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Abstract: In this work, we propose a local search-based strategy to determine high-quality allocation
of vaccines under restricted budgets and time periods. For this, disease spread is modeled as a SEAIR
pandemic model. Subgroups are used to understand and evaluate movement restrictions and their
effect on interactions between geographical divisions. A tabu search heuristic method is used to
determine the number of vaccines and the groups to allocate them in each time period, minimizing
the maximum number of infected people at the same time and the total infected population. Available
data for COVID-19 daily cases was used to adjust the parameters of the SEAIR models in four
study cases: Austria, Belgium, Denmark, and Chile. From these, we can analyze how different
vaccination schemes are more beneficial for the population as a whole based on different reproduction
numbers, interaction levels, and the availability of resources in each study case. Moreover, from these
experiments, a strong relationship between the defined objectives is noticed.

Keywords: vaccination planning; SARS-CoV-2; optimization; heuristics; epidemiological models;
tabu search
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1. Introduction

In the history of humankind, various viruses have appeared and will continue to
appear. Some of them can cause epidemics such as influenza, HIV, Ebola, and COVID-
19. The first appearance of the disease caused by the SARS-CoV-2 virus was recorded in
December 2019 in Wuhan, China (Liu et al. [1]). The virus spread rapidly to many other
countries, and on 11 March 2020 it was declared a worldwide pandemic (Cucinotta and
Vanelli [2]), the fifth documented pandemic since 1918 with H1N1 (Liu et al. [1]). In most
pandemic scenarios, the large number of people infected in such a short period of time
will collapse most of the world’s health systems. This happened during the first months of
COVID-19 , as the disease spread in most countries in Europe (Ke et al. [3]).

As the number of infected patients rose, most health workers and infrastructure stood
firm, but health workers were forced to decide which patients to treat first, generating
not only deaths but also severe psychological effects on the population and even more on
the health workers who had to deal directly with this situation. In the current globally
connected world and considering the contagiousness of the virus, one infected person can
spread the virus to two or three other people. Each country sets different measures to
decrease the viral spread and increase social distance. Among the actions taken, borders
have been closed, quarantines have been carried out, and activities have been limited to
smaller groups of people (Knox et al. [4], Costa-Font and Vilaplana-Prieto [5]) .

Despite rapid advances in vaccine production, at the beginning of the disease a limited
number of vaccines were available to use for each country. Officials sought the best way to
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use the available vaccines, especially considering the associated production and transporta-
tion costs. In this sense, determining the best vaccination plan for SARS-CoV-2 and assess-
ing a limited number of vaccines is a significant problem. This is unlike classical vaccination
strategies implemented in most countries during pandemics, which focus on the speed of
the vaccination process (Chen [6]) or the vaccination of specific people like health workers
and at-risk populations (Goldstein et al. [7], Rimmelzwaan et al. [8], Gu et al. [9]). In this
study, we propose a methodology that considers the interactions between subgroups of a
population (Gu et al. [9], Keeling and Eames [10], Petrizzelli et al. [11], Varotsos et al. [12]).
Moreover, unlike most of these works, we also consider a restricted number of available
vaccines and vaccination time periods according to the arrival of batches of vaccines. This
approach is formulated based on previous vaccination models for SARS-CoV-2. Moreover,
adaptations of previous epidemic models are studied in a way that models SARS-CoV-
2 spread in agreement with the available recorded information.

This study presents a methodology by which to determine effective period-based
budget-restricted vaccination plans that consider subgroups of populations and their in-
teractions in order to model mobility constraints as a key factor to control the spread of
disease. This method applies an epidemic model that takes into account the infected and
asymptomatic population, as well as divisions of the population, restriction of population
movement, and prohibitions of contact between divisions based on weighted graphs. Be-
fore applying these methods, adjustments of the COVID-19 spread parameters and the
corresponding motion constraints in each case study are performed in order to obtain
models as close as possible to the corresponding recorded COVID-19 data. The vacci-
nation plans determine how many people should be vaccinated per division per period
of time considering a restricted number of available vaccines per period, and they use
an ad hoc tabu search heuristic approach coupled with the adaptations of the epidemic
models studied.

