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Abstract: In this paper, under some new appropriate conditions imposed on the parameters and
mappings involved in the proximal mapping associated with a general H-monotone operator, its
Lipschitz continuity is proved and an estimate of its Lipschitz constant is computed. The main
contribution of this work is the establishment of a new equivalence relationship between the graph
convergence of a sequence of general strongly H-monotone mappings and their associated proximal
mappings, respectively, to a given general strongly H-monotone mapping and its associated proximal
mapping by using the notions of graph convergence and proximal mapping concerning a general
strongly H-monotone mapping. By employing the concept of proximal mapping relating to general
strongly H-monotone mapping, some iterative algorithms are proposed, and as an application of
the obtained equivalence relationship mentioned above, a convergence theorem for approximating a
common element of the set of solutions of a system of generalized variational inclusions involving
general strongly H-monotone mappings and the set of fixed points of an ({an}, {bn}, φ)-total uni-
formly L-Lipschitzian mapping is proved. It is significant to emphasize that our results are new and
improve and generalize many known corresponding results.

Keywords: system of generalized variational inclusions; ({an}, {bn}, φ)-total uniformly L-Lipschitzian
mapping; general H-monotone operator; proximal mapping; graph convergence; fixed point;
convergence analysis
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1. Introduction

It is a well-known truth that inequalities have always been of great importance for the
development of many branches of mathematics. For this reason, the study of various kinds
of inequalities in the context of different spaces has a long history and is the focus of the
attention of researchers coming from mathematics, economics, and many other disciplines.
The history of variational inequality started with a contact problem posed in 1979 by
Signorini [1], and then Fichera [2] formulated this problem as a variational inequality
by using this term for the first time. It has been recognized as a suitable mathematical
model for dealing with many problems arising in different fields, such as optimization
theory, partial differential equations, economic and transportation equilibria, engineering
science, etc.

Because of its importance and wide applications in many important fields of science,
over recent decades, the variational inequality problem has received a great deal of interest
from the scientific community, and there has been major activity in proposing and analyzing
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various extensions of it. During the last few decades, the study of the variational inclusion
problem as an important and significant extension of the classical variational inequality
problem has gained noticeable importance, and various classes of variational inclusion
problems have been intensively studied. For more details, we refer the reader to [3–14] and
the references therein.

In recent decades, the introduction and study of efficient ways to find solutions of
various kinds of variational inequalities/inclusions have received much attention from
many authors due to the fact that one of the most interesting and important problems in
the theory of variational inequalities/inclusions is the development of an efficient and im-
plementable iterative algorithm for computing approximate solutions. Among the methods
that have appeared in the literature, the method based on the resolvent operator technique
as an extension of the projection method represents an important and useful tool for finding
the approximation solutions of various types of variational inequalities/inclusions. There is
a rich literature on solving different classes of variational inequality/inclusion problems by
using the resolvent operator technique. For more information and relevant commentaries,
the reader can refer to [5–18].

In the recent past, considerable attention was paid to the extension of the notion
of monotone operators in the frameworks of different spaces. This is mainly because
monotone operators have turned out to be an important tool in the study of various
problems arising in the domains of optimization, nonlinear analysis, differential equations,
and related fields; see, for example, [19,20].

Since the appearance of the theory of maximal monotonicity of operators defined on
Banach spaces in the 1960s, due to its many diverse applications in the theory of partial
differential equations, it has been intensively studied by many mathematicians. At the
same time, the importance and indispensable role of maximal monotone operators in the
theory of variational inequalities/inclusions have motivated many researchers to extend
this notion and to introduce several interesting generalized monotone operators with
relevant resolvent operators. Further information and details can be found in [5–8] and
the references therein. By the same taken, in 2007, Xia and Huang [13] introduced a class
of generalized monotone operators called general H-monotone operators; this class is
essentially wider than the classes of maximal monotone operators in the framework of
Banach spaces and H-monotone operators in the setting of Hilbert spaces according to Fang
and Huang [5]. By defining the proximal mapping associated with a general H-monotone
operator, they verified its Lipschitz continuity and computed an estimate of its Lipschitz
constant under some appropriate conditions. They also considered a class of variational
inclusions involving general H-monotone operators and constructed an iterative algorithm
for finding the approximate solution of it in a Banach space setting. Finally, they studied
a convergence analysis of the iterative sequence generated by their suggested iterative
algorithm under some suitable conditions.

The concept of graph convergence was first introduced by Attouch [21] for functions
and operators involving the classical resolvent operators of set-valued mappings in a
Hilbert space setting. In recent times, this notion has attracted much attention, and there
have been successful attempts to generalize it, though these were limited to the maximal
monotone mappings in [21] for the generalized monotone operators that have appeared in
the literature. For more details, see [9–12,21].

On the other hand, fixed-point theory—the study of which comes under the purview
of the wider area of nonlinear functional analysis and which began almost a century ago in
the field of algebraic topology—has gained importance because of its wide range of appli-
cability for resolving diverse problems emanating from the theory of nonlinear differential
equations, the theory of nonlinear integral equations, game theory, mathematical economics,
control theory, and so forth. The recent rapid development of efficient techniques for com-
puting fixed points has enormously increased the usefulness of the theory of fixed points
for applications. Thus, fixed-point theory is becoming an increasingly invaluable tool in
the arsenal of applied mathematics. As we know, many of the most important nonlinear
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problems of applied mathematics are reduced to solving a given equation, which, in turn,
may be reduced to finding the fixed points of a certain operator. The existence of a close
relation between variational inequality/inclusion problems and fixed-point problems has
motivated many researchers to present a unified approach to these two different problems.
For more details, we refer the readers to [15–18,22]. The study of nonexpansive mappings
has a long history, and it is related to research on monotone and accretive operators. As a
matter of fact, historically, the study of monotone and accretive operators, two classes of
operators that naturally arise in the theory of differential equations, has led to the study
of nonexpansive mappings. It is worth mentioning that the importance of the theory of
nonexpansive mappings and its applications in fixed-point theory have been well docu-
mented in the literature. Over the last 50 years or so, the concept of nonexpansive mapping
has attracted increasing attention, and many authors have made efforts to generalize this
notion. Thereby, various extensions of it have been proposed and analyzed. For example,
Goebel and Kirk [23] were the first to introduce the class of asymptotically nonexpansive
mappings as an extension of the class of nonexpansive mappings and proved the existence
of a fixed point for them under some appropriate conditions. Afterward, the improvement
and generalization of this concept attracted and have continued to attract the interest of
many authors, and a huge amount of literature has reported on applications, generaliza-
tions, and extensions of it; see, for example, [24–26]. Recently, Alber et al. [27] carried out
a successful attempt to introduce a class of generalized nonexpansive mappings called
total asymptotically nonexpansive mappings; this class is more general than the class of
asymptotically nonexpansive mappings, and they studied methods of approximation of
fixed points of mappings belonging to this class. In fact, their motivation for doing this was
to unify various definitions related to the class of asymptotically nonexpansive mappings
and their generalizations that have appeared in the literature, as well as to verify a gen-
eral convergence theorem that is applicable to all of these classes of nonlinear mappings.
Motivated and inspired by the works mentioned above, recently, Kiziltunc and Purtas [28]
introduced the class of total uniformly L-Lipschitzian mappings, which can be viewed as a
unifying framework for the classes of asymptotically nonexpansive mappings, total asymp-
totically nonexpansive mappings, and several other classes of generalized nonexpansive
mappings existing in the literature. In order to find more information and details about
extensions of nonexpansive mappings along with several interesting illustrative examples,
the reader can refer to [23–31].

Now, we briefly describe the contents of this paper. In Section 2, we recall the basic
definitions and provide some preliminary results needed in the following. Section 3 is
concerned with the introduction and formulation of a new system of generalized variational
inclusions (SGVI) involving general strongly H-monotone mappings in the framework
of Banach spaces. Under some appropriate conditions, the existence of a unique solu-
tion for the SGVI is proved. In Section 4, with the goal of finding a point belonging to
the intersection of the set of solutions of the SGVI and the set of fixed points of a total
uniformly L-Lipschitzian mapping, an iterative algorithm is proposed. The notions of
graph convergence and proximal mapping relating to a general strongly H-monotone
mapping are used, and a new equivalence relationship between the graph convergence of a
sequence of general strongly H-monotone mappings and their associated proximal map-
pings, respectively, to a given general strongly H-monotone mapping and its associated
proximal mapping is established. Finally, the strong convergence of the sequence generated
by our suggested iterative algorithm to a common element of the set of solutions of the
SGVI and the set of fixed points of a total uniformly L-Lipschitzian mapping is verified.
Furthermore, as a consequence of our main results, we derive a conclusion that improves
the main corresponding result presented in [13]. In fact, in our conclusion, the condition of
the strict monotonicity of operator involvement in the corresponding variational inclusion
problem of Xia and Huang [13] is not needed, and it is replaced by a more mild condition
of monotonicity.
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2. Preliminary Materials and Basic Results

Throughout the paper, unless otherwise specified, we use the following notations,
terminology, and assumptions. Let B be a real Banach space and let B∗ be its continuous
dual space. The pairing between B and B∗ is designated by 〈., .〉, and the family of all of
the nonempty subsets of B is denoted by 2B. The value of a functional x∗ ∈ B∗ at x ∈ B is
denoted by either 〈x, x∗〉 or x∗(x), as is convenient. For the sake of simplicity, the norms of
B and B∗ are denoted by the symbol ‖.‖.

For a given set-valued mapping M : B→ 2B∗ ,

(i) the set Range(M) defined by

Range(M) = {x∗ ∈ B∗ : ∃x ∈ B : (x, x∗) ∈ M} =
⋃

x∈B
M(x)

is called the range of M;
(ii) the set Graph(M) defined by

Graph(M) = {(x, x∗) ∈ B× B∗ : x∗ ∈ M(x)},

is called the graph of M.

Definition 1. A normed space B is called strictly convex if the unit sphere in B is strictly convex,
that is, the inequality ‖x + y‖ < 2 holds for all distinct unit vectors x and y in B. It is said to be
smooth if for every unit vector x in B, there exists a unique x∗ ∈ B∗ such that ‖x∗‖ = 〈x, x∗〉 = 1.

It is known that B is smooth if B∗ is strictly convex and that B is strictly convex if B∗

is smooth.

Definition 2. A normed space B is said to be uniformly convex if, for each ε > 0, there is a δ > 0
such that if x and y are united vectors in B with ‖x− y‖ ≥ 2ε, then the average (x + y)/2 has a
norm of at most 1− δ.

Thus, a normed space is uniformly convex if for any two distinct points x and y on the
unit sphere centered at the origin, the midpoint of the line segment joining x and y is never
on the sphere, but is close to the sphere only if x and y are sufficiently close to each other.

The function δB : [0, 2]→ [0, 1] given by

δB(ε) := inf{1− 1
2
‖x + y‖ : x, y ∈ B, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε}

is called the modulus of convexity of B.
The function δB is continuous and increasing on the interval [0, 2] and δB(0) = 0.

Clearly, in the light of the definition of the function δB, a normed space B is uniformly
convex if and only if δB(ε) > 0 for every ε ∈ (0, 2].

In the particular case of an inner product spaceH, we have δH(ε) = 1−
√

1− ε2

4 .

Definition 3. A normed space B is said to be uniformly smooth if, for all ε > 0, there is a τ > 0
such that if x and y are unit vectors in B with ‖x− y‖ ≤ 2τ, then the average (x + y)/2 has a
norm of at least 1− ετ.

The function ρB : [0,+∞)→ [0,+∞) given by

ρB(τ) = sup{1
2
(‖x + τy‖+ ‖x− τy‖)− 1 : x, y ∈ B, ‖x‖ = ‖y‖ = 1}

is called the modulus of smoothness of B.
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Note that the function ρB is convex, continuous, and increasing on the interval [0,+∞)
and ρB(0) = 0. In addition, ρB(τ) ≤ τ for all τ ≥ 0. Invoking the definition of the function
ρB, a normed space B is uniformly smooth if and only if lim

τ→0

ρB(τ)
τ = 0.

