 (17.3%) 497 1.113
2018 142 (24.2%) 241 (41.1%) 204 (34.8%) 587 0.809
2019 127 (20.7%) 281 (45.8%) 206 (33.6%) 614 0.953
2020 174 (28.2%) 260 (42.2%) 182 (29.5%) 616 1.011

2.1.2. Underlying State–Space Model

The basic form of a reconstruction model begins with a deterministic population
projection matrix [20,21] to describe the development of the underlying population sizes
over time and to provide a means of projecting the expected harvest data to compare
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with the observed harvest data [8,9,22]. Consider a hypothetical population of animals
divided into three age classes (young-of-the-year, yearlings, and adults) harvested over Y
consecutive years, where Nij and hij are the abundance immediately before harvest and the
number subsequently harvested, respectively, of animals of age-class j (j = 1, 2, 3) in year
i (i = 1, . . . , Y).

Under this framework, all individuals born during the same year constitute a single
cohort that is subsequently subjected to annual mortality from harvest and natural causes.
Using an age-at-harvest matrix (Table 1), we can represent each cohort as a separate
diagonal, where the observed counts, hij, are a function of the initial abundance of the
corresponding cohort and annual rates of harvest mortality and natural survival (to be
estimated as parameters).

2.1.3. Multinomial Likelihood Objective Function

Using the ML method to define the corresponding objective function, we model
each of the diagonals in the age-at-harvest matrix (Table 1) as independent multinomial
distributions. The likelihood for the diagonal represented by animals of age-class j = 3
(i.e., adults) already present in the population in year i = 1 (i.e., N13), for example, can be
written as follows:

l13 =

(
N13
h13

)
(P13)

h13(1 − P13)
N13−h13 , (1)

where P13 is the probability of an adult being harvested in year 1. This likelihood is
based on a binomial distribution of the number of animals in each cohort harvested and
not harvested each year and forms the basis of most statistical population reconstruction
models [1,11,23,24].

A common parameterization for the harvest probability P13 that is used in both popu-
lation reconstruction [1,3,12,24] and other models of animal abundance [25,26] is as follows:

P13 =
(

1 − e− f1C3
)

, (2)

where f1 is the catch effort in year 1 and C3 represents the harvest vulnerability coefficient
for animals of age-class j = 3. This parameterization provides a direct means of converting
the observed catch effort (Table 1) into a harvest probability by estimating the vulnerability
coefficient as a parameter in the model [3,10,23].

The full population reconstruction model requires development of similar likelihoods
for each of the other cohorts or diagonals in the age-at-harvest matrix. The overall likelihood
for the entire age-at-harvest matrix can then be written as a product of these individual
cohort likelihoods:

LAge−at−harvest =
Y

∏
i=1

li1 ×
3

∏
j=2

l1j, (3)

where lij represents the cohort-specific age-at-harvest likelihoods described above [11,12,23,24,27].
This age-at-harvest likelihood alone is over-parameterized and incapable of estimating

parameters for initial cohort abundance and separate values for both natural survival and
harvest vulnerability. At least one of these parameters must be estimated independently of the
age-at-harvest likelihood with the use of some additional source of field information [1,11,24,28].
One of the most common sources of this additional information is catch per unit effort (CPUE),
which can be used to model the total annual harvest as a binomially distributed function of
catch effort:

LCatch−e f f ort =
Y

∏
i=1


3
∑

j=1
Nij

3
∑

j=1
hij

(Pi)
∑3

j=1 hij(1 − Pi)
∑3

j=1 (Nij−hij), (4)

where Pi is the mean probability of beings harvested in year i. Much like the age-at-harvest
likelihood, this likelihood is based on a binomial distribution of the total number of animals
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harvested and not harvested each year [1,12,24,27]. This likelihood can also be expanded
to use separate harvest probabilities for each of the different age-classes if needed [9,27].

Using both the age-at-harvest and the catch-effort likelihoods, we can write the full
joint multinomial likelihood that is used in statistical population reconstruction models
as follows:

LJoint = LAge−at−harvest × LCatch−e f f ort. (5)

This joint likelihood can also been expanded to include additional information from
index surveys [1,12], radio-telemetry studies [3,12,29], or other relevant data collected
during the same time as the age-at-harvest and catch-effort data. However, because these
other data are not always as readily available, the joint age-at-harvest and catch-effort
likelihood serves as the foundational objective function in most statistical population
reconstruction models [1,3,10,24,27].

2.1.4. Parameter Estimation

Once an appropriate objective function has been defined, numerical optimization can
be used to find the global maximum of this likelihood function to determine the set of
model parameters (i.e., initial abundance of each diagonal cohort and the annual rates of
harvest mortality and natural survival) that best describes the observed data (Table 1). We
compared the performance of four different numerical optimization methods available
in Program R [30] to solve for the maximum likelihood of the objective function used
in statistical population reconstruction. We implemented particle swarm optimization
using the “pso” package [31] and a spectral projected gradient method [32] using the “BB”
package [33]. We also used a bounded form of the Nelder–Mead algorithm [34] and a
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [35] using the base “stats” package
in Program R. A conjugate gradient method [36] and a variant of simulated annealing [37],
both using the base “stats” package, were also initially considered but were removed from
the analysis because of excessive computational cost (mean execution times of several
hours per simulation versus less than 40 s for the retained methods). Further, preliminary
results consistently indicated that the precision and stability of these two methods was
significantly lower than any of the four methods considered here.

This approach of numerical optimization of the parameter space allowed us to directly
estimate natural survival (S), harvest vulnerability (C), initial age-class abundances in year
1 (N11, N12, N13), and recruitment in subsequent years (N21, . . . , NY1). All other year- and
age-class specific abundances were estimated on the basis of the invariance property of the
maximum likelihood estimation [1,23]:

Nij = Ni−1,j−1e−Cj−1 fi−1 Sj−1. (6)

We calculated standard errors for the maximum likelihood estimates from a numerical
estimate of the inverse Hessian [23,29,38] using the “numDeriv” package [39]. Because
population reconstruction models consistently underestimate uncertainty [8], we inflated
all standard errors by a goodness-of-fit scale parameter [1]:√

χ2/df, (7)

where the χ2 statistic is based on the observed age-at-harvest data (hij) and their expected
values under the maximum likelihood solution to the objective function. The degrees of
freedom (df) are equal to A × Y − K, where A is the number of unique age-classes and K
is the number of parameters estimated by the reconstruction model [1,3]. We then used
these inflated standard errors to construct 95% confidence intervals for the model-derived
estimates of yearly population abundance.
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2.2. Simulation Study and Case Study
2.2.1. Simulation Study

We used a Monte Carlo simulation to determine the stability and precision of ML
population reconstruction using each of the four alternative numerical optimization meth-
ods (Appendix A.1). This approach is frequently used to evaluate the performance of
population reconstruction models [3,10,23,24,29,38] and provides the flexibility to simulate
a wide range of demographic processes (e.g., harvest and recruitment) and parameters
(e.g., low or high annual survival rates) that a population may experience. We developed
a demographically stochastic version of a Leslie matrix model [40,41] in Program R to
generate age-at-harvest data for a wildlife population with three distinct age classes (young-
of-the-year, yearlings, and adults, as observed in the age-at-harvest matrix), exhibiting
different levels of natural survival and harvest rates [3,23,24].

