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Abstract: The Heston–Hull–White three-dimensional time-dependent partial differential equation
(PDE) is one of the important models in mathematical finance, at which not only the volatility is
modeled based on a stochastic process but also the rate of interest is assumed to follow a stochastic
dynamic. Hence, an efficient method is derived in this paper based on the methodology of the
localized radial basis function generated finite difference (RBF-FD) scheme. The proposed solver
uses the RBF-FD approximations on graded meshes along all three spatial variables and a high order
time-stepping scheme. Stability is also studied in detail to show under what conditions the proposed
method is stable. Computational simulations are given to support the theoretical discussions.
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1. Introduction

It is well-known that under the risk-neutral measure for pricing, the classic model of
Heston [1] as a set of stochastic differential equations (SDEs) can show the stock option
value by considering that the volatility is no longer constant. In fact, it follows the dynamic
below with the state vector X(t) = (S(t), V(t))∗:

dV(t) =γ
√

V(t)dW2(t) + κ(η −V(t))dt, V(t) > 0, (1)

dS(t) =
√

V(t)S(t)dW1(t) + rS(t)dt, S(t) > 0,

wherein the variance and the stock processes are V(t), S(t), the volatility of volatility is
γ > 0, the riskless fixed interest rate is r > 0 and dW1(t)dW2(t) = ρdt. Here κ > 0
determines the adjustment’s speed of the volatility to the mean η > 0 andW1(t),W2(t)
are two kinds of Brownian motion. In order to V(t) > 0, the condition of Feller should be
satisfied as 2κη > γ2.

The model (1), which is also known as a generalization of the model of Black–
Scholes [2], could be extended further if the interest rate follows a special dynamic as
well. There are two well-known models in the literature that take both the interest rate
and the volatility to be as stochastic processes: that is, the Heston–Cox–Ingersoll–Ross
(HCIR) [3] and the Heston–Hull–White (HHW) models [4]. For more information, see [5,6].
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The model of HHW with the correlation parameters ρ12, ρ13, ρ23 ∈ [−1, 1] could be
given in what follows [4]:

dR(t) =a(b(t)− R(t))dt + σ2dW3(t),

dV(t) =κ(η −V(t))dt + σ1

√
V(t)dW2(t), (2)

dS(t) =R(t)S(t)dt +
√

V(t)S(t)dW1(t),

where R(t) represents the process of the rate of interest at time T ≥ t > 0. In (2), the positive
function b is given, andW3(t) is a new kind of Brownian motion. Here, the parameters
κ, η, σ1, σ2, a are real positive constants.

It is necessary to explain the usefulness of the pricing model using the Heston model
combined with the Hull–White model for the market and investors. In fact, as long as
the interest rate follows a stochastic dynamic, then pricing would result in more accurate
simulation results in equity markets at which the interest rates are no longer constant [7,8].
For further related discussions, one may refer to [8] and the references cited therein.

By employing the dynamics in (2), the value of a European option could be obtained
in the form of the following PDE [9]:

∂U(s, v, r, t)
∂t

=
1
2

s2v
∂2U(s, v, r, t)

∂s2 +
1
2

σ2
1 v

∂2U(s, v, r, t)
∂v2 +

1
2

σ2
2

∂2U(s, v, r, t)
∂r2

+ ρ12σ1sv
∂2U(s, v, r, t)

∂s∂v
+ ρ13σ2s

√
v

∂2U(s, v, r, t)
∂s∂r

+ ρ23σ1σ2
√

v
∂2U(s, v, r, t)

∂v∂r

+ rs
∂U(s, v, r, t)

∂s
+ κ(η − v)

∂U(s, v, r, t)
∂v

+ a(b(T − t)− r)
∂U(s, v, r, t)

∂r
− rU(s, v, r, t),

(3)

where s, v, and r are the asset price, instantaneous variance, and the rate of interest, respec-
tively. The initial condition, which is known as the payoff function for the call case, could
be written as follows:

U(s, v, r, 0) = (0, s− K)+, (4)

wherein K is the price of strike.
The conditions of the boundary along the spatial variables s, v, r can be written as [10]

Us(s, v, r, t) = 1, s = smax, (5)

U(s, v, r, t) = 0, s = 0, (6)

U(s, v, r, t) = s, v = vmax, (7)

Ur(s, v, r, t) = 0, r = −rmax, (8)

Ur(s, v, r, t) = 0, r = rmax. (9)

Note that for the case when v = 0, the PDE (3) is degenerate, and no boundaries must
be imposed [11].