First, in Section 2, we introduce the main epidemiological models in the literature.
In Section 3, we introduce and review previous works related to epidemic models and
vaccination algorithms. Thirdly, in Section 4, we describe the problem to be solved. Subse-
quently, we explain our algorithm implementation in Section 5. Furthermore, we describe
the instances and experiments made in Section 6. In addition, we analyze the results
obtained for four different instances in Section 7. Finally, we analyze the conclusions of our
work and define potential future work in Section 8.

2. Epidemiological Models

Epidemic models show how a disease spreads through the population. Thus, they can
be used to predict outbreaks and the effect of different methods for controlling, decreasing,
or delaying a disease’s spread. These epidemic models are generally solved as ordinary
differential equations (ODEs), but in some complex cases they can be solved by partial dif-
ferential equations (PDEs) (Schneckenreither et al. [13]). Epidemic models can be classified
according to the steps of their spreading process.

The Susceptible-Infected-Recovered Epidemic model (SIR) (Bacaër [14]) is one of the
simplest approaches for modeling disease spread. This model divides the population into
three groups, as follows.

• Susceptible (S): Healthy individuals who can catch the disease.
• Infected (I): Individuals who currently have the disease and can transmit it to suscep-

tible individuals.
• Recovered (R): Individuals who had the disease and now are immune.

For the SIR model, it is assumed that (1) the sum of individuals in these three groups
corresponds to the population size (N). In this way, the model is closed, entailing that the
population size is always the same, (2) the contact rate (contact between individuals) per
unit of time will be β, (3) after contact with an infected individual, a susceptible individual
gets infected with rate Ce and becomes immediately infected (there is no incubation period),
and (4) infected individuals recover after r delay of time or recovery rate as 1/r (time a
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person remain infected). An indicator of the transmission capacity of a virus is settled by
the basic reproduction number (R0), which represents the average number of infections
generated by a single person through the population. Different diseases that share the same
infectious phases can be modeled by knowing the values of the parameters mentioned
above. Birth rate b, death rate d, and disease death rate a can be added to the previous
equations too.

The Susceptible-Exposed-Infected-Recovered Epidemic model (SEIR) is a variation of
the SIR model (Li and Muldowney [15]). A new group of exposed individuals is incorpo-
rated in this case. Referring to some diseases, after contact between a susceptible and an
infected person, the susceptible individual becomes exposed. In this state, the person is
infected but not infectious (cannot infect susceptible individuals) because of the incubation
period of the disease. The factor e represents the rate of exposed individuals becoming
infectious. The number of infected individuals depends on the exposed individuals and
the rate of becoming infectious.

Another variation of the SIR epidemic model is the Susceptible-Infected-Quarantined-
Recovered Epidemic model (SIQR). In this model, some infected individuals are quaran-
tined with a rate q and stop infecting susceptible individuals. Moreover, a constant η is
incorporated to represent the recovery rate of quarantined people.

3. Literature Review

Computational systems use three main approaches to model the effects of their strate-
gies in the control of the disease spread: analytical deterministic (Maltz and Fabricius [16])
and stochastic (Fabricius and Maltz [17]) and simulation approaches (Fu et al. [18]).

Analytical models use mathematical models, particularly optimization models, to
assist in making decisions. Mathematical programming models can be solved with direct
or indirect methods. In direct methods, the discretization scheme is used to transform the
optimal control problem into a nonlinear programming (NLP) problem, which an NLP
solver can solve. In indirect methods, the solution is derived based on the optimal condi-
tions, leading to a two-point-boundary problem. Epidemic models have been approached
in two ways.

• Analytical deterministic approaches allow a closed representation of the spread but
require many assumptions. Moreover, these approaches generate a rough model of
the current virus spread, but, in most cases, are very sensitive to parameter changes.