It should be remarked that in the definitions of δB(ε) and ρB(τ), we can also take the
infimum and supremum over all vectors x, y ∈ B with ‖x‖, ‖y‖ ≤ 1.

Any uniformly convex and any uniformly smooth Banach space is reflexive. A Banach
space B is uniformly convex (or uniformly smooth) if and only if B∗ is uniformly smooth
(or uniformly convex).

The spaces lp, Lp, and Wp
m, 1 < p < ∞, m ∈ N, are uniformly convex, as well as

uniformly smooth; see [32–34]. Meanwhile, the modulus of convexity and smoothness of a
Hilbert space and the spaces lp, Lp and Wp

m, 1 < p < ∞, m ∈ N can be found in [32–34].

Definition 4. A single-valued mapping A : B→ B∗ is said to be

(i) monotone if

〈A(x)− A(y), x− y〉 ≥ 0, ∀x, y ∈ B;

(ii) strictly monotone if A is monotone, and equality holds if and only if x = y;
(iii) k-strongly monotone if there exists a constant k > 0 such that

〈A(x)− A(y), x− y〉 ≥ k‖x− y‖2, ∀x, y ∈ B;

(iv) $-Lipschiz continuous if there exists a constant $ > 0 such that

‖A(x)− A(y)‖ ≤ $‖x− y‖, ∀x, y ∈ B.

Definition 5 ([13]). Let B be a Banach space with the dual space B∗, and let M : B → 2B∗ be a
set-valued mapping. M is said to be

(i) monotone if

〈u− v, x− y〉 ≥ 0, ∀(x, u), (y, v) ∈ Graph(M);

(ii) maximal monotone if, for x ∈ B and u ∈ B∗,

〈u− v, x− y〉 ≥ 0, ∀(y, v) ∈ Graph(M)

implies that (x, u) ∈ Graph(M);
(iii) γ-strongly monotone if there exists a constant γ > 0 such that

〈u− v, x− y〉 ≥ γ‖x− y‖2, ∀(x, u), (y, v) ∈ Graph(M).

Relying on Definition 5(ii), we note that M is a maximal monotone mapping if and
only if M is monotone and there is no other monotone mapping whose graph contains
strictly Graph(M). The maximality is to be understood in terms of the inclusions of
graphs. If M : B → 2B∗ is a maximal monotone mapping, then adding anything to its
graph so as to obtain the graph of a new set-valued mapping destroys the monotonicity.
In fact, the extended mapping is no longer monotone. In other words, for every pair
(x, u) ∈ B× B∗\Graph(M), there exists (y, v) ∈ Graph(M) such that 〈u− v, x − y〉 < 0.
Consequently, a necessary and sufficient condition for a set-valued mapping M : B→ 2B∗

to be maximal monotone is that for any x ∈ B and u ∈ B∗, the property 〈u− v, x− y〉 ≥ 0,
for all (y, v) ∈ Graph(M), is equivalent to u ∈ M(x).

Recall that the normalized duality mapping J : B→ 2B∗ is defined by

J(x) = {x∗ ∈ B∗ : 〈x, x∗〉 = ‖x∗‖‖x‖, ‖x∗‖ = ‖x‖}, ∀x ∈ B.



Mathematics 2023, 11, 832 6 of 29

We immediately observe that if B = H, a Hilbert space, then J is the identity mapping on
H. At the same time, it is an immediate consequence of the Hahn–Banach theorem that
J(x) is nonempty for each x ∈ B.

Let B be a reflexive Banach space with the dual space B∗, and let M : B→ 2B∗ be a set-
valued mapping. Equivalently, we say that M is maximal monotone [35] if M is monotone
and (J + λM)(B) = B∗ for every λ > 0, where J is the normalized duality mapping.

The notion of an H-monotone operator was first introduced by Fang and Huang [5] in
2003 as follows.

Definition 6 ([5]). Let H : H → H be a single-valued operator and let M : H → 2H be a
set-valued operator. M is said to be H-monotone if M is monotone and (H + λM)(H) = H holds
for every λ > 0.

It should be remarked that if H = I, the identity mapping onH, then the definition of
I-monotone operators is that of maximal monotone operators.

Afterward, replacing the Hilbert space H with a Banach space, Xia and Huang [13]
introduced a larger class of monotone operators—the so-called general H-monotone
mappings—as an extension of the class of H-monotone operators as follows.

Definition 7 ([13]). Let B be a Banach space with the dual space B∗, let H : B → B∗ be a
single-valued mapping, and let M : B → 2B∗ be a set-valued mapping. M is said to be general
H-monotone if M is monotone and (H + λM)(B) = B∗ holds for every λ > 0.

Note, in particular, that if B = H is a Hilbert space, then the class of general H-
monotone operators coincides exactly with the class of H-monotone operators.

The following example illustrates that for a given mapping H : B → B∗, a maximal
monotone mapping need not be general H-monotone.

Example 1. Let m and n be two arbitrary but fixed natural numbers such that n is even, and let
Mm×n(C) be the vector space of all m× n matrices with complex entries over C. Then,

Mm×n(C) = {A =
(

al j
)
|al j ∈ C, l = 1, 2, . . . , m; j = 1, 2, . . . , n}

is a Hilbert space with the inner product 〈A, C〉 := tr(A∗C) for all A, C ∈ Mm×n(C), where tr
denotes the trace, that is, the sum of diagonal entries, and A∗ denotes the Hermitian conjugate (or
adjoint) of the matrix A, that is, A∗ = At, the complex conjugate of the transpose A. The inner
product defined above induces a norm on Mm×n(C) as follows:

‖A‖ =
( m

∑
l=1

n

∑
j=1
|al j|2

) 1
2 , ∀A ∈ Mm×n(C).

Taking into account that every finite-dimensional normed space is a Banach space, it follows
that (Mm×n(C), ‖.‖) is a Banach space. For any A =

(
al j
)
∈ Mm×n(C), we have

A =
(

al j
)
=

m

∑
l=1

∑
j∈Γ

(Al(2j−1)(2j+1) + Al(2j)(2j+2)),

where Γ = {1, 3, . . . , n−2
2 }. Thereby, every m × n matrix A ∈ Mm×n(C) can be written as a

linear combination of mn
2 matrices Al(2j−1)(2j+1) and Al(2j)(2j+2), where for each l ∈ {1, 2, . . . , m}

and j ∈ Γ, Al(2j−1)(2j+1) is an m × n matrix with the entries al(2j−1) = xl(2j−1) + iyl(2j−1)
and al(2j+1) = xl(2j+1) + iyl(2j+1) at the (l, 2j− 1) and (l, 2j + 1) places, respectively, and 0s
everywhere else; Al(2j)(2j+2) is an m × n matrix with the entries al(2j) = xl(2j) + iyl(2j) and
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al(2j+2) = xl(2j+2) + iyl(2j+2) in the positions (l, 2j) and (l, 2j + 2), respectively, and 0s elsewhere.
For each l ∈ {1, 2, . . . , m} and j ∈ Γ, we obtain

Al(2j−1)(2j+1) + Al(2j)(2j+2) =



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

0 0 · · · al(2j−1) 0 al(2j+1) · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0



+



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

0 0 · · · al(2j) 0 al(2j+2) · · · 0 0
...

... · · ·
...

...
... · · ·

...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0


=

yl(2j−1) + yl(2j+1) − i(xl(2j−1) + xl(2j+1))

2
Wl(2j−1)(2j+1)

+
yl(2j−1) − yl(2j+1) − i(xl(2j−1) − xl(2j+1))

2
W ′l(2j−1)(2j+1)

+
yl(2j) + yl(2j+2) − i(xl(2j) + xl(2j+2))

2
Wl(2j)(2j+2)

+
yl(2j) − yl(2j+2) − i(xl(2j) − xl(2j+2))

2
W ′l(2j)(2j+2),

where, for each l ∈ {1, 2, . . . , m} and j ∈ Γ, Wl(2j−1)(2j+1) is an m × n matrix in which the
(l, 2j− 1) and (l, 2j + 1) entries are equal to i and all other entries are equal to zero, W ′l(2j−1)(2j+1)
is an m× n matrix with the entries i and −i in the (l, 2j− 1) and (l, 2j + 1) positions, respectively,
and there are 0s everywhere else; Wl(2j)(2j+2) is an m× n matrix with the (l, 2j) and (l, 2j + 2)
entries i, and all other entries are equal to zero, and W ′l(2j)(2j+2) is an m× n matrix with the entries
i and −i at the (l, 2j) and (l, 2j + 2) places, respectively, and 0s elsewhere. Accordingly, for any
A ∈ Mm×n(C), we have

A =
m

∑
l=1

∑
j∈Γ

(Al(2j−1)(2j+1) + Al(2j)(2j+2))

=
m

∑
l=1

∑
j∈Γ

[yl(2j−1) + yl(2j+1) − i(xl(2j−1) + xl(2j+1))

2
Wl(2j−1)(2j+1)

+
yl(2j−1) − yl(2j+1) − i(xl(2j−1) − xl(2j+1))

2
W ′l(2j−1)(2j+1)

+
yl(2j) + yl(2j+2) − i(xl(2j) + xl(2j+2))

2
Wl(2j)(2j+2)

+
yl(2j) − yl(2j+2) − i(xl(2j) − xl(2j+2))

2
W ′l(2j)(2j+2)

]
.

Therefore, the set{
Wl(2j−1)(2j+1), W ′l(2j−1)(2j+1), Wl(2j)(2j+2), W ′l(2j)(2j+2) : l = 1, 2, . . . , m; j = 1, 3, . . . ,

n− 2
2

}
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spans the Hilbert space Mm×n(C). Taking Pl(2j−1)(2j+1) := 1√
2
Wl(2j−1)(2j+1), P′l(2j−1)(2j+1) :=

1√
2
W ′l(2j−1)(2j+1), Pl(2j)(2j+2) := 1√

2
Wl(2j)(2j+2), and P′l(2j)(2j+2) := 1√

2
W ′l(2j)(2j+2), for each

l ∈ {1, 2, . . . , m} and j ∈ Γ, it follows that the set

B =
{

Pl(2j−1)(2j+1), P′l(2j−1)(2j+1), Pl(2j)(2j+2), P′l(2j)(2j+2) : l = 1, 2, . . . , m; j = 1, 3, . . . ,
n− 2

2

}
also spans the Hilbert space Mm×n(C). It can be easily shown that the set B is linearly independent
and orthonormal, so B is an orthonormal basis for the Hilbert space Mm×n(C).

Let the mappings H, M : Mm×n(C) → Mm×n(C) be defined, respectively, by H(A) =
−αA+ θPk(2s)(2s+2)+ ςP′k(2s)(2s+2) and M(A) = αA+ βPk(2s−1)(2s+1)+γP′k(2s−1)(2s+1) for all
A ∈ Mm×n(C), where α is an arbitrary positive real constant, β, γ, θ, and ς are arbitrary nonzero
real constants, and k ∈ {1, 2, . . . , n} and s ∈ Γ are arbitrary but fixed natural numbers. Then,
for all A, C ∈ Mm×n(C), this yields

〈M(A)−M(C), A− C〉 = 〈αA + βPk(2s−1)(2s+1) + γP′k(2s−1)(2s+1) − αC

− βPk(2s−1)(2s+1) − γP′k(2s−1)(2s+1), A− C〉

= α〈A− C, A− C〉 = α‖A− C‖2 ≥ 0,

that is, M is a monotone operator. Taking into account that for any A ∈ Mm×n(C) and every
constant λ > 0,

(I + λM)(A) = A + λαA + λβPk(2s−1)(2s+1) + λγP′k(2s−1)(2s+1)

= (1 + λα)A + λβPk(2s−1)(2s+1) + λγP′k(2s−1)(2s+1),

where I is the identity operator on B = Mm×n(C), it follows that (I + λM)(Mm×n(C)) =
Mm×n(C) for every constant λ > 0, which means that the mapping I + λM is surjective for every
positive real constant λ. Consequently, M is a maximal monotone operator.

In virtue of the fact that for every A ∈ Mm×n(C),

(H + M)(A) = βPk(2s−1)(2s+1) + γP′k(2s−1)(2s+1) + θPk(2s)(2s+2) + ςP′k(2s)(2s+2)

=



0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
...