It is worthwhile to note that to achieve calibration targets in the market, option pricing
is an important tool. To price derivative securities, different types of significant models
are taken into account and investigated, leading to a set of numerical solvers. The HHW
PDE (3) for the general case does not have a closed-form solution, which turns our attention
to efficient numerical methods automatically.

A pioneering numerical method for pricing options is the finite difference (FD)
method [12], which is mainly based on employing uniform discretization nodes, laying a
uniform grid on the independent variables of the PDE problem and then transforming the
continuous problem into a set of discrete ones.
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Another well-performing approach that inherits both from the FD and the radial basis
function (RBF) schemes is the local RBF-FD scheme [13–15]. For further reading, one may
refer to [16–18].

Here, the major target is to present a new numerical solver for the simulation of (3)
based on the RBF-FD methodology, which results in block sparse matrices. This is mainly
because (3) is a 3D problem with variable coefficients at which there are three mixed
derivatives. Thus, the numerical methods must be designed for this purpose carefully.
The RBF-FD formulations are written so as to be applied on graded meshes in which there
is a clear concentration on the hot area.

The rest of this article is structured as follows. First, in Section 2, we review some of
the efficient ways of producing graded meshes along the spatial variables to focus more
on the hot area of the 3D PDE problem (3) [19]. Then, in Section 3, the RBF-FD weighting
coefficients for a new RBF are constructed and proven to converge on graded meshes. The
estimations can be considered and simplified on uniform meshes as well. Section 4 proposes
our RBF-FD solver with attention on the financially important area, in which the initial
condition of the PDE problem has non-smoothness. The stability of the solver is given in
detail in Section 5 to show how and under what conditions the proposed solver is stable for
solving (3). Then, Section 6 presents a discussion of the usefulness and applicability of the
proposed formulas. Some numerical tests are furnished along with numerical simulations.
Ultimately, a conclusion of the work is given in Section 7.

2. Mesh Generation

The HHW 3D model is defined on (s, v, r, t) ∈ [0,+∞)× [0,+∞) ×(−∞,+∞) ×(0, T].
The merit of the HHW model is that it can take negative rates of interest, unlike the HCIR
model at which the interest rate must always be positive [20].

It is now obvious that to price under the HHW model, we first need to localize the
domain as follows:

(s, v, r, t) ∈ [0, smax]× [0, vmax]× [−rmax, rmax]× (0, T], (10)

where smax, vmax, rmax are real positive constants.
It is not that clear what to choose exactly for the smax, vmax, and rmax in order to get

the optimal numerical domain. However, to impose the boundary conditions as well as
to reduce the error caused by truncating the domain, it would be better to choose them
as far as possible and employ graded meshes at which the focus is on the important area
of the problem. Here, the financially important area of the problem (3) is the region at
which the underlying asset price tends to the price of the strike, the spontaneous variance
tends to zero, and the interest rate tends to a special small value such as the fixed risk-free
interest rate.

To proceed, we assume that {si}m
i=1 is a partition for s ∈ [smin, smax]. Now, a well-

performing and popular graded mesh could be defined as follows [21] (i = 1, 2, . . . , m):

si = Ψ(vi), (11)

wherein m� 3 and
vmax = vm > · · · > v2 > v1 = vmin, (12)

are m uniform points, while we also have

vmin = sinh−1
(

smin − sleft
d1

)
,

vint =
sright − sleft

d1
, (13)

vmax = vint + sinh−1
( smax − sright

d1

)
.
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We also take into account that smin = 0 and smax = 14K. The parameter d1 > 0 controls
the node density around s = K. Additionally, we define

Ψ(v) =


sleft + d1 sinh(v), vmin ≤ v < 0,
sleft + d1v, 0 ≤ v ≤ vint,
sright + d1 sinh(v−vint), vint < v ≤ vmax.