• Analytical stochastic approaches are similar to a deterministic model, but in these
cases, parameters are modeled statistically. These approaches are less affected by
changes in the model parameters.

In simulation approaches, a population graph can be constructed. These approaches
incorporate realistic assumptions about a virus’s population structure and transmission
dynamics. Each node in this network represents a person connected to others following
specific relation dynamics. Simulation is computationally time-consuming, so in most cases,
straightforward strategies are preferred. This makes it impossible to take into account
broad characteristics to divide the population.

Vaccination Models

Some epidemic models have been adapted, adding vaccination to determine epidemic
control strategies. Most works implement perfect vaccination, whereby the vaccinated be-
come immune and turn directly into recovered individuals. However, vaccination enforced
with normal distribution (Tanner et al. [19]) that uses a stochastic programming approach
and with resistance to vaccination (Chen et al. [20]) has been studied.

In Correa Cordova et al. [21], a study with periodic vaccination was conducted. This
study allows for multiple pulse vaccinations to be implemented as a control strategy and
optimizes the time points at which the population is vaccinated. It also provides for different
vaccination levels. They assumed perfect vaccination. The overall problem is solved by an
NLP solver based on the solutions and the sensitivities computed in each subinterval.
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Vaccination in SIR and SIS models has been implemented by using a relational network
graph (scale-free network) in Wu and Lou [22]. Here, they represent the immunized
population and apply random vaccination and targeted vaccination strategies. A path
parameter was incorporated to be aware of immunizing high-risk nodes. This is the
effective method in scale-free networks to vaccinate the nodes with the highest degree,
the ones connected to more nodes. This group can be defined as a region or group of
people sharing some characteristics. Then, the nodes that must be vaccinated in a graph to
decrease or remove the virus are identified.

An evolutionary multiobjective optimization algorithm that uses a stochastic simulation
approach was used to determine vaccination policies for a SIR model in da Cruz et al. [23].
In their work, the authors minimize the control costs and the number of infected individuals.
In order to express the system as a fraction of each group, the authors divide the equations
of a SIR model incorporating birth and death rates in the whole population.

Quarantine has been added as well for vaccination models in Kim et al. [24]. This
study aimed to determine and select who should be vaccinated and given a limited number
of vaccines. The authors generated a distribution of vaccines over time intervals. In a
new vaccine strategy with delivery over time, susceptible individuals who have been
vaccinated become immune and turn directly into recovered individuals—also called
perfect vaccination and quarantine. This was implemented based on social relationships
and prediction of the routes of infection and obtainment of better results for their SVDP
solutions than the random distribution of vaccines.

A model for finding optimal vaccination strategies of a constrained time-varying SEIR
epidemic model (Wang et al. [25]) was developed. In this model, the population (N) is not
necessarily constant as in some previous works. The authors assumed death rate, birth rate,
disease death rate, incubation period, and recovery rate as constant values; the vaccination
rate is considered the control variable, and the contact rate can vary seasonally as a cosine
function. Vaccinated individuals become immune with a specific ratio that decreases in
time t, because of drug resistance as a monotonic decreasing function. They define a limited
supply of vaccines at each time instant. They prove that omitting time-varying factors may
result in an unreasonable vaccination strategy.

Ng et al. [26] developed a multicriteria mathematical programming model to find the
optimal combination of influenza vaccination strategies by using a deterministic approach.
As performance measures, they considered minimizing the vaccination cost, maximizing
the vaccination efficacy by using the postvaccine reproduction number (Halloran et al. [27]),
and maximizing societal benefits. Thus, they formulate a multicriterion optimization prob-
lem and search for nondominated solutions, focusing on determining the optimal number
of vaccine doses to be assigned to different population groups at risk.