... · · ·
...

...
...

... · · ·
...

...
0 0 · · · β+γ√

2
il(2j−1)

θ+ς√
2

il(2j)
β−γ√

2
il(2j+1)

θ−ς√
2

il(2j+2) · · · 0 0
...

... · · ·
...

...
...

... · · ·
...

...
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0


,

we conclude that for any A ∈ Mm×n(C),

‖(H + M)(A)‖ =
( β + γ√

2

)2
+
( θ + ς√

2

)2
+
( β− γ√

2

)2
+
( θ − ς√

2

)2

= β2 + γ2 + θ2 + ς2 > 0.

This fact implies that 0 /∈ (H + M)(Mm×n(C)), where 0 is the zero vector of the space
Mm×n(C), that is, the zero m× n matrix. Thus, the mapping H + M is not surjective, which
ensures that the operator M is not general H-monotone.

Example 2. Let H2(C) be the set of all Hermitian matrices with complex entries. Let us
recall that a square matrix A is said to be Hermitian (or self-adjoint) if it is equal to its own
Hermitian conjugate, i.e., A∗ = At = A. In the light of the definition of a Hermitian 2× 2
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matrix, the condition A∗ = A implies that the 2× 2 matrix A =

(
a b
c d

)
is Hermitian if

and only if a, d ∈ R and b = c̄. Thus,

H2(C) =
{( z x− iy

x + iy w

)
|x, y, z, w ∈ R

}
.

Then, H2(C) is a subspace of M2(C), the space of all 2× 2 matrices with complex
entries, with respect to the operations of addition and scalar multiplication defined on
M2(C), when M2(C) is considered a real vector space. By introducing the scalar product
on H2(C) as 〈A, C〉 := 1

2 tr(AC) for all A, C ∈ H2(C), it can be easily seen that 〈., .〉 is an
inner product, i.e., (H2(C), 〈., .〉) is an inner product space. The inner product defined
above induces a norm on H2(C) as follows:

‖A‖ =
√
〈A, A〉 =

√
1
2

tr(AA) =

√
x2 + y2 +

1
2
(z2 + w2), ∀A ∈ H2(C).

Since B = (H2(C), ‖.‖) is a finite-dimensional normed space, it follows that it is a Ba-
nach space. Now, let the operators H1, H2, M : H2(C)→ H2(C) be defined, respectively, by

H1(A) =

(
zk + τz−1

τz+1 − αzl − β n
√

z xt − iyt

xt + iyt |w− γ| − |w− θ| − $wm − µ s
√

w

)
,

H2(A) =

(
δ|z| xp − iyp

xp + iyp ξ(w + sin w)

)
and M(A) =

(
αzl + β n

√
z ς( q

√
x− i q
√

y)
ς( q
√

x + i q
√

y) $wm + µ s
√

w

)
,

for all A =

(
z x− iy

x + iy w

)
∈ H2(C), where α, β, $, µ, ς, δ, ξ, and τ are arbitrary real

constants, γ and θ are arbitrary nonzero real constants, k and t are arbitrary but fixed even
natural numbers, and m, n, l, p, q and s are arbitrary but fixed odd natural numbers.

Then, for any A =

(
z1 x1 − iy1

x1 + iy1 w1

)
, C =

(
z2 x2 − iy2

x2 + iy2 w2

)
∈ H2(C), it

can be easily observed that

〈M(A)−M(C), A− C〉 = α

2
(zl

1 − zl
2)(z1 − z2) +

β

2
( n
√

z1 − n
√

z2)(z1 − z2)

+ ς( q
√

x1 − q
√

x2)(x1 − x2) + ς( q
√

y1 − q
√

y2)(y1 − y2)

+
$

2
(wm

1 − wm
2 )(w1 − w2) +

µ

2
( s
√

w1 − s
√

w2)(w1 − w2) ≥ 0,

(1)

i.e., M is a monotone operator. We define the functions f , g, h : R → R, respectively,
as f (υ) := υk + τυ−1

τυ+1 , g(υ) := |υ− γ| − |υ− θ|, and h(υ) := υt + ς q
√

υ for all υ ∈ R. Then,

for any A =

(
z x− iy

x + iy w

)
∈ H2(C), we get

(H1 + M)(A) = (H1 + M)
(( z x− iy

x + iy w

))
=

(
zk + τz−1

τz+1 xt + ς q
√

x− i(yt + ς q
√

y)
xt + ς q

√
x + i(yt + ς q

√
y) |w− γ| − |w− θ|

)
=

(
f (z) h(x)− ih(y)

h(x) + ih(y) g(w)

)
.

Since k and t are even natural numbers, it is not difficult to see that f (R), h(R) 6= R.
Meanwhile, g(R) = [−|γ− θ|, |γ− θ|]. This fact implies that (H1 + M)(H2(C)) 6= H2(C),
i.e., the mapping H1 + M is not surjective, so M is not a general H1-monotone operator.
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Now, let λ > 0 be an arbitrary real constant and suppose that the functions f̂ , ĝ, ĥ :
R → R are defined, respectively, by f̂ (υ) := δ|υ|+ αλυl + βλ n

√
υ, ĝ(υ) := ξ(υ + sin υ) +

$λυm +µλ s
√

υ, and ĥ(υ) := υp +λς q
√

υ for all υ ∈ R. Then, for any A =

(
z x− iy

x + iy w

)
∈ H2(C), we get

(H2 + λM)(A) = (H2 + λM)
(( z x− iy

x + iy w

))
=

(
δ|z|+ αλzl + βλ n

√
z xp + λς q

√
x− i(yp + λς q

√
y)

xp + λς q
√

x + i(yp + λς q
√

y) ξ(w + sin w) + $λwn + µλ s
√

w

)
=

(
f̂ (z) ĥ(x)− iĥ(y)

ĥ(x) + iĥ(y) ĝ(w)

)
.

Since m, n, p, q, l, and s are odd natural numbers, it is easy to see that f̃ (R) = g̃(R) =
h̃(R) = R, which implies that (H2 + λM)(H2(C)) = H2(C), that is, the mapping H2 + λM
is surjective. Taking into account the arbitrariness in the choice of λ > 0, we conclude that
M is a general H2-monotone operator.

Remark 1. If H = J, the identity mapping on B, then the definition of general J-monotone
mappings is that of maximal monotone operators. In fact, the class of general H-monotone
mappings has a close relation with that of maximal monotone operators. This fact is
illustrated by the following assertion.

Lemma 1 ([35] Proposition 2.1). Let B be a reflexive Banach space with the dual space B∗. Let
H : B → B∗ be a strictly monotone mapping, and let M : B → 2B∗ be a general H-monotone
mapping. If 〈u− v, x− y〉 ≥ 0 holds for all (y, v) ∈ Graph(M), then u ∈ M(x), that is, M is
maximal monotone.

Invoking Example 1, for a given mapping H : B→ B∗, a maximal monotone mapping
need not be general H-monotone. A natural question then arises—that of the conditions
under which, for a given mapping H : B→ B∗, a maximal monotone mapping is general
H-monotone.

To answer this question, we need the concepts presented in the next definition.

Definition 8. Let B be a Banach space with the dual space B∗. A mapping H : B → B∗ is said
to be

(i) coercive if lim
‖x‖→+∞

〈H(x),x〉
‖x‖ = +∞;

(ii) hemi-continuous if, for any fixed x, y, z ∈ B, the function t 7→ 〈H(x + ty), z〉 is continuous
at 0+;

(iii) bounded if H(A) is a bounded subset of B∗ for every bounded subset A of B.

Now, an answer to the question raised above is given by the following result.

Lemma 2. Let B be a reflexive Banach space with the dual space B∗, and let H : B → B∗ be
a bounded, coercive, hemi-continuous, and monotone mapping. If M : B → 2B∗ is a maximal
monotone mapping, then M is general H-monotone.

Proof. Taking into account that H is bounded, coercive, hemi-continuous, and monotone,
by means of Theorem 4.5 on page 315 of Guo [36], it follows that (H + λM)(B) = B∗

for every λ > 0. Accordingly, M is a general H-monotone mapping.
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Theorem 1. Let B be a reflexive Banach space with the dual space B∗. Let H : B → B∗ be a
monotone mapping, and let M : B→ 2B∗ be a β-strongly monotone mapping. Then, the mapping
(H + λM)−1 : Range(H + λM)→ B is single-valued for every λ > 0.

Proof. Let λ > 0 be an arbitrary real constant. For any given z∗ ∈ Range(H + λM), letting
x, y ∈ (H + λM)−1(z∗), we have z∗ = (H + λM)(x) = (H + λM)(y), which implies
that λ−1(z∗ − H(x)) ∈ M(x) and λ−1(z∗ − H(y)) ∈ M(y). In light of the facts that H is
monotone and M is β-strongly monotone, we conclude that

λβ‖x− y‖2 ≤ λ〈λ−1(z∗ − H(x))− λ−1(z∗ − H(y)), x− y〉+ 〈H(x)− H(y), x− y〉 = 0.

Since λ, β > 0, by utilizing the preceding inequality, it follows that x = y, which
guarantees that the mapping H + λM from Range(H + λM) into B is single-valued. This
gives the desired result.

In the rest of this paper, the notion of general strong H-monotonicity with constant
β of the set-valued mapping M : B → 2B∗ will be used to mean that M is a β-strongly
monotone mapping and (H + λM)(B) = B∗ for every λ > 0, that is, M is a β-strongly and
general H-monotone mapping.

The single-valuedness of the mapping (H + λM)−1 : B∗ → B immediately follows
from the last result.

Corollary 1. Let B be a reflexive Banach space with the dual space B∗. Furthermore, let H : B→
B∗ be a monotone mapping, and let M : B→ 2B∗ be a general strongly H-monotone mapping with
constant β. Then, the mapping (H + λM)−1 : B∗ → B is single-valued for every λ > 0.

With the help of Corollary 1, we are able to define the proximal mapping RH
M,λ associ-

ated with H, M, and an arbitrary positive real constant λ as follows.

Definition 9. Assume that B is a reflexive Banach space with the dual space B∗. Let H : B→ B∗

be a monotone mapping, and let M : B→ 2B∗ be a general strongly H-monotone with constant β.
For every real constant λ > 0, the proximal mapping RH

M,λ : B∗ → B is defined by

RH
M,λ(x∗) = (H + λM)−1(x∗), ∀x∗ ∈ B∗.

We now close this section with the following theorem, in which the necessary condi-
tions for proving the Lipschitz continuity of the proximal mapping RH

M,λ and calculating
its Lipschitz constant are stated.

Theorem 2. Let B be a reflexive Banach space with the dual space B∗. Suppose, further, that
H : B → B∗ is a monotone mapping and that M : B → 2B∗ is a general strongly H-monotone
mapping with constant β. Then, for any real constant λ > 0, the proximal mapping RH

M,λ : B∗ → B
is 1

λβ -Lipschitz continuous, i.e.,

‖RH
M,λ(x∗)− RH

M,λ(y
∗)‖ ≤ 1

λβ
‖x∗ − y∗‖, ∀x∗, y∗ ∈ B∗.

Proof. Since M is a general H-monotone mapping, for any given points x∗, y∗ ∈ B∗ with
‖RH

M,λ(x∗)− RH
M,λ(y

∗)‖ 6= 0, we have

RH
M,λ(x∗) = (H + λM)−1(x∗) and RH

M,λ(y
∗) = (H + λM)−1(y∗),

which implies that

λ−1(x∗ − H(RH
M,λ(x∗))

)
∈ M(RH

M,λ(x∗)) and λ−1(y∗ − H(RH
M,λ(y

∗))
)
∈ M(RH

M,λ(y
∗)).
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Taking into consideration the fact that M is β-strongly monotone, we conclude that

λ−1〈x∗ − H(RH
M,λ(x∗))− (y∗ − H(RH

M,λ(y
∗))), RH

M,λ(x∗)− RH
M,λ(y

∗)〉
≥ β‖RH

M,λ(x∗)− RH
M,λ(y

∗)‖2.