(14)

where d1 = K
20 is a proper choice in (13), while sleft = max{0.5, e−0.0025T} × K, sright = K,

and [sleft, sright] ⊂ [0, smax].
Now, the discretized points along v, i.e., {vj}n

j=1 are given as

vj = sinh(ς j)d2, j = 1, 2, . . . , n, (15)

where d2 > 0 provides a density around v = 0. In this paper, we employed d2 = vmax
500 ,

where vmax = 10. Additionally for 1 ≤ j ≤ n, ς j stand for uniform nodes furnished
as follows:

∆ς = (n− 1)−1 sinh−1
(

vmax

d2

)
, ς j = (j− 1)∆ς. (16)

Finally, the graded points alongside r are given by

rk = d3 sinh(ζk), 1 ≤ k ≤ o, (17)

where rmax = 1 and d3 = rmax
500 is a positive number. It is considered ζk = (∆ζ)(k − 1),

∆ζ = 1
o−1 sinh−1

(
rmax

d3

)
. Note that the variables i, j, k are local counter variables throughout

the paper.

3. Constructing the RBF-FD Weights

Now, the famous inverse quadratic (IQ) RBF is considered as follows ([22], [Chapter 4])
(i = 1, 2, . . . , ψ):

$(ri) =
1

c2 + r2
i

, (18)

where s is the parameter of shape and ri = ‖s− si‖ stands for the Euclidean distance.

Remark 1. The motivation behind choosing this RBF is based on the recent work [23] that states
that the IQ-based RBF-FD weights could be constructed theoretically more easily than multiquadrics
(MQs) RBFs, which are available in the literature [24]. Besides this, another motivation stems from
the fact that the IQ is an infinitely smooth RBF; under mild conditions [25], its one-dimensional
function interpolants that are analytic inside a strip exponentially converge.

To find weights of the RBF-FD methodology on a graded mesh having three points, by
considering L as a linear operator of approximation in the RBF-FD methodology, one can
start with [26]

L[$(sj)] '
ψ

∑
i=1

Υi$(si), j = 1, 2, . . . , ψ. (19)

This leads to ψ unknowns for ψ equations while the solutions are Υi. Note that L is
not a differential operator and is sometimes used for the discretization of the PDE problem.
To illustrate further, in this section, by (19), we only focus on approximating the (1D)
function derivatives. So, a derivative of the function is approximated by a combination of
(three) adjacent nodes while the weights are unknown.

Hence, for ψ = 3, we obtain

{si − h, si, si + wh}, w > 0, h > 0, (20)
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and write (19) as

f ′(si) ' Υi−1 f (si−1) + Υi f (si) + Υi+1 f (si+1) = f̂ ′(si), (21)

wherein f̂ and f are the approximate and exact values, respectively.

Remark 2. Recalling that the error equation at the point si can be defined by

ε(si) = f̂ ′(si)− f ′(si).

The reason for mentioning the error is to say how accurate the RBF-FD estimations arising
from (19) are when we approximate different function derivatives by considering only three adjacent
non-uniform points.

Theorem 1. When estimating the first derivative of the function f , the equation of error by the IQ
RBF-FD procedure (21) is obtained as follows:

ε(si) = w
(

2 f ′(si)

c2 +
1
6

f (3)(si)

)
h2 +O

(
h3
)

, (22)

where

Υi−1 =
ω
(

2h2(8ω−13)
c2 − 5

)
5h(ω + 1)

, (23)

Υi =
ω− 1

hω
− 16h(ω− 1)

5c2 , (24)

Υi+1 =

2h2(13ω−8)
c2 + 5

ω

5h(ω + 1)
. (25)

Proof. The proof is similar to [24], and hence it is omitted.

To compute the weights of the function’s second derivative, we write for ψ = 3:

f ′′(si) ' Θi−1 f (si−1) + Θi f (si) + Θi+1 f (si+1) = f̂ ′′(si). (26)

Hence, we can state the following theorem.