Optimizing vaccination with exposed individuals and incorporating a quarantine
factor has also been done by Enayati and Özaltin [28]. In this work, the population is
separated into subgroups. Each subgroup has its proportion of susceptible (S), exposed (E),
infected (I), quarantined (Q), and recovered (R) individuals. The authors change the generic
contact rate of the SEIR model to define a more specific contact rate between subgroups.
These values also determine the rate of new infections in each subgroup. They use a
nonlinear mathematical model, minimizing the total number of doses.

4. Problem Description

This section describes the problem to be solved as a susceptible (S), exposed (E),
infected (I), asymptomatic (A), and recovered (R) model with subgroups, vaccination, and
restrictive measures that change according to the quantity of infected population.

The model obeys the following obligatory rules.

• Birth rate is equal to the death rate.
• Exposed individuals are split into infected and asymptomatic individuals with their

perspectives rates.
• A fraction of asymptomatic individuals are tested and move to infected individuals.



Mathematics 2023, 11, 834 5 of 32

• There is a limited quantity of vaccines.
• Population is divided into subgroups. This division can be based on geographical

zones or political divisions like cities or districts.
• Each zone has a contact rate with itself and all other zones. These contact rates can

be interpreted as the percentage of people in the group staying in the area and the
percentage of people visiting, traveling, or working in another zone.

• Each country has restricted the movement of the population. Chile has used a strategy
in which each district has more restrictions based on the number of infected people.
For this, the population in each subgroup decreases their contact rate according to
their infection level. In this work, for each zone will, Equations (17) and (18) will
resemble this behavior.

• Infected population decreases its movement considering an equal or higher rate than
the infected people.

Additionally, vaccination over periods is implemented. The approach implements just
one vaccination period at the beginning of the epidemic. It searches only for the best vacci-
nation plan with a fixed quantity of vaccines to assign to different subgroups every period.

The model phases of the population are shown in Figure 1. Susceptible individuals
become exposed individuals because of their interaction with infectious populations. The
infectious population can be considered infected individuals with infection rate β and
asymptomatic individuals with infection rate α. Exposed individuals become infectious
with a rate of δ. A µ fraction of the infectious population is asymptomatic, and 1− µ shows
symptoms. From the asymptomatic population, some of them are tested with rate η and
start showing as infected. Infectious people recover with rate γ.

Figure 1. SEAIR model. S, E, A, I, R corresponds to susceptible, exposed, asymptomatic, infected,
and recovered populations.

To model the interactions between subgroups in the population, we assume that:

• People from each subgroup can visit any other subgroup. These visits can primarily
be workplace visits.

• The percentage of people that move to another subgroup is represented on a contact
matrix, which sums 100% per each subgroup.

• For any subgroup x, subgroup x′ corresponds to the group formed by all the popu-
lation that visits subgroup x, excluding the population from subgroup x that visits
other subgroups.

• The newly infected population of subgroup x′ is obtained from the contact between
infected and susceptible people of subgroup x′.

• The newly infected population of subgroup x is computed as the sum of all newly in-
fected individuals from subgroup x who visit other subgroups and the newly infected
people who stay in subgroup x.

Mathematical Model

The previously explained rules are fulfilled through the following mathematical model.
Next, we list the parameters of the model.
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N Population size
G Set of subgroups
V Quantity of vaccines available per period.
T Total time considered.
ζij Percentage of people from subgroup i who visit subgroup j (contact

matrix).
βij Infectious rate between subgroup i and j.
αij Infectious asymptomatic rate between subgroup i and j.
δ Incubation rate. Days of incubation on an exposed individual to become

infectious.
γ Recovery rate. Days of an infectious individual (infected or asymp-

tomatic) to become recovered.
η Detection of asymptomatic rate. The detection based on how many tests

are performed on asymptomatic individuals also depends on the real
number of asymptomatic individuals.

µ Percentage of infectious individuals that are asymptomatic.
MIPα Percentage of the maximum infected people of the subgroup that triggers

movement restrictions of the noninfected population of the subgroup
(i.e., quarantine).