We generated recruitment for each simulated year using a Poisson process, with
adjustments made to produce populations with stationary abundance in expectation that
fluctuated as a result of stochasticity [3,10,23,24]. We modeled natural survival and harvest
as binomial processes, determined stochastically using the probabilities of success (i.e.,
survival and harvest rates), each of which was drawn from the uniform distributions
defined below. We generated catch effort by re-sampling with replacement the relative
catch effort observed in Indiana over the last six years (Table 1).

For each simulation, we generated 30 years of data to establish demographic trends,
with an additional six years used for the population reconstruction. To minimize the
number of demographic scenarios investigated, we assumed that survival and harvest
vulnerability did not vary by age-class [3,10,23,24]. Simulations were designed to represent
a wide variety of harvested populations, with natural survival rates between 0.75 and
0.90, harvest rates between 0.10 and 0.25, and initial population sizes between 5000 and
15,000 individuals. These distributions and values were based on those used in previous
simulation studies of statistical population reconstruction [3,10,23,24]. A total of 10,000
simulations were analyzed overall.

Using our simulated data, we compared the stability and precision of point estimates
derived from population reconstruction using each of the four numerical optimization
methods by calculating the mean and standard deviation of the relative absolute deviation
(RAD) in annual abundance estimates for each scenario, defined as follows:

RAD =
1
Y

Y

∑
i=1

∣∣N̂i − Ni
∣∣

Ni
, (8)

where Ni is the true simulated overall (i.e., not cohort-specific) abundance in year i and N̂i is
the corresponding estimate derived by applying population reconstruction to the simulated
age-at-harvest and catch-effort data [24]. We used paired t-tests to compare the performance
of the four numerical optimization methods in terms of the relative absolute deviation
of the best-fit model identified by each method, as well as in terms of the corresponding
Akaike’s Information Criterion (AIC) [42] for each model.

2.2.2. Case Study: Population Reconstruction of River Otter in Indiana

We examined four alternative models for the actual (i.e., not simulated) river otter
population reconstruction, testing whether harvest vulnerability or natural survival were
age-class-specific or age-class-constant (Appendix A.2). We used Akaike’s Information
Criterion (AIC) for model selection and compared the best-fit model under each of the four
numerical optimization methods.

3. Results
3.1. Simulation Study

We simulated a variety of demographic scenarios a total of 10,000 times, reconstructing
population abundance over a six-year period using four different numerical optimization



Mathematics 2023, 11, 827 7 of 28

methods. Using particle swarm optimization to find the maximum of the objective function
consistently yielded significantly better-fitting models (i.e., models with smaller AIC) when
compared with the spectral projected gradient (mean ∆AIC = 0.814; paired t-test, t = 8.244,
p < 0.001), Nelder–Mead (mean ∆AIC = 2.518, t = 23.149, p < 0.001), and Broyden–Fletcher–
Goldfarb–Shanno (mean ∆AIC = 1.758, t = 17.550, p < 0.001) methods.

The mean relative absolute deviation for these best-fit models using particle swarm
optimization was 0.364 (SD = 0.169). The relative absolute deviation for the other three
methods was significantly higher (indicating lower precision) in a manner largely consistent
with the differences in AIC. Using the spectral projected gradient method resulted in the
smallest loss of precision (mean ∆RAD = 0.070, t = 16.886, p < 0.001), followed by larger
losses when using the Nelder–Mead (mean ∆RAD = 0.402, t = 85.124, p < 0.001) and
Broyden–Fletcher–Goldfarb–Shanno (mean ∆RAD = 0.525, t = 149.470, p < 0.001) methods.

3.2. Population Reconstruction of River Otter in Indiana

Using particle swarm optimization, the best available population reconstruction (i.e.,
the model with the smallest AIC) modeled both harvest vulnerability and natural sur-
vival as differing among young-of-the-year, yearlings, and adults (next best model ∆AIC
= 6.476). Using this model, we estimated a harvest vulnerability of 0.092 (SE = 0.011)
for young-of-the-year, 0.140 (SE = 0.001) for yearlings, and 0.050 (SE = 0.001) for adults.
Alongside annual changes in catch effort, these estimates resulted in average harvest
rates decreasing from 10.3% in 2015 to 7.3% in 2018 before increasing back up to 9.1% by
2020. River otter abundance immediately before harvest showed a steady increase from
6506 (95% CI = 4957–8006) in 2015 to 8046 (6323–10,245) in 2020, with annual recruitment
between 1530 (880–2192) and 2447 (1552–3199) animals (Figure 1).
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Figure 1. Estimated trends, along with associated 95% confidence intervals (shaded regions), in
abundance (top line) and recruitment into the trappable population (bottom line) of North American
river otter in Indiana between 2015 and 2020 based on the best available population reconstruction
model using particle swarm optimization of an ML objective function.

Reconstruction using alternative numerical optimization methods also modeled both
harvest vulnerability and natural survival as different for young-of-the-year, yearlings, and
adults, but with substantially higher AIC (Table 2). This increase in AIC was consistent with
our simulated results, with smaller increases when using the spectral projected gradient
method (∆AIC = 3.272) and larger ones when using the Nelder–Mead (∆AIC = 18.750) and
Broyden–Fletcher–Goldfarb–Shanno (∆AIC = 42.973) methods. Abundance estimates from
these alternative models deviated from the estimates derived using the optimum approach
(i.e., best-fit reconstruction using particle swarm optimization of the objective function) in
a manner that was again consistent with our simulation results (i.e., larger deviations for
reconstructions using the BFGS method, moderate ones using the Nelder–Mead method,
and smaller ones using the spectral projected gradient method).
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Table 2. Akaike Information Criterion (AIC) for alternative population reconstruction models of
North American river otter in Indiana, USA, 2015–2020, using four different numerical optimization
methods (particle swarm optimization (PSO), spectral projected gradient (SPG), Nelder–Mead, and
Broyden–Fletcher–Goldfarb–Shanno (BFGS)). Models assumed harvest vulnerability (C ) and natural
survival (S) were either the same for all age-classes (subscript 1) or differed for young-of-the-year,
yearlings, and adults (subscript 3).