Owing to the fact that λ−1 > 0, from the preceding inequality, we get

〈x∗ − y∗, RH
M,λ(x∗)− RH

M,λ(y
∗)〉 ≥ 〈H(RH

M,λ(x∗))− H(RH
M,λ(y

∗)), RH
M,λ(x∗)− RH

M,λ(y
∗)〉

+ λβ‖RH
M,λ(x∗)− RH

M,λ(y
∗)‖2.

In light of the fact that H is monotone, the last inequality implies that

‖x∗ − y∗‖‖RH
M,λ(x∗)− RH

M,λ(y
∗)‖

≥ 〈x∗ − y∗, RH
M,λ(x∗)− RH

M,λ(y
∗)〉

≥ 〈H(RH
M,λ(x∗))− H(RH

M,λ(y
∗)), RH

M,λ(x∗)− RH
M,λ(y

∗)〉
+ λβ‖RH

M,λ(x∗)− RH
M,λ(y

∗)‖2

≥ λβ‖RH
M,λ(x∗)− RH

M,λ(y
∗)‖2.

By virtue of the fact that ‖RH
M,λ(x∗)− RH

M,λ(y
∗)‖ 6= 0, from the preceding inequality,

it follows that

‖RH
M,λ(x∗)− RH

M,λ(y
∗)‖ ≤ 1

λβ
‖x∗ − y∗‖.

This completes the proof.

Remark 2. It should be pointed out that by comparing Theorem 2 and the provided
corresponding result in part (ii) of Theorem 3.2 in [13], it can be easily observed that
Theorem 2 improves part (ii) of Theorem 3.2 in [13]. In fact, the Lipschitz continuity of
the proximal mapping RH

M,λ and its Lipschitz constant in [13] are proved and calculated
under the assumption of strict monotonicity for the mapping H : B → B∗, whereas the
same results are derived in Theorem 2 under the assumption of monotonicity of H, which
is a weaker condition of strict monotonicity.

3. Formulation of the Problem: Existence and Uniqueness of a Solution

Let p ∈ N be an arbitrary constant; for each i ∈ {1, 2, . . . , p}, let Bi be a real Banach
space with the topological dual space B∗i , and let 〈., .〉i be the pairing between Bi and
B∗i . With slight abuse of notation, for each i ∈ {1, 2, . . . , p}, we use the same symbol ‖.‖i

for the norms in Bi and B∗i . Suppose, further, that gi : Bi → Bi, Ai :
p

∏
l=1

Bl → B∗i and

Mi : Bi × Bi → 2B∗i (i = 1, 2, . . . , p) are the mappings. We consider the problem of finding

(u1, u2, . . . , up) ∈
p

∏
l=1

Bl such that

0 ∈ Ai(u1, u2, . . . , up) + Mi(gi(ui), ui), (2)

which is called a system of generalized variational inclusions (SGVI) in real Banach spaces.
If p = 1, B1 = B is a real Banach space with the topological dual space B∗ and the

norm ‖.‖, g : B → B and A : B → B∗ are single-valued mappings, and M : B → 2B∗ is
a univariate set-valued mapping; then, the SGVI (2) reduces to the following variational
inclusion problem (VIP): Find u ∈ B such that

0 ∈ A(u) + M(g(u)), (3)
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which was considered and studied by Xia and Huang [13].
We remark that for suitable choices of the mappings Ai, gi, Mi and the underlying

spaces Bi (i = 1, 2, . . . , p), the SGVI (2) reduces to various classes of variational inclusions
and variational inequalities; see, for example, [5–7,13,37–41] and the references therein.

The following assertion, which tells that the SGVI (2) is equivalent to a fixed-point
problem, gives a characterization of the solution of the SGVI (2).

Lemma 3. For each i ∈ {1, 2, . . . , p}, let Bi be a reflexive Banach space with the dual space B∗i ,

and let Ai :
p

∏
l=1

Bl → B∗i , gi : Bi → Bi, and Hi : Bi → B∗i be the mappings such that for

each i ∈ {1, 2, . . . , p}, Hi is a monotone mapping with gi(Bi) ∩ dom Hi 6= ∅. Suppose, further,
that for each i ∈ {1, 2, . . . , p}, Mi : Bi × Bi → 2B∗i is a set-valued mapping such that for each
wi ∈ Bi, Mi(., wi) : Bi → 2B∗i is a general strongly Hi-monotone mapping with constant βi and

gi(Bi) ∩ dom Mi(., wi) 6= ∅. Then, (u1, u2, . . . , up) ∈
p

∏
l=1

Bl is a solution of the SGVI (2) if and

only if (u1, u2, . . . , up) satisfies

gi(ui) = RHi
Mi(.,ui),λi

[Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up)], (4)

where i = 1, 2, . . . , p; λi > 0 are real constants; Hi ◦ gi denotes the Hi composition gi, and RHi
Mi(.,ui),λi

=

(Hi + λi Mi(., ui))
−1.

Proof. From Definition 9, it follows that (u1, u2, . . . , up) ∈
p

∏
i=1

Bi is a solution of the SGVI (2)

if and only if

0 ∈ Ai(u1, u2, . . . , up) + Mi(gi(ui), ui),

⇔

Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up) ∈ (Hi + λi Mi(., ui))(gi(ui))

⇔

gi(ui) = (Hi + λi Mi(., ui))
−1[Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up)]

= RHi
Mi(.,ui),λi

[Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up)],

where i = 1, 2, . . . , p; λi > 0 are real constants; Hi ◦ gi denotes the Hi composition gi,
and RHi

Mi(.,ui),λi
= (Hi + λi Mi(., ui))

−1.

As a direct consequence of the above assertion, we derive the following result.

Lemma 4. Assume that B is a real Banach space with the dual space B∗, and A, H : B→ B∗ and
g : B → B are the mappings such that g(B) ∩ dom H 6= ∅. Furthermore, let M : B → 2B∗ be a
general strongly H-monotone mapping with constant β and g(B) ∩ dom M 6= ∅. Then, u ∈ B is
a solution of the VIP (3) if and only if u satisfies

g(u) = RH
M,λ[H ◦ g(u)− λA(u)],

where λ > 0 is an arbitrary real constant and RH
M,λ = (H + λM(., u))−1.

Before proceeding to the main result of this paper, we need to give some specific
notions and recall an efficient lemma.
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Definition 10. For each i ∈ {1, 2, . . . , p}, let Bi be a real Banach space with the topological dual

space B∗i . A mapping A :
p

∏
j=1

Bj → B∗i is said to be αi-Lipschitz continuous in the ith argument if

there exists a constant αi > 0 such that

‖A(u1, u2, . . . , ui−1, ui, ui+1, . . . , up)− A(u1, u2, . . . , ui−1, u′i, ui+1, . . . , up)‖i

≤ αi‖ui − u′i‖i, ∀ui, u′i ∈ Bi, uj ∈ Bj(j = 1, 2, . . . , p; j 6= i).

Definition 11. Let B be a real uniformly smooth Banach space with the dual space B∗, and let J
be the normalized duality mapping from B into B∗. A mapping g : B→ B is said to be k-strongly
accretive if there exists a constant k > 0 such that

〈J(x− y), g(x)− g(y)〉 ≥ k‖x− y‖2, ∀x, y ∈ B.

Lemma 5 ([42]). Let B be a uniformly smooth Banach space, and let J be the normalized duality
mapping from B into B∗. Then, for all x, y ∈ B, we have

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈J(x + y), y〉;

(ii) 〈J(x)− J(y), x− y〉 ≤ 2d2(x, y)ρB(
4‖x−y‖
d(x,y) ), where d(x, y) =

√
‖x‖2+‖y‖2

2 .

Theorem 3. For each i ∈ Γ = {1, 2, . . . , p}, let Bi be a real uniformly smooth Banach space with
the dual space B∗i and ρBi (t) ≤ Cit2 for some Ci > 0. Suppose that for each i ∈ Γ, gi : Bi → Bi
is a ki-strongly accretive and δi-Lipschitz continuous mapping, Hi : Bi → B∗i is a monotone and

si-Lipschitz continuous mapping with gi(Bi) ∩ dom Hi 6= ∅, and the mapping Ai :
p

∏
l=1

Bl → B∗i
is αi-Lipschitz continuous in the ith argument and ςi,j-Lipschitz continuous in the jth argument
(j ∈ Γ, j 6= i). For each i ∈ Γ, let Mi : Bi × Bi → 2B∗i be a set-valued mapping such that for each
wi ∈ Bi, Mi(., wi) : Bi → 2B∗i is a general strongly Hi-monotone mapping with constant βi and
gi(Bi) ∩ dom Mi(., wi) 6= ∅. Assume, further, that for each i ∈ Γ, there exist constants $i, λi > 0
such that

‖RHi
Mi(.,xi),λi

(zi)− RHi
Mi(.,yi),λi

(zi)‖i ≤ $i‖xi − yi‖i, ∀xi, yi, zi ∈ Bi (5)

and 
λi >

siδi

βi−αi−βi

(
$i+
√

1−2ki+64Ciδ
2
i + ∑

q∈Γ,q 6=i

ςq,i
βq

) ,

βi − αi − βi
(
$i +

√
1− 2ki + 64Ciδ

2
i + ∑

q∈Γ,q 6=i

ςq,i
βq

)
> 0,

1 + 64Ciδ
2
i > 2ki.

(6)

Then, the SGVI (2) admits a unique solution.

Proof. We define, for each i ∈ Γ = {1, 2, . . . , p}, the mapping Fi :
p

∏
q=1

Bq → Bi by

Fi(u1, u2, . . . , up) = ui − gi(ui) + RHi
Mi(.,ui),λi

[Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up)], (7)

for all (u1, u2, . . . , up) ∈
p

∏
q=1

Bq. Let ‖.‖∗ be a function defined on
p

∏
q=1

Bq by

‖(u1, u2, . . . , up)‖∗ =
p

∑
q=1
‖xq‖q, ∀(u1, u2, . . . , up) ∈

p

∏
q=1

Bq. (8)
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It can be easily observed that (
p

∏
q=1

Bq, ‖.‖∗) is a Banach space. Assume, further, that

the mapping T :
p

∏
q=1

Bq →
p

∏
q=1

Bq is defined by

T(u1, u2, . . . , up) = (F1(u1, u2, . . . , up), . . . , Fp(u1, u2, . . . , up)), (9)

for all (x1, x2, . . . , xp) ∈
p

∏
q=1

Bq. We now prove that T is a contraction mapping. For this

end, we choose (u1, u2, . . . , up), (u′1, u′2, . . . , u′p) ∈
p

∏
q=1

Bq arbitrarily. Making use of (5), (7),

and Theorem 2, it follows that for each i ∈ Γ,

‖Ti(u1, u2, . . . , up)− Ti(u′1, u′2, . . . , u′p)‖i

≤ ‖ui − u′i − (gi(ui)− gi(u′i))‖i

+ ‖RHi
Mi(.,ui),λi

[Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up)]

− RHi
Mi(.,u′i),λi

[Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up)]‖i

+ ‖RHi
Mi(.,u′i),λi

[Hi ◦ gi(ui)− λi Ai(u1, u2, . . . , up)]

− RHi
Mi(.,u′i),λi

[Hi ◦ gi(u′i)− λi Ai(u′1, u′2, . . . , u′p)]‖i

≤ ‖ui − u′i − (gi(ui)− gi(u′i))‖i + $i‖ui − u′i‖i

+
1

λiβi
‖Hi ◦ gi(ui)− Hi ◦ gi(u′i)

− λi
(

Ai(u1, u2, . . . , up)− Ai(u′1, u′2, . . . , u′p)
)
‖i

≤ ‖ui − u′i − (gi(ui)− gi(u′i))‖i + $i‖ui − u′i‖i

+
1

λiβi
‖Hi ◦ gi(ui)− Hi ◦ gi(u′i)‖i

+
1
βi
‖Ai(u1, u2, . . . , ui−1, ui, ui+1, . . . , up)

− Ai(u1, u2, . . . , ui−1, u′i, ui+1, . . . , up)‖i

+
1
βi

∑
j∈Γ,j 6=i

‖Ai(u1, u2, . . . , uj−1, uj, uj+1, . . . , up)

− Ai(u1, u2, . . . , uj−1, u′j, uj+1, . . . , up)‖i.