Theorem 2. When estimating the second derivative of the function f , the equation of error by the
IQ RBF-FD procedure (26) is obtained via

ε̂(si) =
1
3
(w− 1)

(
12 f ′(si)

c2 + f (3)(si)

)
h +O

(
h2
)

, (27)

where ε̂(si) = f̂ ′′(si)− f ′′(si) and

Θi−1 =
2
(

4ω(4ω−7)+26
c2 + 5

h2

)
5(ω + 1)

, (28)

Θi =
2
(
− 2(ω(8ω−9)+8)

c2 − 5
h2

)
5ω

, (29)

Θi+1 =
10c2 + 4h2(ω(13ω− 14) + 8)

5c2h2ω(ω + 1)
. (30)

Proof. The proof is similar to [24], and hence it is omitted.
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An effective procedure could be here used for the selection of the shape parameter in
numerical implementations, as comes next:

c = 5 max{∆si}, 1 ≤ i ≤ m− 1, (31)

where ∆si are the increments along the variable mesh. The motivation behind choosing
the shape parameter as (31) is that we must select c to be larger than h, i.e., c � h, and
also an adaptive c that changes based on the number of discretization points will affect
positively more on the numerical results than a constant shape parameter. On the other
hand, after using a trial and error approach, we found that a larger value as the coefficient,
i.e., 5, in (31), will tend the RBF-FD methodology towards the FD approach, and a smaller
value will cause some instability issues. Thus, coefficient 5 can help us to get efficient
numerical results.

Now, an introduction on how RBF-FD works is necessary to discuss the different
stages of the methodology. Some remarks are in order:

• In fact, the weights we obtained by now are used in an initial step by considering
three points of the stencil. Each time, three interior points of the stencil are considered
(in a loop), and the weights are computed.

• These values along with the weights corresponding to the first and last nodes are
grouped together in a matrix, which we call the differentiation matrix in the next
section.

• Note that after computing the matrices, the final matrix will not be changed during
the time stepping process, as we discuss in the next section as well.

• The computed weights change only when the three adjacent nodes of the stencil or
their spacings (h or w) change.

4. Numerical Method

To construct our RBF-FD solver, first, the method of lines (MOL) is employed [27,28],
in which all the spatial variables are discretized to attain a system of linear ordinary
differential equations (ODEs). Hence, let us define two differentiation matrices having the
weights for the RBF-FD procedures on graded meshes described of Section 2 as follows:

Ms =


Υi,j using (23) i− j = 1,
Υi,j using (24) i− j = 0,
Υi,j using (25) j− i = 1,
0 otherwise,

(32)

and

Mss =


Θi,j using (28) i− j = 1,
Θi,j using (29) i− j = 0,
Θi,j using (30) j− i = 1,
0 otherwise.

(33)

We here discuss the procedure along s, while the procedure along other variables
would be similar. For the discretization nodes located on the boundaries, we point these
out as follows. The formulations (23)–(25) and (28)–(29) would be fruitful for rows two to
the row before the last one. Accordingly, for the nodes located on the sides, we may use
sided FD approximations as follows:

f ′(s1) = f [s1, s2] + f [s1, s3]− f [s3, s2] +O
(
(s1 − s2)

2
)

, (34)

and

f ′(sm) = − f [sm−1, sm−2] + f [sm−2, sm] + f [sm−1, sm] +O
(
(sm − sm−1)

2
)

, (35)
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wherein f [l, p] = ( f (l)− f (p))/(l − p).
Similarly, for the four nodes {{s1, f (s1)}, {s2, f (s2)}, {s3, f (s3)}, {s4, f (s4)}}, we can

obtain (see e.g., [29])

f ′′(s1) =
2(δs1,2 + δs1,3 + δs1,4)

δs1,2δs1,3δs1,4
f (s1) +

2(δs3,1 + δs4,1)

δs1,2δs2,3δs2,4
f (s2)

+
2(δs2,1 + δs4,1)

δs1,3δs3,2δs3,4
f (s3) +

2(δs2,1 + δs3,1)

δs1,4δs4,2δs4,3
f (s4) +O

(
h2
)

,
(36)

where δsl,q = sl − sq, and h stands for the maximum space width along the considered
nodes of the stencil.

Recall that using a similar spirit of logic for the point sm, we could calculate the
second-order approximate formulation and its corresponding weights as follows:

f ′′(sm) =
2(δsm−3,m + δsm−2,m + δsm−1,m)

δsm−3,mδsm,m−2δsm,m−1
f (sm) +

2(δsm−3,m + δsm−2,m)

δsm−3,m−1δsm−1,m−2δsm−1,m
f (sm−1)

+
2(δsm−3,m + δsm−1,m)

δsm−3,m−2δsm−2,m−1δsm−2,m
f (sm−2) +

2(δsm−2,m + δsm−1,m)

δsm−2,m−3δsm−1,m−3δsm,m−3
f (sm−3)

+O
(

h2
)

.