Model No. of Parameters PSO SPG Nelder–Mead BFGS

MC3S3 14 540.493 543.765 559.243 583.466
MC3S1 12 546.970 547.102 580.321 588.779
MC1S3 12 701.840 754.976 729.224 744.487
MC1S1 10 1216.019 1216.019 1216.041 1232.465

4. Discussion

Statistical population reconstruction using integrated population models provides a
robust and flexible means of estimating population abundance and other demographic
parameters across large spatial scales, which are necessary for effective management and
conservation of harvested species of wildlife. Our simulation study, however, indicates
that the precision and stability of reconstruction estimates can be strongly influenced by
which numerical optimization method is used to estimate underlying model parameters.
Methods such as the Nelder–Mead and Broyden–Fletcher–Goldfarb–Shanno algorithms,
for example, are highly dependent on initial conditions and are more likely to converge
to local rather than global optima. This can result in inaccurate estimates of natural
survival and harvest vulnerability, which leads to substantial under- or over-estimation
of overall population abundance. Interestingly, the spectral projected gradient method
appears to be less dependent on initial conditions and consistently outperformed both
the Nelder–Mead and Broyden–Fletcher–Goldfarb–Shanno methods in finding a more
optimal solution in statistical population reconstruction. However, its dependence on
initial conditions still results in it converging to a local, albeit more optimal, maximum,
leading again to inaccurate estimates of underlying model parameters and corresponding
population abundances.

Conversely, particle swarm optimization does not require initial guesses for model
parameters, relying instead on a group of random particles that are populated and initial-
ized throughout the multidimensional parameter space [14,16,18]. This independence from
initial conditions not only decreases the odds of converging to a local rather than global
optimum but also allows for optimization of objective functions that are discontinuous,
as can occur in statistical population reconstruction. As expected, simulated reconstruc-
tions that used particle swarm optimization converged to significantly higher maximums
than those that used the Nelder–Mead, Broyden–Fletcher–Goldfarb–Shanno, or spectral
projected gradient methods. These results were consistent across a wide range of harvest
intensities, natural survival rates, and population abundances. Given the heuristic nature of
this method, it is not possible to guarantee that the precise global optimum had been found
without an exhaustive and computationally infeasible search of the entire multidimen-
sional parameter space. However, the consistency with which particle swarm optimization
outperforms other numerical optimization methods strongly encourages its use for param-
eter estimation in statistical population reconstruction. These results further corroborate
previous findings in other disciplines that particle swarm optimization provides a more
effective means of finding optimum solutions in complex multidimensional space [18,19].

Our analysis also reaffirms previous findings that statistical population reconstruc-
tions based solely on age-at-harvest and catch-effort data may provide imprecise estimates
of both cohort and overall abundance of wildlife populations [3,10,24], as indicated by a
mean relative absolute deviation of 0.364 (SD = 0.169), even with the use of particle swarm
optimization. Incorporating auxiliary data from radio-telemetry studies or independent
estimates of annual abundance to help estimate one or more model parameters can sig-
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nificantly improve the precision of these estimates [3,24], but these data are not always
available (as was the situation with our case study). The amount of age-at-harvest data
available (i.e., the number of animals harvested and aged each year) has also been shown to
influence the precision of population reconstruction, particularly in the absence of auxiliary
data [10]. As such, we continue to encourage managers to be cautious about statistically
reconstructing populations where low abundance or low harvest rates do not generate a
sufficient number of harvested animals each year (i.e., an average of at least 600 animals
harvested per year [10]) unless other auxiliary data are available.

Use of statistical population reconstruction with the observed (i.e., not simulated)
age-at-harvest and catch-effort data alongside particle swarm optimization suggests that
the Indiana river otter population (measured pre-harvest) has been overall increasing
over the past six years, albeit at a steadily slowing rate. Importantly, the number of
animals harvested per year (mean = 573, range = 497 to 616) was slightly lower than that
recommended by previous simulation studies [10], suggesting that these results should be
treated with some caution. Use of alternative numerical optimization methods resulted in
substantially lower estimates of harvest vulnerability and substantially higher estimates
of overall population abundance, particularly when either the Nelder–Mead or Broyden–
Fletcher–Goldfarb–Shanno algorithms were used. These results corroborate conclusions
drawn from our simulation study and further demonstrate the need to avoid numerical
optimization methods that rely heavily on initial conditions.

Statistical population reconstruction using particle swarm optimization estimated
separate harvest vulnerability coefficients for each of the three age classes, with substantially
higher coefficients for young-of-the-year and yearling than for adults (0.092 and 0.140,
respectively, versus 0.050). This suggests that any changes or fluctuations in harvest
pressure (e.g., through adjustments to bag limits or season lengths) are likely to have a
larger impact on younger river otters than on older ones. These results are consistent with
river otter reconstruction conducted in Kentucky and in Ohio, both of which also estimated
higher harvest vulnerability for young-of-the-year and yearlings than for adults [10,43].
Interestingly, use of alternative numerical optimization methods did not change whether
harvest vulnerability or natural survival should be modeled as age-class-specific or age-
class-constant, suggesting that the structure of these estimates is somewhat robust to
whether the model converges to a local or a global maximum.

Although the estimated overall abundance compares favorably with the results of inde-
pendent population modeling conducted by the IN DNR (G. Albers, IN DNR, unpublished
data), our reconstructed estimates indicate that annual recruitment of young-of-the-year
into the trappable population actually has been declining over the past four years. This sug-
gests that the observed increase in annual abundance is caused by decreasing mortality after
recruitment rather than increasing reproductive success and pup survival prior to recruit-
ment. This decrease in mortality after recruitment was likely caused by the sharp decrease
in harvest pressure (i.e., probability of harvest) exerted on the river otter population at the
start of this four-year period (from 9.9% in 2017 to 7.3% in 2018). As harvest pressure has
steadily increased since 2018, however, the increase in annual abundance has slowed, finally
reversing in 2020 when abundance decreased slightly from 8125 (95% CI = 6569–10,015) the
previous year to 8046 (6323–10,245) animals. This decrease coincided with higher harvest
pressure than either of the previous two years (9.1% in 2020 versus 7.3% and 8.6% in 2018
and 2019, respectively), suggesting that catch effort plays a large role in governing the
growth of the river otter population in Indiana.