(10)

Taking into account that for each i ∈ {1, 2, . . . , k}, gi is a ki-strongly accretive and
δi-Lipschitz continuous mapping and Bi is a uniformly smooth Banach space with ρBi (t) ≤
Cit2 for some Ci > 0, by Lemma 5, we get

‖ui − u′i − (gi(ui)− gi(u′i))‖2
i

≤ ‖ui − u′i‖2
i + 2〈Ji(ui − u′i − (gi(ui)− gi(u′i))),−(gi(ui)− gi(u′i))〉i

= ‖ui − u′i‖2
i − 2〈Ji(ui − u′i), gi(ui)− gi(u′i)〉i

+ 2〈Ji(ui − u′i − (gi(ui)− gi(u′i)))− Ji(ui − u′i),−(gi(ui)− gi(u′i))〉i
≤ ‖ui − u′i‖2

i − 2ki‖ui − u′i‖i + 4d2
i (ui − u′i − (gi(ui)− gi(u′i)), ui − u′i)

× ρBi

( 4‖gi(ui)− gi(u′i)‖i

di(ui − u′i − (gi(ui)− gi(u′i)), ui − u′i)
)

≤ (1− 2ki + 64Ciδ
2
i )‖ui − u′i‖2

i ,

(11)

where, for each i ∈ Γ, Ji is the normalized duality mapping from Bi to B∗i .
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From (11), it follows that for each i ∈ Γ,

‖ui − u′i − (gi(ui)− gi(u′i))‖i ≤
√

1− 2ki + 64Ciδ
2
i ‖ui − u′i‖i. (12)

In light of the facts that for each i ∈ Γ, Hi is si-Lipschitz continuous, gi is δi-Lipschitz
continuous, and Ai is αi-Lipschitz continuous in the ith argument and ςi,j-Lipschitz contin-
uous in the jth argument (j ∈ Γ, j 6= i), we conclude that for each i ∈ Γ,

‖Hi ◦ gi(ui)− Hi ◦ gi(u′i)‖i ≤ siδi‖ui − u′i‖i, (13)

‖Ai(u1, u2, . . . , ui−1, ui, ui+1, . . . , up)

− Ai(u1, u2, . . . , ui−1, u′i, ui+1, . . . , up)‖i ≤ αi‖ui − u′i‖i (14)

and

‖Ai(u1, u2, . . . , uj−1, uj, uj+1, . . . , up)

− Ai(u1, u2, . . . , uj−1, u′j, uj+1, . . . , up)‖i ≤ ςi,j‖uj − u′j‖j.
(15)

Substituting (12)–(15) into (10), for each i ∈ Γ, we get

‖Fi(u1, u2, . . . , up)− Fi(u′1, u′2, . . . , u′p)‖i

≤ σi‖ui − u′i‖i +
1
βi

∑
j∈Γ,j 6=i

ςi,j‖uj − u′j‖j,
(16)

where, for each i ∈ Γ,

σi = $i +
√

1− 2ki + 64Ciδ
2
i +

siδi + λiαi
λiβi

.

Making use of (9) and (16), we obtain

‖T(u1, u2, . . . , up)− T(u′1, u′2, . . . , u′p)‖∗

=
p

∑
i=1
‖Fi(u1, u2, . . . , up)− Fi(u′1, u′2, . . . , u′p)‖i

≤
p

∑
i=1

(
σi‖ui − u′i‖i +

1
βi

∑
j∈Γ,j 6=i

ςi,j‖uj − u′j‖j
)

= (σ1 +
p

∑
q=2

ςq,1

βq
)‖u1 − u′1‖1 + (σ2 + ∑

q∈Γ,q 6=2

ςq,2

βq
)‖u2 − u′2‖2

+ · · ·+ (σp +
p−1

∑
q=1

ςq,p

βq
)‖up − u′p‖p

≤ ϕ
p

∑
i=1
‖ui − u′i‖i = ϕ‖(u1, u2, . . . , up)− (u′1, u′2, . . . , u′p)‖∗,

(17)

where ϕ = max{σi + ∑
q∈Γ,q 6=i

ςq,i
βq

: i = 1, 2, . . . , p}. Due to (6), it follows that ϕ ∈ (0, 1), so

(17) ensures that T is a contraction mapping. Consequently, invoking the Banach fixed-point

theorem, there exists (û1, û2, . . . , ûp) ∈
p

∏
q=1

Bq such that T(û1, û2, . . . , ûp) = (û1, û2, . . . , ûp).

Thereby, (7) and (9) imply that (û1, û2, . . . , ûp) satisfies Equation (4), that is, for each i ∈ Γ,

gi(ûi) = RHi
Mi(.,ûi),λi

[Hi ◦ gi(ûi)− λi Ai(û1, û2, . . . , ûp)].
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Now, Lemma 3 guarantees that (û1, û2, . . . , ûp) ∈
p

∏
q=1

Bq is a unique solution of the

SGVI (2). The proof is finished.

As a direct consequence of the previous theorem, we obtain the following.

Corollary 2. Suppose that B is a real uniformly smooth Banach space with the dual space B∗

and ρB(t) ≤ Ct2 for some C > 0. Let g : B → B be a k-strongly accretive and δ-Lipschitz
continuous mapping, let H : B → B∗ be a monotone and s-Lipschitz continuous mapping with
g(B) ∩ dom H 6= ∅, and let the mapping A : B → B∗ be α-Lipschitz continuous. Assume,
further, that M : B → 2B∗ is a general strongly H-monotone mapping with constant β and
g(B) ∩ dom M 6= ∅. If there exists a constant λ > 0 such that

λ > sδ
β−α−β

√
1−2k+64Cδ2 ,

β− α− β
√

1− 2k + 64Cδ2 > 0,
1 + 64Cδ2 > 2k,

(18)

then the VIP (3) has a unique solution.

Given a real normed space B with a norm ‖.‖, it is well known that a mapping T :
B→ B is said to be nonexpansive whenever ‖T(x)− T(y)‖ ≤ ‖x− y‖ for all x, y ∈ B. Due
to the existence of a deep and close relation between the classes of monotone and accretive
operators, which naturally arise in the theory of differential equations, and the class of
nonexpansive mappings, the notion of nonexpansive mapping had a rapid development
and a prolific growth of its applications from the beginning. Because of the importance and
active impact of nonexpansive mapping in fixed-point theory, the study of nonexpansive
mappings in the frameworks of different spaces has been conducted extensively by many
mathematicians in recent decades, and several generalizations and extensions of them have
been introduced and analyzed. One of the first attempts in this direction was carried out
by Goebel and Kirk [23], who defined the following notion of asymptotically nonexpansive
mapping in 1972.

Definition 12 ([23]). A mapping T : B → B is said to be asymptotically nonexpansive if there
exists a sequence {an} ⊂ (0, ∞) with lim

n→∞
an = 0 such that for all x, y ∈ B,

‖Tn(x)− Tn(y)‖ ≤ (1 + an)‖x− y‖, ∀n ∈ N.

Efforts in this direction continued, and other generalized nonexpansive mappings
were defined as follows.

Definition 13. A nonlinear mapping T : B→ B is said to be

(i) total asymptotically nonexpansive (also referred to as ({an}, {bn}, φ)-total asymptotically
nonexpansive in the literature) [27] if there exist nonnegative real sequences {an} and {bn}
with an, bn → 0 as n→ ∞ and a strictly increasing continuous function φ : R+ → R+ with
φ(0) = 0 such that for all x, y ∈ B,

‖Tn(x)− Tn(y)‖ ≤ ‖x− y‖+ anφ(‖x− y‖) + bn, ∀n ∈ N.

(ii) total uniformly L-Lipschitzian (or ({an}, {bn}, φ)-total uniformly L-Lipschitzian) [28] if
there exist a constant L > 0, nonnegative real sequences {an} and {bn} with an, bn → 0 as
n → ∞, and a strictly increasing continuous function φ : R+ → R+ with φ(0) = 0 such
that for each n ∈ N,

‖Tn(x)− Tn(y)‖ ≤ L[‖x− y‖+ anφ(‖x− y‖) + bn], ∀x, y ∈ B.
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It is significant to mention that every asymptotically nonexpansive mapping is total
asymptotically nonexpansive with bn = 0 (or equivalently bn = 0 and an = kn − 1) for all
n ∈ N and φ(t) = t for all t ≥ 0, but the converse is, in general, not true. This fact is shown
in the next example.

Example 3. For 1 ≤ p < ∞, consider the classical space

lp =
{

x = {xn}n∈N :
∞

∑
n=1
|xn|p < ∞, xn ∈ F = R or C

}
,

consisting of all p-power summable sequences equipped with the p-norm ‖.‖p, which is
defined on it by

‖x‖p =
( ∞

∑
n=1
|xn|p

) 1
p , ∀x = {xn}n∈N ∈ lp.

Suppose, further, that Blp is the closed unit ball in the Banach space lp, and let X =
R× lp be endowed with the norm ‖.‖X = |.|R + ‖.‖p. Consider B := [0, α]× Blp as a subset
of X, where α ∈ (0, 1] is an arbitrary real constant. Suppose, further, that the self-mapping
T of B is defined by

T(u, x) =
{

β(u, x̂), if u ∈ [0, α],
(0, βx̂), if u = α,

where x̂ = {x̂n}n∈N, with x̂i = 0 for all 1 ≤ i ≤ q, x̂q+2i = 0 for all i ∈ N,

x̂q+2i−1 =


γ|xi|

m i+2
3 , if i ∈ {3r− 2|r = 1, 2, . . . , t+2

3 },
γ

p√2p+1 (|xi|
λ i+1

3 − sin |xi|
b i+1

3 ), if i ∈ {3r− 1|r = 1, 2, . . . , t+2
3 },

γ
p√2p+1 (sin

k i
3 |xi| − |xi|

s i
3 ), if i ∈ {3r|r = 1, 2, . . . , t+2

3 },

and x̂q+2t+j = γx
t+ j+1

2
for all j ∈ {2l + 3|l ∈ N}; β, γ ∈ (0, 1) are arbitrary real constants,

t ∈ {3s− 2|s ∈ N}, and q ≥ t + 2 and mi, ki, λi, bi, si ∈ N (i = 1, 2, . . . , t+2
3 ) are arbitrary

but fixed natural numbers. Taking into account that the mapping T is discontinuous at the
points (α, x) for all x ∈ Blp , it follows that T is not Lipschitzian, so it is not an asymptotically
nonexpansive mapping. It can be easily observed that for all (u, x), (v, y) ∈ [α, 0)× Blp ,

‖T(u, x)− T(v, y)‖X ≤ |u− v|+ γ max{
mi

∑
j=1
|x3i−2|mi−j|y3i−2|j−1,

λi

∑
r=1
|x3i−1|λi−r|y3i−1|r−1,

bi

∑
s′=1
|x3i−1|bi−s′ |y3i−1|s

′−1,

ki

∑
r′=1
|x3i|ki−r′ |y3i|r

′−1,
si

∑
r′′=1
|x3i|si−r′′ |y3i|r

′′−1, 1 :

i = 1, 2, . . . ,
t + 2

3
}‖x− y‖p + β

≤ |u− v|+ γς‖x− y‖p + β,

(19)

where ς = max{mi, λi, bi, ki, si : i = 1, 2, . . . , t+2
3 }. If u ∈ [0, α) and v = α, then, in a similar

fashion to that of the preceding analysis, owing to the fact that 0 < |u− v| ≤ α ≤ 1, we
conclude that

‖T(u, x)− T(v, y)‖X ≤ β(|u|+ σι‖x− y‖p)

≤ β(1 + γς‖x− y‖p)

< |u− v|+ γς‖x− y‖p + β.

(20)
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If u = v = b, then, by an argument similar to that of (19), for all x ∈ Blp , we get

‖T(u, x)− T(v, y)‖X = βγς‖x− y‖p

< β(|u− v|+ γς‖x− y‖p + 1)

< |u− v|+ γς‖x− y‖p + β.