(37)

Note here that for the sake of simplicity and since the function b(T − t) does not have
any fluctuations in practical consideration, we may expand it up to zeroth order in order
to estimate it by a scalar, i.e., b(T − t) ' β. The motivation behind this is to get rid of of
a time-variable coefficient function and thus a time-varying matrix. To illustrate further,
by this consideration, we simplify the numerical solver as much as possible.

Now, let ⊗ denote the Kronecker product, and the N × N identity matrix I = Is ⊗
Iv ⊗ Ir, is given where N = m× n× o, Is is the m×m identity matrix for s, and for Iv and
Ir similarly. Thus, now we can encapsulate the whole numerical procedure for the 3D case
as follows:

A =
1
2
S2V(Mss ⊗ Iv ⊗ Ir) +

1
2

σ2
1V(Is ⊗Mvv ⊗ Ir)

+
1
2

σ2
2 (Is ⊗ Iv ⊗Mrr) + ρ12σ1SV(Ms ⊗Mv ⊗ Ir)

+ ρ13σ2S(V)
1
2 (Ms ⊗ Iv ⊗Mr) + ρ23σ1σ2(V)

1
2 (Is ⊗Mv ⊗Mr)

+RS(Ms ⊗ Iv ⊗ Ir) + κ(η I − V)(Is ⊗Mv ⊗ Ir)

+ a(βI −R)(Is ⊗ Iv ⊗Mr)− rI.

(38)

The square matrices Ms, Mv, Mr, Mss, Mvv, and Mrr are derived via the correspond-
ing weights similarly. In addition, the diagonally sparse matrices R, V and S can be
expressed as

R = Is ⊗ Iv ⊗ diag(r1, r2, · · · , ro), (39)

V = Is ⊗ diag(v1, v2, · · · , vn)⊗ Ir, (40)

S = diag(s1, s2, · · · , sm)⊗ Iv ⊗ Ir. (41)

Taking all the weights into matrices, it would be possible to transfigure the PDE into a
system of ODEs to price (3) as follows:

u′(t) = Au(t), (42)

wherein the vector of unknowns is u(t) = (u1,1,1(t), u1,1,2(t), . . . , um,n,o−1(t), um,n,o(t))∗︸ ︷︷ ︸
N entries

.
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After considering the boundary conditions (5), a system of ODEs can be attained as
follows:

u′(t) = Āu(t) = G(t, u(t)), (43)

where Ā is the system matrix consisting of the boundary conditions. This means that the
boundary conditions given in (5) must be imposed to appropriate rows of A. This can be
done by writing (5) in time differentiation form, and thus we obtain a new matrix Ā.

5. Stability

Now, select k + 1 uniform temporal points, a time step size ξ = T
k > 0, tι+1 = ξ + tι,

0 ≤ ι ≤ k and u0 = u(0). Take into consideration that uι is an estimate to u(tι); then, one
may derive our final time-integrator method. The explicit Runge–Kutta (RK) solver with
four stages [30] is given by [31] (pages 165–169)

uι+1 = uι +
ξ

6
(B1 + 2B2 + 2B3 + B4), (44)

and

B1 = G(tι, uι), (45)

B2 = G
(

tι +
ξ

2
, uι +

ξ

2
B1

)
, (46)

B3 = G
(

tι +
ξ

2
, uι +

ξ

2
B2

)
, (47)

B4 = G(tι + ξ, uι + ξB3). (48)

Such a higher order method over time is used to solve (43), since an explicit method
that is easy to implement with an order higher than the spatial local truncation error
will help us to construct an efficient fast solver for the HHW PDE. Using lower order
time-marching methods will result in smaller stability regions, and on the other hand,
using higher order time-marching solvers may not be necessary since they need a higher
computational load per step and increase the CPU times.

Theorem 3. Let us assume that (43) satisfies the Lipschitz condition; then, we have a conditional
time-stable iteration process using (44) to solve (43).

Proof. Here, the Lipschitz condition gives (43) existence and provides the uniqueness of
the solution. Besides, we remind the reader that numerical time-stepping methods are
A-stable as long as there are no stability restrictions for the following linear ODE problem:

u′ = λu, Re(λ) < 0. (49)

Imposing the solver (44) on the system of ODEs (43) gives the following relation:

uι+1 =

(
I + ξ Ā +

(ξ Ā)2

2!
+

(ξ Ā)3

3!
+

(ξ Ā)4

4!