Whether the observed decline in annual recruitment is transient or indicative of a more
persistent decrease in either reproductive success or pup survival is difficult to discern,
particularly given the relatively small number of years with sufficient data for population
reconstruction. Previous simulation studies have demonstrated that the stability and
precision of reconstruction estimates increase dramatically as more years of age-at-harvest
and catch-effort data are included, especially in the absence of auxiliary data [24]. Future
reconstruction efforts should aim to include additional years of age-at-harvest and catch-
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effort data as they become available, as well as explore the benefits of starting to collect
other auxiliary data. Given the decreasing trend in annual recruitment, auxiliary data on
annual pregnancy rates, litter size, or pup survival should be a priority. Incorporating such
data, should they become available, may help to separate the effects of pup survival and
reproductive success on annual recruitment, thereby allowing managers to better identify
the driving forces behind observed population trends.

5. Conclusions

Although statistical population reconstruction can provide managers with an efficient
means of monitoring the population trends of harvested species across large geographical
areas, failure to ensure model convergence to a global rather than a local maximum can
result in imprecise results. Unfortunately, many of the numerical optimization methods
that may be used in population reconstruction models are unlikely to converge to a global
maximum because of their dependence on initial conditions and may, therefore, lead
to significant overestimation of population abundance. Given that these estimates are
often used to guide management and conservation of harvested wildlife populations,
we encourage management agencies to treat any results derived from reconstruction
based on such methods with caution. Our results do suggest that using particle swarm
optimization in place of other optimization methods consistently results in convergence
to a higher maximum and, as such, can significantly improve the stability and precision
of reconstruction estimates. This is particularly important if other auxiliary information
from index surveys, mark–recapture analyses, or radio-telemetry studies is not available,
which may already result in imprecise estimates of population abundance. As such, we
encourage management agencies to incorporate particle swarm optimization alongside
other numerical optimization methods already used in reconstruction models to determine
optimal bag limits and season lengths for wildlife species that are in high demand by
the public.
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Appendix A. Excerpts of Code Written in Program R to Perform Both the Simulation
Study and the Case Study of Population Reconstruction

Appendix A.1. Code Used to Perform Simulation Study

##########################################################################
### ###
### Appendix A.1 ###
### ###
### Excerpt of code written in Program R to evaluate effects of ###
### alternative numerical optimization methods on the precision ###
### of maximum likelihood statistical population reconstruction ###
### ###
##########################################################################

##########################################################################
############################# Set Up Work Space ##########################
##########################################################################
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# Clear global environment, import required packages, and set working directory
{

rm(list=ls())

require(doSNOW) # For multi-core processing
require(truncnorm); require(numDeriv); require(pso); require(BB)

}

##########################################################################
######################### Define Multi-Core Simulation ###################
##########################################################################

simulateReconstruction <- function() {

# Define Monte Carlo simulation
simulatePopulation <- function(par) {

## Initialize matrix to record simulated harvest counts
{

h <- matrix(0, nrow = 30 + Y, ncol = A)
}

## Expand effort estimates for establishment and reconstruction years
{

f <- c(f0[sample(1:Y, size = 30, replace = TRUE)],
f0[sample(1:Y, size = Y, replace = FALSE)])

f <- matrix(rep(f, A), ncol = A)
}

## Define initial (diagonal) cohort values
{

N <- matrix(NA, nrow = 30 + Y, ncol = A)
N[1, 1:A] = round(n / 3)

}

## Define vulnerability and survival values
{

c <- matrix(c, nrow = 30 + Y, ncol = 3)
s <- matrix(s, nrow = 30 + Y, ncol = 3)

}

## Define probability of harvest
{

P <- (1 - exp(-c * f))
}

## Define population sizes and harvest counts for simulated years
{

for (i in 1:(30 + Y - 1)) {

### Simulate harvest
{

h[i,] <- rbinom(rep(1, A), N[i,] , P[i,])
}

### Simulate survival
{

for (j in 1:(A - 2)) {
N[i+1, j+1] <- rbinom(1, N[i, j] - h[i, j], s[i, j])

}
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for (j in (A - 1)) {
N[i+1, j+1] <- rbinom(1, N[i, j] - h[i, j] , s[i, j] ) +

rbinom(1, N[i, j + 1] - h[i, j + 1], s[i, j + 1])
}

N[i+1, 1] <- round((sum(N[i, 1:A]) - sum(N[i + 1, 2 : A])) *
runif(1, min = 0.80, max = 1.25))

}
}
## Simulate harvest and index survey during the final year
{

h[(30 + Y), ] <- rbinom(rep(1, A), N[(30 + Y), ], P[(30 + Y), ])
}

}

# Trim establishment years from the simulated data
{

N <- N[-c(1:30), ]
h <- h[-c(1:30), ]
f = f[-c(1:30), ]

}

# Return population simulated values
{

return(list(N = N, h = h, f = f))
}

}

# Define likelihood variant of the objective function
objectiveFunction <- function(par) {

## Import initial (diagonal) cohort values
{

N <- matrix(NA, nrow = Y, ncol = A)
N[1, 1:A] <- par[1:A]
N[2:Y, 1] <- par[(A + 1):(A + Y - 1)]

}

## Import vulnerability and survival estimates
{

C <- matrix(par[Y + (A - 1) + c(1, 1, 1)] / scaleFactor,
nrow = Y, ncol = A, byrow = T)

S <- matrix(par[Y + (A - 1) + c(2, 2, 2)] / scaleFactor,
nrow = Y, ncol = A, byrow = T)

}

## Define probability of harvest
{

P <- (1 - exp(-C * f))
}

## Define expected population sizes
{

for (i in 1:(Y - 1)) {
for (j in 1:(A - 2)) {

N[i + 1, j + 1] <- N[i, j] * (1 - P[i, j]) * S[i, j]
}

for (j in (A - 1)) {
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N[i + 1, j + 1] <- N[i, j] * (1 - P[i, j]) * S[i, j] +
N[i, j + 1] * (1 - P[i, j + 1]) * S[i, j + 1]

}
}

}

# Return population size estimate (if requested)
{

if (returnPopulationAbundance) return (N)
}

# Perform initial test of model boundaries
{

if (any(N < h)) return (9000009)
if (any(C < limitForC[1],

C > limitForC[2])) return (9000008)
if (any(S < limitForS[1],

S > limitForS[2])) return (9000007)
if (any(P + (1 - S) > 0.500)) return (9000006)

}

# Define expected harvest values
{

E <- N * P
}

## Return chi-square estimate for inflation factor if requested
{

if (returnChiSquareCorrection) {
return (sum((h - E) ˆ 2 / E))

}
}

## Calculate contributions of each likelihood component
{

### Initialize the age-at-harvest and catch-effort components
{

logL_AAH <- matrix(0, nrow = Y, ncol = A)
logL_CAE <- matrix(0, nrow = Y, ncol = A)