MIPβ Percentage of the maximum infected people of the subgroup that trig-
gers movement restrictions of the infected population of the subgroup
(i.e., quarantine). More restrictive measures should be implemented for
infected people.

The model defines the variable vip as the number of persons from subgroup i who will
be vaccinated in period p.

Next, we list the constraints of the model. Here, we first list the classical SEIR model
constraints (from Equations (1) to (6)), then the contact rate constraints (from Equations (7)
to (14)), and the vaccination constraints (from Equations (15) and (16)). We have

N = S(t) + E(t) + A(t) + I(t) + R(t) (1)

dSi
dt

= −
G

∑
j=0

 ζij(t) Si(t)
G
∑

k=0

(
Nk ζkj(t)

)
(

G

∑
k=0

(
βkj(t) Ik(t) + αkj(t) Ak(t)

)) (2)

dEi
dt

=
dSi
dt
− δ Ei (3)

dAi
dt

= µ δ Ei − γ Ai − η Ai (4)

dIi
dt

= (1 − µ) δ Ei + η Ai − γ Ii (5)

dRi
dt

= γ (Ii + Ai). (6)

Equation (1) establishes that the population should maintain its size. Equation (2)
controls the susceptible population of each subgroup that becomes infected depending on
their contact rate with infected individuals in other subgroups and themselves. Equation (3)
controls the exposed individuals per each subgroup that becomes infected or is asymp-
tomatic after incubation. Equation (4) computes the fraction of exposed individuals of each
subgroup that become asymptomatic individuals. Equation (5) computes the fraction of
exposed individuals of each subgroup who tested as positive COVID-19 cases and become
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infected individuals. Equation (6) controls the number of infected and asymptomatic
individuals per subgroup that recover after the recovery period. We have

ζij(t) = ζij(0) Fαi(Ii(t)) (7)

βij(0) = R0 γ ζij(0) (8)

βij(t) = βij(0) Fβi(Ii(t)) (9)

αij(t) = βij(0) Fαi(Ii(t)) (10)

αij(t) ≥ βij(t) (11)

Fαi(Ii(t)) ≈ 1 ; Ii(t) << N (12)

Fαi(Ii(t)) =
100

100 + A
−B1

Ii(t)
MIPα Ni

1

(13)

Fβi(Ii(t)) =
100

100 + A
−B2

Ii(t)
MIPβ Ni

2

. (14)

Equation (7) establishes that people who move from subgroup i to subgroup j decrease
because of government regulations that depend on the quantity of infected. Equation (8)
controls infection rate between subgroups (Beta) is obtained from the R0 value, the recovery
rate, and the contact between them. Equations (9) and (10) control the decrease of contact
rate of infected and asymptomatic people due to government regulations, respectively.
Equation (11) controls that the contact rate of infected is lower or equal to the asymptomatic
people. Equation (12) keeps contact regular when there are no (or few) infected people.
Equations (13) and (14) establish that government restrictions can be triggered when there
is a high number of infected individuals. People increase their movement for mental health
reasons and work responsibilities when the infected population decreases. We have

Si(tp) = Si(tp−1) +
dSi
dt
− vip (15)

Ri(tp) = Ri(tp−1) +
dRi
dt

+ vip. (16)

At the beginning of each vaccination period, the vaccinated people recover immedi-
ately. This is controlled by Equations (15) and (16).

With regard to our objective function, in this work, two objective functions can be
considered: the minimization of the number of infectious people in all the periods listed in
Equation (17) and the minimization of the number of infectious people at the same time
listed in Equation (18). We have

ObjP = min {I(t f )− A(t f )} (17)

ObjS = min {maxt{I(t) + A(t)}}. (18)

5. Solution Method

This section describes the tabu search algorithm used to get an efficient vaccination
plan for a fixed number of available vaccines and periods. The tabu search is a well-
known local search metaheuristic method (Glover and Laguna [29]). It has been used
to successfully solve several similar optimization problems in the literature (Glover and
Laguna [29], Liang and Chao [30], Euchi [31]). Moreover, it is an algorithm that is not
highly time consuming compared to population-based methods like evolutionary and
swarm-based approaches. This is specially important given the time-consuming evaluation
procedure the algorithm implements.
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Solutions are represented as arrays of vaccination distributions. The size of each
solution depends on both the number of subgroups (G) and the number of periods (P).
Each cell indicates the number of vaccines allocated to each subgroup in each period.
Figure 2 shows an example of solution for a problem that considers five subgroups, two
periods, and 100 vaccines per period.