)
uι. (50)

Accordingly, the A-stability would be written as∣∣∣∣1 + ξλi +
(ξλi)

2

2
+

(ξλi)
3

6
+

(ξλi)
4

24

∣∣∣∣ ≤ 1, (51)

which is due to (50) for any λi as the eigenvalue of Ā. The stability condition can now be
given by ∣∣∣∣1 + ξλmax +

(ξλmax)2

2
+

(ξλmax)3

6
+

(ξλmax)4

24

∣∣∣∣ ≤ 1. (52)
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Considering x = ξλmax, the inequality (52) gives rise to a nonlinear scalar equation as
follows:

x3 + 4x2 + 12x + 24 = 0, (53)

which leads to the following roots {−2.78529,−0.607353− 2.8719i,−0.607353 + 2.8719i}.
Equivalently, we can find the following condition on the step size ξ using (44) when
solving (43):

ξ ≤
∣∣∣∣ 2.935419
Re(λmax)

∣∣∣∣. (54)

This inequality on the eigenvalues of Ā will determine a conditional time stability
bound for the proposed solver when pricing (3). The proof is ended.

Since the HHW PDE (3) is a linear equation, and thus as far as it is stable under (54)
and is consistent, its convergence can be proved. Accordingly, its convergence can be
obtained as long as the numerical method is consistent. This can be pursued when the
(maximum) step sizes along space and time tend to zero. This shows the consistency of the
RBF-FD formulas.

6. Simulation Results

The target of this section is to compare the efficacy of various solvers in order to
solve (3) on the same numerical domain when v0 = 0.04, r0 = 10%, T = 1 year and
K = 100$. The methods are summarized as follows:

• The solver proposed in [21] on graded meshes is shown by HM, which stands for
Haentjens’s method. The motivation behind choosing HM is that it is one of the most
fundamental and efficient methods for solving (3),

• The second-order FD method with uniform node distribution along space and the
explicit first-order Euler’s method shown by FD, see e.g., [10],

• The proposed method described in Sections 3–5 denoted by RBF-FDM based on graded
meshes of Section 2.

In fact, RBF-FD is a general name for the procedure, but when the specific IQ RBF
is used along with the time-stepping solver (44), then we call it RBF-FDM. The reason
for choosing the explicit first-order Euler’s method for the HM and FD is because this
time-stepping method has been used for these solvers in [21]. All the compared solvers are
written in Mathematica 12.0 [32].

Here, the CPU time is reported in seconds. Besides this, the absolute error is com-
puted by

ε =

∣∣∣∣uref − unum

uref

∣∣∣∣, (55)

wherein uref and unum are the referenced and numerical solutions, respectively. uref is
selected from the already published literature [10].

Noting that the function b is normally defined as follows:

b(τ) = c1 − c2 exp (−c3τ) ' β, τ ≥ 0, (56)

where c1, c2, c3 are constants, and τ = T− t. Note that c2 and c3 are not zero. The following
tests are discussed in this section.

Example 1 ([10]). In this test, the following sets of parameters are considered: κ = 3.0, η = 0.12,
a = 0.20, σ1 = 0.80, σ2 = 0.03, ρ12 = 0.6, ρ13 = 0.2, ρ23 = 0.4, c1 = 0.05, c2 = 0, c3 = 0,
where the reference value is uref(K, v0, r0, T) ' 16.176.

Example 2 ([10]). A different set of parameters is considered in this test to compare the results
of different solvers: κ = 0.5, η = 0.8, a = 0.16, σ1 = 0.90, σ2 = 0.03, ρ12 = −0.5, ρ13 = 0.2,
ρ23 = 0.1, c1 = 0.055, c2 = 0, c3 = 0, where the reference value is uref(K, v0, r0, T) ' 20.994.
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Since the numerical domain along the variable s is longer than the other two variables,
it is convenient to consider a greater number of discretization points even based on graded
meshes along the underlying asset price. Clearly, the choice of the temporal step size
mostly depends on the choice of the time integrator and its stability region. For HM and
FD, the radius is of course lower than the time integrator for the proposed solver, which is
a fourth-order method with the stability condition (54).