}

### Contribution of the age-at-harvest component
{

logL_AAH[1, A] <- sum(log((N[1,A] + 1 - 1:h[1,A]) / 1:h[1,A])) +
(h[1,A]) * (log( P[1,A])) +
(N[1,A] - h[1,A]) * (log(1 - P[1,A]))

logL_AAH[1, (A - 1)] <- sum(log((h[1,2] + h[2,3] + 1 - 1:h[1,2]) /
1:h[1,2])) +

h[1,2] * log(E[1,2] / (E[1,2] + E[2,3])) +
h[2,3] * log(E[2,3] / (E[1,2] + E[2,3]))

for (i in 1 : (Y - 2)) {
logL_AAH[i, 1] <- sum(log((h[i,1] + h[i+1,2] + h[i+2,3] +

1 - 1:h[i,1]) / 1:h[i,1])) +
sum(log((h[i+1,2] + h[i+2,3] +

1 - 1:h[i+1,2]) / 1:h[i+1,2]))+
h[i+0,1] * log(E[i+0,1] / (E[i,1] + E[i+1,2] + E[i+2,3])) +
h[i+1,2] * log(E[i+1,2] / (E[i,1] + E[i+1,2] + E[i+2,3])) +
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h[i+2,3] * log(E[i+2,3] / (E[i,1] + E[i+1,2] + E[i+2,3]))
}

logL_AAH[(Y - 1), 1] <- sum(log((N[Y-1,1] +
1 - 1:h[Y-1,1]) / 1:h[Y-1,1])) +

sum(log((N[Y-1,1] - h[Y-1,1] +
1 - 1:h[Y,2]) / 1:h[Y,2])) +

(h[Y-1,1]) * log(( P[Y-1,1])) +
(h[Y,2]) * log((1 - P[Y-1,1]) *

S[1] * P[Y,2]) +
(N[Y-1,1] - h[Y-1,1] - h[Y,2]) * log((1 - P[Y-1,1]) *

(1 - S[1] * P[Y,2]))

logL_AAH[Y, 1] <- sum(log((N[Y,1] + 1 - 1:h[Y,1]) / 1:h[Y,1])) +
(h[Y,1]) * (log( P[Y,1])) +
(N[Y,1] - h[Y,1]) * (log(1 - P[Y,1]))

}

### Contribution of the catch-effort component
{

for (i in 1:Y) {
for (j in 1:A) {

logL_CAE[i,j] <- sum(log((sum(N[i,j]) + 1 - 1:sum(h[i,j])) /
1:sum(h[i,j]))) +

sum(h[i,j]) * (log( P[i,j])) +
sum(N[i,j] - h[i,j]) * (log(1 - P[i,j]))

}
}

}
}

## Return value of objective function if valid
{

logLikelihood <- -c(logL_AAH, logL_CAE)

if (any(is.na(logLikelihood))) return (9000003) else
if (any(logLikelihood == -Inf)) return (9000002) else

if (any(logLikelihood == Inf)) return (9000001) else
return(sum(logLikelihood))

}
}

# Define model parameterizations
{

## Import estimates of yearly catch-effort
{

f0 <- c(1.1552360, 0.9585951, 1.1134204, 0.8088820, 0.9529701, 1.0108965)
}
## Define number of years and age classes
{

Y <- length(f0)
A <- 3

}

## Set reasonable limits for survival and harvest vulnerability
{

limitForC <- c(0.05, 0.50)
limitForS <- c(0.50, 0.95)
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}
}

# Repeat process until valid results are produced
repeat{

## Define numerical optimization methods to compare
{

algorithms <- c("PSO", "SPG", "Nelder-Mead", "BFGS")
}

## Initialize data frame to store temporary results
{

result <- data.frame(VLN = NA, SRV = NA, ABN = NA, HRV = NA,
ALG = algorithms, RAD = NA, AIC = NA)

}

## Generate and record simulated data
{
repeat{

c <- runif(1, 0.100, 0.250)
s <- runif(1, 0.750, 0.900)
n <- runif(1, 05000, 15000)
simulatedData <- simulatePopulation()
simulatedN <- simulatedData$N
if (min(rowSums(simulatedN)) > 05000 &

max(rowSums(simulatedN)) < 15000) {
break()

}
}
h <- simulatedData$h
f <- simulatedData$f

}

## Initialize starting values for parameterization
{

scaleFactor <- 1e5
alValues <- c(rep(c(mean(h) * 10), Y + (A - 1)),

rep(c(0.10, 0.70), each = 1) * scaleFactor)
}

## Cycle through options for objective functions
for (k in 1:length(algorithms)) {

### Reconstruct population abundance
{

returnPopulationAbundance <- FALSE
returnChiSquareCorrection <- FALSE
startingTime <- Sys.time()

if (k == 1) {
optimized <- psoptim(par = initialValues,

fn = objectiveFunction,
lower = c(rep(c(00000), A + Y - 1),

rep(limitForC[1] * scaleFactor, 1),
rep(limitForS[1] * scaleFactor, 1)),

upper = c(rep(c(20000), A + Y - 1),
rep(limitForC[2] * scaleFactor, 1),
rep(limitForS[2] * scaleFactor, 1)),
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control = list(maxit = 1000, trace = F,
hybrid = "improved",
vectorize = TRUE,
type = "SPSO2011"))

}
if (k == 2) {

optimized <- spg(par = initialValues,
fn = objectiveFunction,
lower = c(rep(c(00000), A + Y - 1),

rep(limitForC[1] * scaleFactor, 1),
rep(limitForS[1] * scaleFactor, 1)),

upper = c(rep(c(20000), A + Y - 1),
rep(limitForC[2] * scaleFactor, 1),
rep(limitForS[2] * scaleFactor, 1)),

control = list(maxit = 1e7, trace = F))
}
if (k == 3) {

optimized <- optim(par = initialValues,
fn = objectiveFunction,
method = "Nelder-Mead",
control = list(maxit = 1e7, trace = F))

}
if (k == 4) {

optimized <- optim(par = initialValues,
fn = objectiveFunction,
method = "BFGS",
control = list(maxit = 1e7, trace = F))

}

returnPopulationAbundance <- TRUE
estimatedN <- objectiveFunction(optimized$par)

returnPopulationAbundance <- FALSE
}

### Check for algorithmic convergence before proceeding
if (optimized$value < 9e6) {

#### Record simulated values
{

result$VLN <- c
result$SRV <- s
result$ABN <- mean(rowSums(simulatedN))
result$HRV <- mean(rowSums(h))