(21)

Making use of (19)–(21), we derive that for all (u, x), (v, y) ∈ B,

‖T(u, x)− T(v, y)‖X ≤ |u− v|+ γς‖x− y‖p + β

≤ |u− v|+ ‖x− y‖p + γς(|u− v|+ ‖x− y‖p) + β.
(22)

For all n ≥ 2 and (u, x) ∈ [0, α)× Blp , we have Tn(u, x) = βn(u, x̃), where

x̃ =
(

0, 0, . . . , 0︸ ︷︷ ︸
(2n−1)q times

, γn|x1|m1 , 0, 0, . . . , 0︸ ︷︷ ︸
(2n−1) times

, (
γ

p
√

2p+1
)n(|x2|λ1 − sin |x2|b1 ), 0, 0, . . . , 0︸ ︷︷ ︸

(2n−1) times

,

(
γ

p
√

2p+1
)n(sink1 |x3| − |x3|s1 ), 0, 0, . . . , 0︸ ︷︷ ︸

(2n−1) times

, γn|x4|m2 , 0, 0, . . . , 0︸ ︷︷ ︸
(2n−1) times

, (
γ

p
√

2p+1
)n(|x5|λ2

− sin |x5|b2 ), 0, 0, . . . , 0︸ ︷︷ ︸
(2n−1) times

, (
γ

p
√

2p+1
)n(sink2 |x6| − |x6|s2 ), . . . , γn|xt|

m t+2
3 , 0, 0, . . . , 0︸ ︷︷ ︸

(2n−1) times

,

(
γ

p
√

2p+1
)n(|xt+1|

λ t+2
3 − sin |xt+1|

b t+2
3 ), 0, 0, . . . , 0︸ ︷︷ ︸

(2n−1) times

, (
γ

p
√

2p+1
)n(sin

k t+2
3 |xt+2| − |xt+2|

s t+2
3 ),

0, 0, . . . , 0︸ ︷︷ ︸
(2n−1) times

, γnxt+3, 0, 0, . . . , 0︸ ︷︷ ︸
(2n−1) times

, γnxt+4, . . .
)
.

Then, for all (u, x), (v, y) ∈ [0, α)× Blp and n ≥ 2, by an argument analogous to the
previous one, one can prove that

‖Tn(u, x)− Tn(v, y)‖X ≤ βn(|u− v|+ σnι‖x− y‖p)

< |u− v|+ σnι‖x− y‖p + βn.
(23)

In the case where u = [0, α) and v = α, for each x ∈ Blp and n ≥ 2, we have Tn(u, x) =
βn(u, x̃) and Tn(v, x) = (0, βn x̃) = βn(0, x̃). Taking into account that 0 < |u− v| ≤ α ≤ 1,
by the same argument as that used in (19), for all x, y ∈ Blp and n ≥ 2, it follows that

‖Tn(u, x)− Tn(v, y)‖X ≤ βn(|u|+ γnς‖x− y‖p)

≤ βn(α + γnς‖x− y‖p)

≤ βn(1 + γnς‖x− y‖p)

< γnς‖x− y‖p + βn

< |u− v|+ γnς‖x− y‖p + βn.

(24)

If u = v = α, then for all x ∈ Blp and n ≥ 2, we have

Tn(u, x) = Tn(v, y) = (0, βn x̃) = βn(0, x̃)

and

‖Tn(u, x)− Tn(v, y)‖X ≤ βnγnς‖x− y‖p

< |u− v|+ γnς‖x− y‖p + βn.
(25)
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Employing (23)–(25), we deduce that for all (u, x), (v, y) ∈ B and n ≥ 2,

‖Tn(u, x)− Tn(v, y)‖X < |u− v|+ γnς‖x− y‖p + βn

≤ |u− v|+ ‖x− y‖p + γnς(|u− v|+ ‖x− y‖p) + βn.
(26)

Now, making use of (22) and (26), it follows that for all (u, x), (v, y) ∈ B and n ∈ N,

‖Tn(u, x)− Tn(v, y)‖X ≤ |u− v|+ ‖x− y‖p + γnς(|u− v|+ ‖x− y‖p) + βn

= ‖(u, x)− (v, y)‖X + γnς‖(u, x)− (v, y)‖X + βn.
(27)

Let us now take θn = γn and µn = βn for each n ∈ N. Since 0 < γ, β < 1, we
conclude that µn, θn → 0, as n→ ∞. Let the mapping φ : [0,+∞)→ [0,+∞) be defined by
φ(w) = ςw for all w ∈ [0,+∞). Then, using (27), for all (u, x), (v, y) ∈ B and n ∈ N, we get

‖Tn(u, x)− Tn(v, yx)‖X ≤ ‖(u, x)− (v, y)‖X + θnφ(‖(u, x)− (v, y)‖X) + µn),

i.e., T is a ({θn}, {µn}, φ)-total asymptotically nonexpansive mapping.

Here, it is to be noted that, for given nonnegative real sequences {an} and {bn} and a
strictly increasing continuous function φ : R+ → R+, an ({an}, {bn}, φ)-total asymptoti-
cally nonexpansive mapping is ({an}, {bn}, φ)-total uniformly L-Lipschitzian with L = 1,
but the converse is not necessarily true. In other words, the class of total asymptotically non-
expansive mappings is strictly contained within the class of total uniformly L-Lipschitzian
mappings. To illustrate this fact, the following example is given.

Example 4. Let B = R be endowed with the Euclidean norm ‖.‖ = |.|, and let the self-
mapping T of B be defined by

T(x) =


0, if x ∈ (−∞, 0),
1
p , if x ∈ (0, 1

p ) ∪ ( 1
p , q),

p, if x ∈ {0, 1
p} ∪ [q,+∞),

where q > 0 and p >
q+
√

q2+4
2 are arbitrary real constants such that pq > 1. Owing to

the fact that the mapping T is discontinuous at the points x = 0, 1
p , q, it follows that T is

not Lipschitzian, so it is not an asymptotically nonexpansive mapping. We pick an = σ
n

and bn = q
λn for each n ∈ N, where σ > 0 and λ ∈ (1, pq) ∪ (pq,+∞) are arbitrary real

constants. We define the function φ : R+ → R+ by φ(t) = µtk for all t ∈ R+, where

k ∈ N and µ ∈ (0, λk(p2−pq−1)
σp(λ−1)kqk

)
are arbitrary constants. Taking x = q and y = q

λ , we have

T(x) = p and T(y) = 1
p . In view of the fact that 0 < µ < λk(p2−pq−1)

σp(λ−1)kqk , we deduce that

|T(x)− T(y)| = p− 1
p
> q +

σµ(λ− 1)kqk

λk

=
(λ− 1)q

λ
+

σµ(λ− 1)kqk

λk +
q
λ

= |x− y|+ σµ|x− y|k + q
λ

= |x− y|+ a1φ(|x− y|) + b1,

which ensures that T is not an ({an}, {bn}, φ)-total asymptotically nonexpansive mapping.
However, for all x, y ∈ B, we get
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|T(x)− T(y)| ≤ p ≤ λp
q
(|x− y|+ σµ|x− y|k + q

λ
)

=
λp
q
(|x− y|+ a1φ(|x− y|) + b1)

(28)

and for all n ≥ 2, because Tn(z) = p for all z ∈ B, we derive that for all x, y ∈ B,

|Tn(x)− Tn(y)| < λp
q
(|x− y|+ σµ

n
|x− y|k + q

λn )

=
λp
q
(|x− y|+ anφ(|x− y|) + bn).

(29)

From (28) and (29), it follows that T is a ({ σ
n}, {

q
λn }, φ)-total uniformly λp

q -Lipschitzian map-
ping.

Lemma 6. For each i ∈
{

1, 2 . . . , p}, let Bi be a real Banach space with the topological dual
space B∗i and the norm ‖.‖i, and let Si : Bi → Bi be an

(
{an,i}∞

n=1, {bn,i}∞
n=1, φi

)
-total uniformly

Li-Lipschitzian mapping. Suppose, further, that Q and φ are self-mappings of
p

∏
i=1

Bi and R+,

respectively, which are defined by

Q(u1, u2, . . . , up) = (S1u1, S2u2, . . . , Spup), ∀(u1, u2, . . . , up) ∈
p

∏
i=1

Bi (30)

and

φ(t) = max{φi(t) : i = 1, 2, . . . , p}, ∀t ∈ R+. (31)

Then, Q is a
(
{

p
∑

i=1
an,i}∞

n=1, {
p
∑

i=1
bn,i}∞

n=1, φ
)
-total uniformly max{Li : i = 1, 2, . . . , p}-

Lipschitzian mapping.

Proof. Taking into account that for each i ∈ {1, 2, . . . , p}, Si is an
(
{an,i}∞

n=1, {bn,i}∞
n=1, φi

)
-

total uniformly L-Lipschitzian mapping and φi : R+ → R+ is a strictly increasing function,

for all (u1, u2, . . . , up), (v1, v2, . . . , vp) ∈
p

∏
i=1

Bi and n ∈ N, we get

‖Qn(u1, u2, . . . , up)−Qn(v1, v2, . . . , vp)‖∗
= ‖(Sn

1 u1, Sn
2 u2, . . . , Sn

pup)− (Sn
1 v1, Sn

2 v2, . . . , Sn
pvp)‖∗

= ‖(Sn
1 u1 − Sn

1 v1, Sn
2 u2 − Sn

2 v2, . . . , Sn
pup − Sn

pvp)‖∗

=
p

∑
i=1
‖Sn

i ui − Sn
i vi‖i

≤
p

∑
i=1

Li
(
‖ui − vi‖i + an,iφi(‖ui − vi‖i) + bn,i

)
≤ max{Li : i = 1, 2, . . . , p}

( p

∑
i=1
‖ui − vi‖i +

p

∑
i=1

an,iφ(‖ui − vi‖i) +
p

∑
i=1

bn,i
)

≤ max{Li : i = 1, 2, . . . , p}
( p

∑
i=1
‖ui − vi‖i +

p

∑
i=1

an,iφ(
p

∑
j=1
‖uj − vj‖j) +

p

∑
i=1

bn,i
)

= max{Li : i = 1, 2, . . . , p}
(
‖(u1, u2, . . . , up)− (v1, v2, . . . , vp)‖∗

+
p

∑
i=1

an,iφ(‖(u1, u2, . . . , up)− (v1, v2, . . . , vp)‖∗) +
p

∑
i=1

bn,i
)
,
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where ‖.‖∗ is a norm on
p

∏
i=1

Bi defined by (8). Because of this fact, it follows that Q

is a
(
{

p
∑

i=1
an,i}∞

n=1, {
p
∑

i=1
bn,i}∞

n=1, φ
)
-total uniformly max{Li : i = 1, 2, . . . , p}-Lipschitzian

mapping. The proof is complete.

4. Iterative Algorithms, Graph Convergence, and an Application

Suppose that, for each i ∈ {1, 2, . . . , p}, Bi is a real Banach space with the topological
dual space B∗i , and let Si : Bi → Bi be an

(
{an,i}∞

n=1, {bn,i}∞
n=1, φi

)
-total uniformly Li-

Lipschitzian mapping. Assume, further, that Q and φ are self-mappings of
p

∏
i=1

Bi and

R+ defined by (30) and (31), respectively. We denote the sets of all fixed points of Si
(i = 1, 2, . . . , p) and Q, respectively, by Fix(Si) and Fix(Q). At the same time, we denote by
ΩSGVI the set of all solutions of the SGVI (2), where, for each i ∈ {1, 2, . . . , p}, Mi : Bi× Bi →
2B∗i is a set-valued mapping such that for each wi ∈ Bi, Mi(., wi) : Bi → 2B∗i is a general
strongly Hi-monotone mapping with constant βi and gi(Bi) ∩ dom Mi(., zi) 6= ∅. Using

(30), we deduce that for any (u1, u2, . . . , up) ∈
p

∏
i=1

Bi, (u1, u2, . . . , up) ∈ Fix(Q) if and only

if for each i ∈ {1, 2, . . . , p}, ui ∈ Fix(Si), that is, Fix(Q) = Fix(S1, S2, . . . , Sp) =
p

∏
i=1

Fix(Si).