The numerical pieces of evidence are put together in Tables 1 and 2. Both indicate
that by increasing the number of discretization points, the accuracy is improved for all
solvers, but the graded meshes for the proposed solver along its efficient structure help us
to obtain higher accuracies as quickly as possible. The time to compute the weights of the
RBF-FD methodology are included here. Actually, the times reported here stand for the
whole computational time from the very beginning of considering the input values until
the final interpolations and printing the result.

For the case of m = 24, n = 14, and o = 14 in Example 1, the numerical solution has
been plotted in Figure 1 as well. It shows that the numerical solution for the considered
cut is positive without oscillations. Similarly, in Figure 2 for the Example 2, two cuts of the
numerical solution are provided to re-support this.

An inquiry may arise regarding why we did not choose the same number of spatial
steps and time-steps for the different methods in Tables 1 and 2. The answers lie in the
fact that we use a greater number of nodes along s and then v, since their computational
domains are bigger, i.e., the bigger the domain, the greater the number of nodes used. In
addition, of course, smaller temporal step-sizes are used for the FD and the HM, since their
time-stepping solver has a smaller stability region. The methods can simply be compared
by considering their elapsed CPU times (roughly) and checking the absolute errors.

Table 1. Results of numerical simulations in Example 1.

Solver m n o N ξ unum ε Time

FD

10 8 6 480 0.002 25.492 5.7 ×10−1 0.47
14 10 10 1400 0.001 11.098 3.1 ×10−1 0.79
18 12 12 2592 0.0005 17.203 6.3 ×10−2 1.31
24 14 14 4704 0.00025 18.731 1.5 ×10−1 3.67
28 16 16 7168 0.0002 13.329 1.7 ×10−1 7.26
45 22 22 21,780 0.00005 14.636 9.4 ×10−2 72.65

HM

10 8 6 480 0.001 14.472 1.0 ×10−1 0.56
14 10 10 1400 0.0005 15.300 5.3 ×10−2 1.03
18 12 12 2592 0.00025 15.615 3.4 ×10−2 2.76
24 14 14 4704 0.0001 15.806 2.2 ×10−2 9.64
28 16 16 7168 0.0001 15.871 1.8 ×10−2 12.69
50 22 22 24,200 0.000025 16.006 5.9 ×10−3 188.58

RBF-FDM

10 8 6 480 0.004 15.237 5.8 ×10−2 0.75
14 10 10 1400 0.0025 16.002 1.0 ×10−2 1.31
18 12 12 2592 0.002 16.029 9.0 ×10−3 3.26
24 14 14 4704 0.0005 16.292 7.1 ×10−3 7.49
28 16 16 7168 0.0004 16.246 4.3 ×10−3 11.29
50 22 22 24,200 0.0002 16.191 9.2 ×10−4 123.47
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Table 2. Results of numerical simulations in Example 2.

Solver m n o N ξ unum ε Time

20 10 10 2000 0.00025 22.022 4.9× 10−2 1.89
24 12 12 3456 0.0002 21.436 2.1× 10−2 4.12
26 14 14 5096 0.0001 19.678 6.1× 10−2 9.69
28 16 16 7168 0.0001 17.376 1.7× 10−1 12.59
30 18 18 9720 0.00005 17.404 1.7× 10−1 37.65
36 20 20 14,400 0.000025 20.510 2.2× 10−2 109.47
38 22 22 18,392 0.000025 20.275 3.3× 10−2 164.28
42 22 22 20,328 0.00002 18.370 1.2× 10−1 231.74

HM

20 10 10 2000 0.00025 20.631 1.6× 10−2 2.14
24 12 12 3456 0.0002 20.709 1.2× 10−2 4.31
26 14 14 5096 0.0001 20.729 1.1× 10−2 9.17
28 16 16 7168 0.0001 20.748 1.0× 10−2 13.65
30 18 18 9720 0.00005 20.767 9.9× 10−3 38.12
36 20 20 14,400 0.000025 20.810 7.8× 10−3 110.92
38 22 22 18,392 0.000025 20.818 7.5× 10−3 170.31
42 22 22 20,328 0.00002 20.833 6.7× 10−3 253.64