}

#### Record optimized objective function values
{

result$AIC[k] <- optimized$value + 2 * (A + Y - 1 + 2)
}

#### Evaluate reconstruction precision
{

result$RAD[k] <- 1 / (Y) * sum(abs(rowSums(estimatedN) -
rowSums(simulatedN)) /

rowSums(simulatedN))
}
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}
}

## Check for validity of results
if (!(any(is.na(result$RAD)))) {

break()
}

}

# Return validated results
return(result)

}

###########################################################################
########### Perform Numerical Optimization of Simulated Results ###########
###########################################################################

# Initialize multi-core processing
{
maxIterations <- 1000
core <- 10
cl <- makeCluster(core, type = "SOCK")
registerDoSNOW(cl)

}

# Initialize data frame to store final results
{
finalResults <- data.frame(VLN = NA, SRV = NA, ABN = NA, HRV = NA,

ALG = NA, RAD = NA, AIC = NA)
}

# Cycle through sufficient number of simulations
{
for (counter in 1:ceiling(maxIterations / core)) {

## Simulate reconstruction
{

results <- foreach(i = 1:core, .combine = rbind,
.packages = c("readxl","pso","BB",

"numDeriv","truncnorm"),
.errorhandling = "remove") %dopar% (
simulateReconstruction())

}

## Append simulated results to data frame
{

finalResults <- rbind(finalResults, as.data.frame(results))
finalResults <- finalResults[complete.cases(finalResults), ]

}

## Update and export partial results
{

print(paste(round(100 * nrow(finalResults) / maxIterations /
(nrow(results) / core), 2),

"% at ", Sys.time(), sep = ""))
write.csv(finalResults, "Simulated Results for IN Otters MK1v1.csv",

row.names = FALSE)
}

## Visualize partial results



Mathematics 2023, 11, 827 18 of 28

{
boxplot(RAD ~ ALG, data = finalResults, outline = F)

}
}

}

# Terminate multi-core processing
{
stopCluster(cl)

}
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Appendix A.2. Code Used to Perform Case Study

###########################################################################
### ###
### Appendix A.2 ###
### ###
### Excerpt of code written in Program R to perform statistical ###
### population reconstruction of North American river otters in ###
### the state of Indiana using 4 different optimization methods ###
### ###
###########################################################################

###########################################################################
############################ Set Up Work Space ############################
###########################################################################

# Clear global environment, import required packages, and set working directory
{
rm(list=ls())
require(BB)
require(pso)
require(readxl)
require(ggplot2)
require(numDeriv)
require(truncnorm)
setwd("~/Dropbox/Published Papers/Active - SPR of Otter in IN/Analysis")

}

###########################################################################
########################## Import Harvest Data ############################
###########################################################################

# Import three-tier age-at-harvest matrix
{
## Import values as a matrix with each year as a row
h <- matrix(c(242, 181, 180,

158, 208, 152,
232, 179, 86,
142, 241, 204,
127, 281, 206,
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174, 260, 182), byrow = T, nrow = 6, ncol = 3)
}

# Import estimates of yearly catch-effort
{
f <- c(1.1552360, 0.9585951, 1.1134204, 0.8088820, 0.9529701, 1.0108965)

}

## Define number of years and age classes
{
Y <- nrow(h)
A <- ncol(h)
yearRange <- c(2015, 2016, 2017, 2018, 2019, 2020)

}

# Set reasonable limits for survival and harvest vulnerability
{
limitForC <- c(0.05, 0.50)
limitForS <- c(0.50, 0.95)

}

###########################################################################
######################## Define Objective Function ########################
###########################################################################

# Define objective function using a multinomial likelihood formulation
objectiveFunction <- function(par) {

## Import initial (diagonal) cohort values
{

N <- matrix(NA, nrow = Y, ncol = A)
N[1, 1:A] <- par[1:A]
N[2:Y, 1] <- par[(A + 1):(A + Y - 1)]

}

## Import vulnerability and survival estimates
{

if (vulnerability == 1) {
C <- matrix(par[Y + (A - 1) + c(1, 1, 1)] / scaleFactor,

nrow = Y, ncol = A, byrow = T)
}
if (vulnerability == 2) {

C <- matrix(par[Y + (A - 1) + c(1, 2, 2)] / scaleFactor,
nrow = Y, ncol = A, byrow = T)

}
if (vulnerability == 3) {

C <- matrix(par[Y + (A - 1) + c(1, 2, 3)] / scaleFactor,
nrow = Y, ncol = A, byrow = T)

}
if (survivability == 1) {

S <- matrix(par[Y + (A - 1) + c(4, 4, 4)] / scaleFactor,
nrow = Y, ncol = A, byrow = T)

}
if (survivability == 2) {

S <- matrix(par[Y + (A - 1) + c(4, 5, 5)] / scaleFactor,
nrow = Y, ncol = A, byrow = T)

}
if (survivability == 3) {
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S <- matrix(par[Y + (A - 1) + c(4, 5, 6)] / scaleFactor,
nrow = Y, ncol = A, byrow = T)

}
}

## Define probability of harvest
{

P <- (1 - exp(-C * f))
}

## Define expected population sizes
{

for (i in 1:(Y - 1)) {
for (j in 1:(A - 2)) {

N[i + 1, j + 1] <- N[i, j] * (1 - P[i, j]) * S[i, j]
}

for (j in (A - 1)) {
N[i + 1, j + 1] <- N[i, j] * (1 - P[i, j]) * S[i, j] +

N[i, j + 1] * (1 - P[i, j + 1]) * S[i, j + 1]
}

}
}

# Return population size estimate (if requested)
{

if (returnPopulationAbundance) return (N)
}

# Perform initial test of model boundaries
{

if (any(N < h)) return (9000009)
if (any(C < limitForC[1],

C > limitForC[2])) return (9000008)
if (any(S < limitForS[1],

S > limitForS[2])) return (9000007)
if (any(P + (1 - S) > 0.500)) return (9000006)

}

# Define expected harvest values
{

E <- N * P
}

## Return chi-square estimate for inflation factor if requested
{

if (returnChiSquareCorrection) {
return (sum((h - E) ˆ 2 / E))

}
}

## Calculate contributions of each likelihood component
{

### Initialize the age-at-harvest and catch-effort components
{

logL_AAH <- matrix(0, nrow = Y, ncol = A)
logL_CAE <- matrix(0, nrow = Y, ncol = A)