If (u∗1 , u∗2 , . . . , u∗p) ∈ Fix(Q) ∩ΩSGVI, then, by invoking Lemma 3, it can be easily seen that
for each i ∈ {1, 2, . . . , p} and n ∈ N,

u∗i = Sn
i u∗i = u∗i − gi(u∗i ) + RHi

Mi(.,u∗i ),λi
[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)]

= Sn
i
(
u∗i − gi(u∗i ) + RHi

Mi(.,u∗i ),λi
[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)]

)
.

(32)

The fixed-point formulation (32) enables us to suggest the following iterative algo-
rithm.

Algorithm 1. Let Ai, Bi, gi (i = 1, 2, . . . , p) be the same as in the SGVI (2), and let Hn,i : Bi →
B∗i and Mn,i : Bi × Bi → 2B∗i (n ≥ 0) be the mappings such that for each i ∈ {1, 2, . . . , p}
and n ≥ 0, Hn,i is a monotone mapping with gi(Bi) ∩ dom Hn,i 6= ∅, and for each wi ∈ Bi,
Mn,i(., wi) : Bi → 2B∗i is a general strongly Hn,i-monotone mapping with constant βn,i and
gi(Bi)∩dom Mn,i(., wi) 6= ∅. Suppose, further, that for each i ∈ {1, 2, . . . , p}, Si : Bi → Bi is an(
{an,i}∞

n=0, {bn,i}∞
n=0, φi

)
-total uniformly Li-Lipschitzian mapping. For an arbitrarily chosen ini-

tial point (u0,1, u0,2, . . . , u0,p) ∈
p

∏
i=1

Bi, compute the iterative sequence {(un,1, un,2, . . . , un,p)}∞
n=0

in
p

∏
i=1

Bi with the iterative schemes:

un+1,i = αnun,i + (1− αn)Sn
i (un,i − gi(un,i) + RHn,i

Mn,i(.,un,i),λn,i
[Hn,i ◦ gi(un,i)

− λn,i Ai(un,1, un,2, . . . , un,p)]
)
,

(33)

where i = 1, 2, . . . , p; n ≥ 0; λn,i > 0 are real constants; {αn} is a sequence in the interval [0, 1)
such that lim sup

n
αn < 1.

If p = 1 and S1 ≡ I1, the identity mapping on B1, A1 = A, B1 = B, g1 = g, λn,1 = λ,
Hn,1 = H, Mn,1 = M : B→ 2B∗ is a general strongly H-monotone mapping with constant
β and g(B) ∩ dom M 6= ∅, and αn = 0 for all n ≥ 0, then Algorithm 1 collapses into the
following iterative algorithm.
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Algorithm 2. Let A, B, g, H, and M be the same as in Lemma 4. For any given u0 ∈ B, compute
the iterative sequence {un}∞

n=0 in B with the iterative scheme

un+1 = un − g(un) + RH
M,λ[H ◦ g(un)− λA(un)],

where n = 0, 1, 2, . . . , and λ > 0 is an arbitrary constant.

Definition 14 ([9,10]). Let B be a real Banach space with the dual space B∗, and let Mn, M : B→
2B∗ (n ≥ 0) be set-valued mappings. We say that the sequence {Mn}∞

n=0 is graph-convergent to

M, and we denote Mn
G−→ M if, for every point (x, u∗) ∈ Graph(M), there exists a sequence of

points (xn, u∗n) ∈ Graph(Mn) such that xn → x and u∗n → u∗ as n→ ∞.

In the next theorem, the concepts of graph convergence and proximal mapping relating
to a general strongly H-monotone mapping are used, and a new equivalence relationship be-
tween the graph convergence of a sequence of general strongly H-monotone mappings and
their associated proximal mappings, respectively, to a given general strongly H-monotone
mapping and its associated proximal mapping is established.

Theorem 4. Let B be a real reflexive Banach space with the dual space B∗. Let Hn, H : B → B∗

(n ≥ 0) be monotone mappings, and for each n ≥ 0, let Hn be an sn-Lipschitz continuous mapping.
Suppose that Mn, M : B → 2B∗ (n ≥ 0) are general strongly Hn-monotone and general
strongly H-monotone mappings with constants βn and β, respectively. Assume that the
sequences { 1

βn
}∞

n=0 and {sn}∞
n=0 are bounded, and assume that lim

n→∞
Hn(x) = H(x) for any

x ∈ B. Furthermore, let {λn}∞
n=0 be a sequence of positive real constants converging to a

positive real constant λ. Then, Mn
G−→ M if and only if lim

n→∞
RHn

Mn ,λn
(z∗) = RH

M,λ(z
∗) for all

z ∈ B∗, where RHn
Mn ,λn

= (Hn + λn Mn)−1 (n ≥ 0) and RH
M,λ = (H + λM)−1.

Proof. Suppose, first, that for all z∗ ∈ B∗, we have RHn
Mn ,λn

(z∗) → RH
M,λ(z

∗) as n → ∞.

Then, for any (x, u∗) ∈ Graph(M), we have x = RH
M,λ[H(x) + λu∗], so RHn

Mn ,λn
[H(x) +

λu∗] → x as n → ∞. Taking xn = RHn
Mn ,λn

[H(x) + λu∗] for each n ≥ 0, it follows that
H(x) + λu∗ ∈ (Hn + λn Mn)(xn). Thus, for each n ≥ 0, one can choose u∗n ∈ Mn(xn) such
that H(x) + λu∗ = Hn(xn) + λnu∗n. Then, for each n ≥ 0, we obtain

‖λnu∗n − λu∗‖ = ‖Hn(xn)− H(x)‖ ≤ ‖Hn(xn)− Hn(x)‖+ ‖Hn(x)− H(x)‖
≤ sn‖xn − x‖+ ‖Hn(x)− H(x)‖.

Taking into account that {sn}∞
n=0 is a bounded sequence and that xn → x and Hn(x)→

H(x) as n→ ∞, it follows that lim
n→∞

λnu∗n = λu∗. At the same time, for all n ≥ 0, we get

λ‖u∗n − u∗‖ = ‖λu∗n − λu∗‖ ≤ |λn − λ|‖u∗n‖+ ‖λnu∗n − λu∗‖.

Since lim
n→∞

λn = λ and lim
n→∞

λnu∗n = λu∗, we infer that the right-hand side of the

preceding inequality tends to zero as n → ∞, which ensures that lim
n→∞

u∗n = u∗. Now,

Definition 14 implies that Mn
G−→ M.

Conversely, assume that Mn
G−→ M, and let z∗ ∈ B∗ be chosen arbitrarily but fixed.

Taking into account that M is a general H-monotone mapping, we conclude that the range
of H + λM is precisely B, which implies the existence of a point (x, u∗) ∈ Graph(M) such
that z∗ = H(x) + λu∗. In light of Definition 14, there exists a sequence {(xn, u∗n)}∞

n=0 ⊂
Graph(Mn) such that xn → x and u∗n → u∗ as n → ∞. In virtue of the facts that (x, u∗) ∈
Graph(M) and (xn, u∗n) ∈ Graph(Mn), we get

x = RH
M,λ[H(x) + λu∗] and xn = RHn

Mn ,λn
[Hn(xn) + λnu∗n]. (34)
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Let us now take z∗n = Hn(xn) + λnu∗n for each n ≥ 0. By making use of Theorem 2
and (34) and with the help of the assumptions, we derive that, for all n ≥ 0,

‖RHn
Mn ,λn

(z∗)− RH
M,λ(z

∗)‖ ≤ ‖RHn
Mn ,λn

(z∗)− RHn
Mn ,λn

(z∗n)‖+ ‖RHn
Mn ,λn

(z∗n)− RH
M,λ(z

∗)‖

≤ 1
λnβn

‖z∗n − z∗‖+ ‖xn − x‖

≤ 1
λnβn

(
‖Hn(xn)− Hn(x)‖+ ‖Hn(x)− H(x)‖

+ ‖λnu∗n − λnu∗‖+ ‖λnu∗ − λu∗‖
)
+ ‖xn − x‖

≤ (1 +
sn

λnβn
)‖xn − x‖+ 1

λnβn
‖Hn(x)− H(x)‖

+
1

βn
‖u∗n − u∗‖+ |λn − λ|

λnβn
‖u∗‖.

(35)

Relying on the facts that lim
n→∞

λn = λ and the sequence { 1
βn
}∞

n=0 is bounded, it follows

that the sequence { 1
λn βn
}∞

n=0 is also bounded. Due to the fact that xn → x, u∗n → u∗, and
λn → λ as n→ ∞, we deduce that the right-hand side of (35) approaches zero as n→ ∞.
Thereby, RHn

Mn ,λn
(z∗)→ RH

M,λ(z
∗) as n→ ∞. This completes the proof.

Now, as an application of the equivalence relationship obtained in the theorem above,
we prove the strong convergence of the iterative sequence generated by Algorithm 1 to
a common element of the two sets ΩSGVI and Fix(Q), where Q = (S1, S2, . . . , Sp) is a

self-mapping of
p

∏
i=1

Bi defined by (30). For this aim, we need to give a significant lemma

that plays a key role in its proof and can be obtained from Lemma 4 in [43] as a direct
consequence.

Lemma 7. Let {$n}∞
n=0, {ξn}∞

n=0, and {kn}∞
n=0 be three real sequences of nonnegative numbers

that satisfy the following conditions:

(i) lim sup
n

kn < 1;

(ii) $n+1 ≤ kn$n + ξn, for all n ≥ 0;
(iii) lim

n→∞
ξn = 0.

Then, lim
n→∞

$n = 0.

Theorem 5. Let Ai, Bi, gi, Hi and Mi (i ∈ Γ = {1, 2, . . . , p}) be the same as in Theorem 3, and
let all of the conditions of Theorem 3 hold. Suppose that Hn,i, Mn,i, λn,i, and Si (n ≥ 0; i ∈ Γ) are
the same as in Algorithm 1 such that for each i ∈ Γ and n ≥ 0, Hn,i is an sn,i-Lipschitz continuous

mapping. Assume that Q is a self-mapping of
p

∏
i=1

Bi defined by (30) such that Fix(Q)∩ΩSGVI 6= ∅.

For each i ∈ Γ, let lim
n→∞

Hn,i(wi) = Hi(wi), Mn,i(., wi)
G−→ Mi(., wi) for any wi ∈ Bi, sn,i → si,

βn,i → βi, as n → ∞, and let Li(ϕ + 1) < 2, where ϕ is the same as in (17). Furthermore, for
each i ∈ Γ, let there exist a sequence {$n,i}∞

n=0 and a constant λi > 0 such that $n,i → $i and
λn,i → λi as n→ ∞,

‖RHn,i
Mn,i(.,xi),λn,i

(zi)− RHn,i
Mn,i(.,yi),λn,i

(zi)‖i ≤ $n,i‖xi − yi‖i, ∀xi, yi, zi ∈ Bi, (36)

and (6) is satisfied. Then, the iterative sequence {(un,1, un,2, . . . , un,p}∞
n=0 generated by Algorithm

1 converges strongly to the only element (u∗1 , u∗2 , . . . , u∗p) ∈ Fix(Q) ∩ΩSGVI.
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Proof. Since all of the conditions of Theorem 3 hold, it ensures the existence of a unique

solution (u∗1 , u∗2 , . . . , u∗p) ∈
p

∏
i=1

Bi for the SGVI (2). Then, in light of Lemma 3, we derive that

for each i ∈ Γ,

gi(u∗i ) = RHi
Mi(.,u∗i ),λi

[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)]. (37)

Taking into account that ΩSGVI is a singleton set and Fix(Q) ∩ΩSGVI, it follows that
for each i ∈ Γ, u∗i ∈ Fix(Si). Then, by making use of (37), for each n ≥ 0 and i ∈ Γ, we
can write

u∗i = αnu∗i + (1− αn)Sn
i
(
u∗i − gi(u∗i ) + RHi

Mi(.,u∗i ),λi
[Hi ◦ gi(u∗i )

− λi Ai(u∗1 , u∗2 , . . . , u∗p)]
)
,

(38)

where the sequence {αn}∞
n=0 is the same as that in Algorithm 1. In light of the assumptions

and by using Theorem 2, for each i ∈ Γ and n ≥ 0, one can prove that

‖RHn,i
Mn,i(.,u∗i ),λn,i

[Hn,i ◦ gi(un,i)− λn,i Ai(un,1, un,2, . . . , un,p)]

− RHn,i
Mn,i(.,u∗i ),λn,i

[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)]‖i

≤ 1
λn,iβn,i

‖Hn,i ◦ gi(un,i)− Hn,i ◦ gi(u∗i )‖i

+
1

βn,i
‖Ai(un,1, un,2, . . . , un,i−1, un,i, un,i+1, . . . , un,p)

− Ai(un,1, un,2, . . . , un,i−1, u∗i , un,i+1, . . . , un,p)‖i

+
1

βn,i
∑

j∈Γ,j 6=i
‖Ai(un,1, un,2, . . . , un,j−1, un,j, un,j+1, . . . , un,p)

− Ai(un,1, un,2, . . . , un,j−1, u∗j , un,j+1, . . . , un,p)‖i

+
1

λn,iβn,i

(
‖Hn,i ◦ gi(u∗i )− Hi ◦ gi(u∗i )‖i + |λn,i − λi|‖Ai(u∗1 , u∗2 , . . . , u∗p)‖i

)
.