RBF-FDM

20 10 10 2000 0.004 20.859, 6.4× 10−3 2.54
24 12 12 3456 0.002 20.901, 4.4× 10−3 5.01
26 14 14 5096 0.001 20.931, 3.0× 10−3 7.58
28 16 16 7168 0.0005 20.943, 2.4× 10−3 14.69
30 18 18 9720 0.0004 20.956, 1.8× 10−3 37.61
36 20 20 14,400 0.0002 20.967, 1.2× 10−3 103.91
38 22 22 18,392 0.0001 20.980, 6.6× 10−4 172.66
42 22 22 20,328 0.00005 20.982 5.7× 10−4 259.37

1 1000 2000 3000 4000 4704

1
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Figure 1. In Example 1 for m = 24, n = 14 and o = 14. (Left): The density/sparsity pattern of the
system matrix Ā. (Right): The numerical solution based on RBF-FDM under the cut U(s, 0.04, r, T).
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Figure 2. In Example 1 for m = 20, n = 10 and o = 10. (Left): The numerical solution based on
RBF-FDM under the cut U(s, 1, r, T). (Right): The numerical solution based on RBF-FDM under the
cut U(E, v, r, T).

The Greek characters are significant to calculate in order to show the stability of a
numerical method in option pricing. Hence, Figure 3 shows the delta and gamma and
confirms a stable numerical solution for the proposed approach.

Figure 3. The Greek characters delta (Left) and gamma (Right) at u(s, v, 0.024, 1) via the RBF-FDM
method in Example 1 for m = 28, n = 16, and o = 16.

It is commented that the two methods (FD and HM) have some more stability issues
in contrast to the RBF-FDM. This is because of the use of a time-stepping method with a
larger stability region. The methods FD and HM use the explicit first-order Euler’s method,
which of course has a smaller stability region in contrast to (44).

In Tables 1 and 2, it is noticeable that the proposed approach has a slower calculation
time as well as higher accuracies. The improved accuracy in terms of absolute errors is
mainly due to the application of the RBF-FDM scheme with an appropriate shape parameter,
and the lower computational time is mainly due to employing lower temporal step sizes
because of using (44) with larger stability regions.

With the numerical results given in this section, we believe that our fast and stable
solver opens a new possibility for efficient and accurate derivative pricing.

We end this section by repeating Example 1 and only by changing a = 0.85 in order
to check the numerical results when the Feller’s condition is unsatisfied. Considering
RBF-FDM with m = 30, n = 18, and o = 18, the numerical results are given in Figure 4,
confirming the applicability and usefulness of the proposed approach even when the Feller
condition is unsatisfied.
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Figure 4. Results for the unsatisfied Feller condition: Left: The numerical solution based on RBF-
FDM under the cut U(s, v, 0.024, T). Right: The numerical solution based on RBF-FDM under the cut
U(s, 0.04, r, T).

7. Summary

Trading based on options can occur in daily market routines. Hence, pricing them
when both the interest rate and the volatility follow some stochastic dynamics is of practical
interest for risk managers and traders. This work focuses on the significant financial model
of HHW as a 3D time-dependent PDE problem and proposes a new solver to expand the
relevant literature’s conclusions. In fact, our methodology is to consider graded meshes
on all the involved spatial variables in order to concentrate on the financially hot area
more. Then, the weighting coefficients for an RBF were constructed on such meshes and
proved to have second and first orders to approximate the first and second derivatives of a
function. MOL is then applied through extensive compact matrix notations to build up the
new solver as a system of ODEs. An explicit but fast time-stepping method was used and
the stability of the solver discussed in detail. Computational simulations have validated
the applicability of the presented RBF-FD sparse solver for solving the HHW equation.

Investigating how to compute an optimal value for the shape parameter as well as
to employ the new efficient method furnished in this paper for other kinds of derivative
securities could be conducted in future works in this field of research. Besides, it is recalled
that the generalized Stein–Stein model [7], which is also known as the model of Schöbel–
Zhu [33], can be expressed as a system of two SDEs in a similar way to (1) but differs in
some perspectives. Applying such a consideration along with stochastic interest rates can
yield another generalized hybrid model, known as the hybrid Schöbel–Zhu–Hull–White
PDE, which is discussed deeply in [34]. Pricing such a PDE [35,36] can be investigated by
the localized meshless methods in forthcoming works.
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