}
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### Contribution of the age-at-harvest component
{

logL_AAH[1, A] <- sum(log((N[1,3] + 1 - 1:h[1,3]) / 1:h[1,3])) +
h[1,3] * (log( P[1,A])) +
(N[1,3] - h[1,3]) * (log(1 - P[1,A]))

logL_AAH[1, (A - 1)] <- sum(log((h[1,2] + h[2,3] + 1 - 1:h[1,2]) /
1:h[1,2])) +

h[1,2] * log(E[1,2] / (E[1,2] + E[2,3])) +
h[2,3] * log(E[2,3] / (E[1,2] + E[2,3]))

for (i in 1 : (Y - 2)) {
logL_AAH[i, 1] <- sum(log((h[i,1] + h[i+1,2] + h[i+2,3] +

1 - 1:h[i,1]) / 1:h[i,1])) +
sum(log((h[i+1,2] + h[i+2,3] +

1 - 1:h[i+1,2]) / 1:h[i+1,2])) +
h[i+0,1] * log(E[i+0,1] / (E[i,1] + E[i+1,2] + E[i+2,3])) +
h[i+1,2] * log(E[i+1,2] / (E[i,1] + E[i+1,2] + E[i+2,3])) +
h[i+2,3] * log(E[i+2,3] / (E[i,1] + E[i+1,2] + E[i+2,3]))

}

logL_AAH[(Y - 1), 1] <- sum(log((N[Y-1,1] +
1 - 1:h[Y-1,1]) / 1:h[Y-1,1])) +

sum(log((N[Y-1,1] - h[Y-1,1] +
1 - 1:h[Y,2]) / 1:h[Y,2])) +

(h[Y-1,1]) * log(( P[Y-1,1])) +
(h[Y,2]) * log((1 - P[Y-1,1]) *

S[1] * P[Y,2]) +
(N[Y-1,1] - h[Y-1,1] - h[Y,2]) * log((1 - P[Y-1,1]) *

(1 - S[1] * P[Y,2]))

logL_AAH[Y, 1] <- sum(log((N[Y,1] + 1 - 1:h[Y,1]) / 1:h[Y,1])) +
(h[Y,1]) * (log( P[Y,1])) +
(N[Y,1] - h[Y,1]) * (log(1 - P[Y,1]))

}

### Contribution of the catch-effort component
{

for (i in 1:Y) {
for (j in 1:A) {

logL_CAE[i,j] <- sum(log((sum(N[i,j]) + 1 - 1:sum(h[i,j])) /
1:sum(h[i,j]))) +

sum(h[i,j]) * (log( P[i,j])) +
sum(N[i,j] - h[i,j]) * (log(1 - P[i,j]))

}
}

}
}

## Return value of objective function if valid
{

logLikelihood <- -c(logL_AAH, logL_CAE)

if (any(is.na(logLikelihood))) return (9000003) else
if (any(logLikelihood == -Inf)) return (9000002) else

if (any(logLikelihood == Inf)) return (9000001) else
return(sum(logLikelihood))

}
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}

###########################################################################
############# Perform NUMERICAL OPTIMIZATION of Observed Data #############
###########################################################################

# Initialize data frames to store results
{
pointEstimatesPSO <- cbind(data.frame(N11 = rep(NA, 4), N12 = NA, N13 = NA),

data.frame(matrix(NA, nrow = 4, ncol = (Y - 1))),
data.frame(C1 = rep(NA, 4), C2 = NA, C3 = NA,

S1 = NA, S2 = NA, S3 = NA, VAL = NA))
populationSizePSO <- data.frame(matrix(NA, nrow = 4, ncol = Y))

pointEstimatesSPG <- pointEstimatesPSO
pointEstimatesNLM <- pointEstimatesPSO
pointEstimatesBFG <- pointEstimatesPSO

populationSizeSPG <- populationSizePSO
populationSizeNLM <- populationSizePSO
populationSizeBFG <- populationSizePSO

}

# Initialize starting values for parameterization
{
scaleFactor <- 1e5
initialValues <- c(rep(c(mean(h) * 10), Y + (A - 1)),

rep(c(0.10, 0.70), each = A) * scaleFactor)
}

# Optimize parameter space using four different numerical optimization methods
{
## Initialize model counter
{

modelCount <- 1
}

## Cycle through possible vulnerability and survival delineations
for (vulnerability in c(1,3)) {

for (survivability in c(1,3)) {

### Optimize objective function using particle swarm optimization
{

returnPopulationAbundance <- FALSE
returnChiSquareCorrection <- FALSE
optimized <- psoptim(par = initialValues,

fn = objectiveFunction,
lower = c(rep(c(00000), A + Y - 1),

rep(limitForC[1] * scaleFactor, A),
rep(limitForS[1] * scaleFactor, A)),

upper = c(rep(c(20000), A + Y - 1),
rep(limitForC[2] * scaleFactor, A),
rep(limitForS[2] * scaleFactor, A)),

control = list(maxit = 10000, trace = F,
hybrid = "improved",
vectorize = TRUE,
type = "SPSO2011"))

returnPopulationAbundance <- TRUE
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estimatedN <- objectiveFunction(optimized$par)

pointEstimatesPSO[modelCount, ] <- c(optimized$par,
optimized$value)

populationSizePSO[modelCount, ] <- rowSums(estimatedN)
returnPopulationAbundance <- FALSE

}

### Optimize objective function using a spectral projected gradient
{

returnPopulationAbundance <- FALSE
returnChiSquareCorrection <- FALSE
optimized <- spg(par = initialValues, fn = objectiveFunction,

lower = c(rep(c(00000), A + Y - 1),
rep(limitForC[1] * scaleFactor, A),
rep(limitForS[1] * scaleFactor, A)),

upper = c(rep(c(20000), A + Y - 1),
rep(limitForC[2] * scaleFactor, A),
rep(limitForS[2] * scaleFactor, A)),

control = list(maxit = 1e7, trace = F))

returnPopulationAbundance <- TRUE

estimatedN <- objectiveFunction(optimized$par)

pointEstimatesSPG[modelCount, ] <- c(optimized$par,
optimized$value)

populationSizeSPG[modelCount, ] <- rowSums(estimatedN)
returnPopulationAbundance <- FALSE

}

### Optimize objective function using the Nelder–Mead method
{

returnPopulationAbundance <- FALSE
returnChiSquareCorrection <- FALSE
optimized <- optim(par = initialValues, fn = objectiveFunction,

control = list(maxit = 1e7))

returnPopulationAbundance <- TRUE

estimatedN <- objectiveFunction(optimized$par)

pointEstimatesNLM[modelCount, ] <- c(optimized$par,
optimized$value)

populationSizeNLM[modelCount, ] <- rowSums(estimatedN)
returnPopulationAbundance <- FALSE