Figure 2. Example of a solution representation for a problem with five subgroups, two periods, and
100 vaccines per period.

Two objective functions are considered, the minimization of the quantity of infected
population at the same time (ObjP) and the minimization of the number of infected people
in the whole period (ObjS). From this, we define the evaluation function as a weighted sum
of both objectives, as shown in Equation (19). Parameter α sets the relative weight of each
function during the evaluation process.

α ∗ObjP + (1− α) ∗ObjS (19)

5.1. Algorithm Structure

The approach proposed is a local search-based approach that separates each problem
according to the number of periods it considers. As shown in Algorithm 1, for each period,
an initialization, a local search, and a completion step are performed. The process starts
defining the initial values of the period, the quantity of susceptible, exposed, infected,
asymptomatic, and recovered population at the beginning of the current period (line 1).
Next, an initial solution is constructed with an initialization (line 5). A local search process
is then performed on the constructed solution. This method returns the best solution found
during its search (line 6). The best previous solution found is set as the vaccination for that
period (line 7) and used to get the initial values of the next period (line 8). The previous
process is performed for each period in the problem instance. The final result contains the
complete vaccination plan for all periods.

Algorithm 1: SEAIRV Search
Input : Population, R0, Gamma, Delta, Eta, ContactMatrix
Output : Vaccination distribution for each period

1 nextInit← setInitialvalues(input)
2 completeSolution← Empty list
3 foreach Period do
4 init← nextInit
5 sol← initializeSolution(Method, init)
6 sol← localSearch(sol, iterations, Stopcriteria)
7 completeSolution← Add(sol)
8 nextInit← setInitialvalues(sol)
9 end

Initialization

Five methods were evaluated to construct initial solutions. The initialization methods
proposed are listed below.

• All to One: This method allocates all the vaccines of the period to just one subgroup.
For this, it evaluates all the subgroups and selects the option that obtains the best
evaluation function.
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• Inner Interaction: This method allocates vaccines to each subgroup proportionally to
the interaction between other subgroups and the current one. It starts computing the
sum of all the interactions from different subgroups to the current subgroup. Then, it
calculates the percentage according to the value of inner interaction per subgroup.

• Outer Interaction: This method allocates vaccines to each subgroup proportionally
to its interaction with the other subgroups. It starts computing the sum of all the
interactions from the current subgroup to different subgroups. Then, it calculates the
percentage according to the value of outer interaction per subgroup.

• Mixed Interaction: This method allocates vaccines to each subgroup proportionally to
the other groups’ interaction with the current one and its interaction with the different
subgroups. It starts computing the sum of all the interactions from the actual subgroup
to different subgroups and other subgroups to the actual subgroup. Then, it calculates
the percentage according to the value of outer interaction per subgroup.

• Equity: This method allocates vaccines equitable to all subgroups in the problem
instance. For this, we give each subgroup the same probability of getting a vaccine.
Then, it allocates vaccines following a uniform distribution.

5.2. Local Search

The local search process is shown in Algorithm 2. It is based on the tabu search
metaheuristic. At the beginning of the process, an empty tabu list is considered (line 3). The
search considers as stopping criteria a maximum number of iterations and a stuck criterion
(line 4). This last criterion is evaluated as the number of iterations without changing the
current best solution. At each iteration, a new solution is generated (line 6) by using one
of the possible movements generated with a random function with probabilities for each
(line 5). The applied movement is recorded into the tabu list (line 6). The tabu list records
a pair formed by the subgroups that trade vaccines. For example, if a movement was
generated between subgroup 2 and subgroup 6, without regarding the movement type, it
records the tuple (6,2) because subgroup 6 can not return vaccines to group 2. Neither a
swap nor an inversion can be performed between them.