(39)

In view of the fact that for each i ∈ Γ and n ≥ 0, gi is δi-Lipschitz continuous, Hn,i
is sn,i-Lipschitz continuous, and Ai is αi-Lipschitz continuous in the ith argument and
ςi,j-Lipschitz continuous in the jth argument (j ∈ Γ; j 6= i), it follows that for each n ≥ 0
and i ∈ Γ,

‖Hn,i ◦ gi(un,i)− Hn,i ◦ gi(u∗i )‖i ≤ sn,iδi‖un,i − u∗i ‖i, (40)

‖Ai(un,1, un,2, . . . , un,i−1, un,i, un,i+1, . . . , un,p)

− Ai(un,1, un,2, . . . , un,i−1, u∗i , un,i+1, . . . , un,p)‖i ≤ αi‖un,i − u∗i ‖i (41)

and

‖Ai(un,1, un,2, . . . , un,j−1, un,j, un,j+1, . . . , un,p)

− Ai(un,1, un,2, . . . , un,j−1, u∗j , un,j+1, . . . , un,p)‖i ≤ ςi,j‖un,j − u∗j ‖i. (42)

Combining (39)–(42), we conclude that for each i ∈ Γ and n ≥ 0,

‖RHn,i
Mn,i(.,u∗i ),λn,i

[Hn,i ◦ gi(un,i)− λn,i Ai(un,1, un,2, . . . , un,p)]

− RHn,i
Mn,i(.,u∗i ),λn,i

[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)]‖i

≤ sn,iδi

λn,iβn,i
‖un,i − u∗i ‖i +

αi
βn,i
‖un,i − u∗i ‖i +

1
βn,i

∑
j∈Γ,j 6=i

ςi,j‖un,j − u∗j ‖j

+
1

λn,iβn,i

(
‖Hn,i ◦ gi(u∗i )− Hi ◦ gi(u∗i )‖i + |λn,i − λi|‖Ai(u∗1 , u∗2 , . . . , u∗p)‖i

)
.

(43)
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Since for each i ∈ Γ, gi is a ki-strongly accretive and δi-Lipschitz continuous mapping
and Bi is a uniformly smooth Banach space with ρBi (t) ≤ Cit2 for some Ci > 0, it is not
hard to see that, for each i ∈ Γ and n ≥ 0,

‖un,i − u∗i − (gi(un,i)− gi(u∗i ))‖i ≤
√

1− 2ki + 64Ciδ
2
i ‖un,i − u∗i ‖i. (44)

Due to the assumptions and by making use of (33), (36), (38), (43), and (44), for each
n ≥ 0 and i ∈ Γ, one can deduce that

‖un+1,i − u∗i ‖i ≤ αn‖un,i − u∗i ‖i + (1− αn)‖Sn
i (un,i − gi(un,i)

+ RHn,i
Mn,i(.,un,i),λn,i

[Hn,i ◦ gi(un,i)− λn,i Ai(un,1, un,2, . . . , un,p)]
)

− Sn
i
(
u∗i − gi(u∗i ) + RHi

Mi(.,u∗i ),λi
[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)]

)
‖i

≤ αn‖un,i − u∗i ‖i + (1− αn)Li

(
σn,i‖un,i − u∗i ‖i

+
1

βn,i
∑

j∈Γ,j 6=i
ςi,j‖un,j − u∗j ‖j + µn,i + an,iφi

(
σn,i‖un,i − u∗i ‖i

+
1

βn,i
∑

j∈Γ,j 6=i
ςi,j‖un,j − u∗j ‖j + µn,i

)
+ bn,i

)
,

(45)

where, for each n ≥ 0 and i ∈ Γ,

σn,i = $n,i +
√

1− 2ki + 64Ciδ
2
i +

sn,iδi + λn,iαi

λn,iβn,i
,

∆n,i = RHn,i
Mn,i(.,u∗i ),λn,i

[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)]

− RHi
Mi(.,u∗i ),λi

[Hi ◦ gi(u∗i )− λi Ai(u∗1 , u∗2 , . . . , u∗p)],

µn,i =
1

λn,iβn,i

(
‖Hn,i ◦ gi(u∗i )− Hi ◦ gi(u∗i )‖i

+ |λn,i − λi|‖Ai(u∗1 , , u∗2 , . . . , u∗p)‖i
)
+ ‖∆n,i‖i.

Let us assume that L = max{Li : i = 1, 2, . . . , p}. Then, by making use of (45), it
follows that for all n ≥ 0,

‖(un+1,1, un+1,2, . . . , un+1,p)− (u∗1 , u∗2 , . . . , u∗p)‖∗ =
p

∑
i=1
‖un+1,i − u∗i ‖i

≤ αn

p

∑
i=1
‖un,i − u∗i ‖i + (1− αn)L

(
(σn,1 +

p

∑
q=2

ςq,1

βn,q
)‖un,1 − u∗1‖1

+ (σn,2 + ∑
q∈Γ,q 6=2

ςq,2

βn,q
)‖un,2 − u∗2‖2 + · · ·+ (σn,p +

p−1

∑
q=1

ςq,p

βn,q
)‖un,p − u∗p‖p

+
p

∑
i=1

µn,i +
p

∑
i=1

an,iφi
(
σn,i‖un,i − u∗i ‖i

+
1

βn,i
∑

j∈Γ,j 6=i
ςi,j‖un,j − u∗j ‖j + µn,i

)
+

p

∑
i=1

bn,i

)

(46)
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≤ αn

p

∑
i=1
‖un,i − u∗i ‖i + (1− αn)L

(
ϕ(n)

p

∑
i=1
‖un,i − u∗i ‖i +

p

∑
i=1

µn,i

+
p

∑
i=1

an,iφ
(
σn,i‖un,i − u∗i ‖i +

1
βn,i

∑
j∈Γ,j 6=i

ςi,j‖un,j − u∗j ‖j + µn,i
)
+

p

∑
i=1

bn,i

)
,

where φ is a self-mapping of R+ defined by (31), and for each n ≥ 0,

ϕ(n) = max
{

σn,i + ∑
q∈Γ,q 6=i

ςq,i

βn,q
: i = 1, 2, . . . , p

}
.

By virtue of the fact that for each i ∈ Γ, $n,i → $i, sn,i → si, λn,i → λi, and βn,i → βi

as n → ∞, we deduce that ϕ(n) → ϕ as n → ∞. Then, for ϕ̂ = ϕ+1
2 ∈ (ϕ, 1), there exists

n0 ≥ 1 such that ϕ(n) < ϕ̂ for all n ≥ n0. Thus, from (46), it follows that for all n ≥ n0,

‖(un+1,1, un+1,2, . . . , un+1,p)− (u∗1 , u∗2 , . . . , u∗p)‖∗

≤ αn

p

∑
i=1
‖un,i − u∗i ‖i + (1− αn)L

(
ϕ̂

p

∑
i=1
‖un,i − u∗i ‖i

+
p

∑
i=1

µn,i +
p

∑
i=1

an,iφ
(
σn,i‖un,i − u∗i ‖i

+
1

βn,i
∑

j∈Γ,j 6=i
ςi,j‖un,j − u∗j ‖j + µn,i

)
+

p

∑
i=1

bn,i

)
=
(

Lϕ̂ + (1− Lϕ̂)αn
)
‖(un,1, un,2, . . . , un,p)− (u∗1 , u∗2 , . . . , u∗p)‖∗

+ (1− αn)L
( p

∑
i=1

(µn,i + bn,i) +
p

∑
i=1

an,iφ(σn,i‖un,i − u∗i ‖i

+
1

βn,i
∑

j∈Γ,j 6=i
ςi,j‖un,j − u∗j ‖j + µn,i

))
.

(47)

Letting kn = Lϕ̂+(1− Lϕ̂)αn for each n ≥ 0 and taking into account that L(ϕ+ 1) < 2
and lim sup

n
αn < 1, we deduce that

lim sup
n

kn = lim sup
n

(
Lϕ̂ + (1− Lϕ̂)αn

)
= Lϕ̂ + (1− Lϕ̂) lim sup

n
αn

< 1.

Relying on the fact that for each i ∈ Γ and wi ∈ Bi, Mn,i(., wi)
G−→ Mi(., wi), from The-

orem 4, it follows that for each i ∈ Γ, ‖∆n,i‖i → 0 as n → ∞. Meanwhile, the fact that
for each i ∈ Γ, λn,i → λi and Hn,i(wi) → Hi(wi) for any wi ∈ Bi as n → ∞ implies that
for each i ∈ Γ, µn,i → 0 as n → ∞. Considering the fact that for each i ∈ Γ, Si is an(
{an,i}∞

n=0, {bn,i}∞
n=0, φi

)
-total uniformly Li-Lipschitzian mapping, in light of Definition

13(ix), for each i ∈ Γ, we have an,i, bn,i → 0 as n→ ∞. Due to these arguments and the fact
that lim sup

n
kn < 1, assuming that $n = ‖(un,1, un,2, . . . , un,p)− (u∗1 , u∗2 , . . . , u∗p)‖∗ and ξn =

(1− αn)L
( p

∑
i=1

(µn,i + bn,i) +
p
∑

i=1
an,iφ(σn,i‖un,i − u∗i ‖i +

1
βn,i

∑
j∈Γ,j 6=i

ςi,j‖un,j− u∗j ‖j + µn,i)
)

for

each n ≥ 0, we infer that lim
n→∞

ξn = 0 and, thereby, all conditions of Lemma 7 are satisfied.

By utilizing (47) and Lemma 7, we conclude that $n → 0 as n→ ∞, i.e.,

(un,1, un,2, . . . , un,p)→ (u∗1 , u∗2 , . . . , u∗p), as n→ ∞.
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Hence, the sequence {(un,1, un,2, . . . , un,p)}∞
n=0 generated by Algorithm 1 converges strongly

to the unique solution of the SGVI (2), that is, the only element of ∈ Fix(Q) ∩ ΩSGVI.
The proof is finished.

As a direct consequence of the theorem above, we have the following corollary.

Corollary 3. Let A, B, g, H, and M be the same as in Corollary 2, and let all of the conditions of
Corollary 2 hold. Suppose, further, that there exists a constant λ > 0 such that (18) holds. Then,
the iterative sequence {un}∞

n=0 generated by Algorithm 2 converges strongly to the unique solution
of the VIP (3).

Remark 3. By comparing Corollary 3 and ([13] and Theorem 3.4), it is significant to mention that
Corollary 3 improves upon Theorem 3.4 in [13]. In fact, in ([13], Theorem 3.4), if we replace the
strict monotonicity condition of H : B → B∗ with a milder condition of monotonicity, then the
strong convergence of the sequence {un}∞

n=0 generated by the iterative algorithm proposed in [13]
can be obtained as it was derived and and as it appears in Corollary 3.
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