}

### Optimize objective function using the BFGS method
{

returnPopulationAbundance <- FALSE
returnChiSquareCorrection <- FALSE
optimized <- optim(par = initialValues, fn = objectiveFunction,

method = "BFGS", control = list(maxit = 1e7))

returnPopulationAbundance <- TRUE

estimatedN <- objectiveFunction(optimized$par)

pointEstimatesBFG[modelCount, ] <- c(optimized$par,
optimized$value)
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populationSizeBFG[modelCount, ] <- rowSums(estimatedN)
returnPopulationAbundance <- FALSE

}

### Increment model counter
{

modelCount <- modelCount + 1
}

}
}
## Compute AIC for each reconstruction estimate
{

pointEstimatesPSO$AIC <- 2 * pointEstimatesPSO$VAL +
2 * ((A + Y - 1) + c(2, 4, 4, 6))

pointEstimatesSPG$AIC <- 2 * pointEstimatesSPG$VAL +
2 * ((A + Y - 1) + c(2, 4, 4, 6))

pointEstimatesNLM$AIC <- 2 * pointEstimatesNLM$VAL +
2 * ((A + Y - 1) + c(2, 4, 4, 6))

pointEstimatesBFG$AIC <- 2 * pointEstimatesBFG$VAL +
2 * ((A + Y - 1) + c(2, 4, 4, 6))

}
}

# Extract uncertainty estimates for best-fit model
{
## Construct data frame to compile subsequent results
{

bestFitModel <- data.frame(Year = yearRange,
Estimate = NA,
Lo95CI = NA, Hi95CI = NA,
Measure = rep(c("Abundance",

"Recruitment"),
each = length(yearRange)))

}

## Calculate standard errors for best-fit model parameters
{

bestParameters <- as.numeric(pointEstimatesPSO[4, 1:(A + Y - 1 + A + A)])
vulnerability <- 3
survivability <- 3

returnPopulationAbundance <- FALSE
hessianMatrix <- abs(hessian(x = bestParameters,

func = objectiveFunction))

standardErrors <- sqrt(abs(diag(solve(hessianMatrix))))

returnChiSquareCorrection <- TRUE
chiSquare <- objectiveFunction(bestParameters)
returnChiSquareCorrection <- FALSE

standardErrors <- standardErrors * sqrt(chiSquare / length(bestParameters))
}

## Calculate stochastic abundance estimates using standard errors
{

abundanceProjection <- matrix(NA, nrow = 1000, ncol = Y)
recruiterProjection <- matrix(NA, nrow = 1000, ncol = Y)
tempParameters <- bestParameters
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returnPopulationAbundance <- TRUE

for (i in 1:nrow(abundanceProjection)) {
for (j in 1:(A + Y - 1)) {

tempParameters[j] <- rtruncnorm(1, a = 0,
mean = bestParameters[j],
sd = standardErrors[j])

}
for (j in (A + Y - 1 + 1:(2 * A))) {

tempParameters[j] <- rtruncnorm(1, a = 0, b = scaleFactor,
mean = bestParameters[j],
sd = standardErrors[j])

}

returnPopulationAbundance <- TRUE
abundanceProjection[i,] <- rowSums(objectiveFunction(tempParameters))
recruiterProjection[i,] <- (objectiveFunction(tempParameters))[,1]

}
}

## Compute confidence intervals
{

bestFitModel$Estimate[bestFitModel$Measure == "Abundance"] <-
as.numeric(populationSizePSO[4,])

bestFitModel$Lo95CI[bestFitModel$Measure == "Abundance"] <-
apply(abundanceProjection, 2, quantile, prob = 0.025)

bestFitModel$Hi95CI[bestFitModel$Measure == "Abundance"] <-
apply(abundanceProjection, 2, quantile, prob = 0.975)

bestFitModel$Estimate[bestFitModel$Measure == "Recruitment"] <-
as.numeric(pointEstimatesPSO[4,c(1, (A - 1) + c(2:Y))])

bestFitModel$Lo95CI[bestFitModel$Measure == "Recruitment"] <-
apply(recruiterProjection, 2, quantile, prob = 0.025)

bestFitModel$Hi95CI[bestFitModel$Measure == "Recruitment"] <-
apply(recruiterProjection, 2, quantile, prob = 0.975)

}
}
###########################################################################
############# Construct VISUALIZATION Best-Fit Reconstruction #############
###########################################################################

# Generate figure of abundance and recruitment estimates
{
ggplot(aes(y = Estimate, x = Year, fill = Measure),

data = bestFitModel) +
geom_ribbon(aes(ymin = Lo95CI, ymax = Hi95CI,

fill = Measure), alpha = 0.25) +
geom_point(aes(colour = Measure)) +
geom_path(aes(colour = Measure, linetype = Measure), size = 1) +
scale_x_continuous(breaks = seq(min(yearRange), max(yearRange), 1)) +
scale_fill_manual(values = c("#F8766D", "#00BA38")) +
scale_color_manual(values = c("#F8766D", "#00BA38"))

}

###########################################################################
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############# Synthesize ANALYSIS of Reconstruction Estimates #############
###########################################################################

# Compile summary statistics under the likelihood objective function
{
lambda <- ((bestFitModel$Estimate[bestFitModel$Measure == "Abundance"])[A] /

(bestFitModel$Estimate[bestFitModel$Measure == "Abundance"])[1]) ˆ
(1 / (Y - 1))

print(paste(" BEST-FIT MODEL USING PARTICLE SWARM OPTIMIZATION "))
print(paste("––––––––––––––––––––––––––––––"))

print(paste("The model detected", vulnerability,
"separate vulnerability coefficient(s):", sep = " "))

print(paste(round(bestParameters[(A + Y - 1 + 1:A)] / scaleFactor, 3),
" (SD = ",
round(standardErrors[(A + Y - 1 + 1:A)] / scaleFactor, 3),
")",
sep = ""))

print(paste("These corresponded to harvest rates between ",
round((1 - exp(-mean(bestParameters[(A + Y - 1 + 1:A)] /

scaleFactor) * min(f))) * 100, 1),
"% and ",
round((1 - exp(-mean(bestParameters[(A + Y - 1 + 1:A)] /

scaleFactor) * max(f))) * 100, 1),
"%", sep = ""))

print(paste("The model detected", survivability,
"separate survival coefficient(s):", sep = " "))

print(paste(round(bestParameters[(A + Y - 1 + A + 1:A)] / scaleFactor, 3),
" (SD = ",
round(standardErrors[(A + Y - 1 + A + 1:A)] / scaleFactor, 3),
")",
sep = ""))

if (lambda > 1) {
print(paste("The model detected a positive annual growth rate of",

round(lambda, 3), sep = " "))
} else {

print(paste("The model detected a negative annual growth rate of",
round(lambda, 3), sep = " "))

}

print(paste("––––––––––––––––––––––––––––––"))
}
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