Moreover, if the obtained solution is better than the actual best, the best solution is
updated. In another case, the number of iterations without improvement is increased
(line 7). At the end of the process, it returns the best solution found.

Algorithm 2: Local Search
Input : sol, Iterations, Stopcriteria
Output : Vaccination distribution for one period

1 iter← 0
2 withoutChange← 0
3 tabuList← Empty list
4 while Iterations > iter AND Stopcriteria > withoutChange do
5 movType← randomMovType()
6 sol, tabuList← generateMovement(movType, tabuList, Objective)
7 withoutChange← withoutChange + 1
8 if bestValue > Evaluation function (sol) then
9 bestValue← value(sol)

10 bestVaccination← sol
11 nextInit← initialValues(sol)
12 withoutChange← 0
13 end
14 end

Three different movements were implemented.
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5.2.1. Give Random

The idea here is to reallocate the number of vaccines between subgroups. One random
subgroup (sg) with at least one vaccine allocated is selected. In addition, a random quantity
between 1 and the number of vaccines (v) currently allocated to (sg) is chosen. These v
vaccines are reallocated from sg to each other subgroup. Each possible change is considered
a neighbor solution. The first new allocation that shows a better evaluation function is
selected by considering a first improvement approach. Moreover, if it is not possible to get
any improvement, a best improvement approach is considered by selecting the best option.

5.2.2. Swap Random

The idea of this movement is to diversify the search and have chances of a faster
convergence by finding new solutions in the case of being stuck into local optima. For
this, two random subgroups with different quantities of vaccines are selected to swap all
their vaccines with the other subgroup. In this case, the neighborhood is constructed by
applying this movement five times, every time for two random subgroups.

5.2.3. Invert Random

The idea of this movement is to diversify the search and allow a faster convergence by
finding new solutions in the case of being stuck into local optima. For this, two random
subgroups are selected, and an inversion of the number of vaccines to all the subgroups
between them is performed. This works similarly to a mirror effect, and the neighborhood
is constructed again by applying the movement five times between different random
selected subgroups.

6. Computational Experience
6.1. Data Selection

To select instances to evaluate, data from countries with high coronavirus testing and
a variegated population and division was selected.

The number of tests and daily cases of countries were obtained from ourworldin-
data.org [32], open access and open source databases for research and media, and for the
Chilean metropolitan region from coronavirus.mat.uc.cl [33]. COVID-19 data wa obtained
from the Chilean Ministry of Science and Technology and processed for Data UC. The cho-
sen data, and consequently the created instances for this work, were constructed based on
data from four countries: Austria, Belgium, Denmark, and Chile. Preliminary experiments
were also executed by using the metropolitan region of Santiago, Chile.

• Austria: Nine states, a population of 8,935,112 and 1577.72 COVID-19 tests per
1000 people.

• Belgium: Eleven provinces, a population of 11,431,406 and 809.87 COVID-19 tests per
1000 people.

• Denmark: Five regions, population of 5,840,045 and 2841.41 COVID-19 tests per
1000 people.

• Chile: 16 regions, population of 17,574,003 and 481.44 COVID-19 tests per 1000 people.

6.1.1. Setup

Each problem instance requires the definition of the scenario analyzed. In each case,
we required consideration of the number of subgroups, the population, recovery rate (γ),
reproduction number (R0), incubation rate (δ), percentage of asymptomatic infected people
(µ), detection of asymptomatic people (η), and the contact matrix. Next, it is explained how
these components were determined for each instance.

The number of subgroups is created based on the divisions per country. For each input
file, the total population and subgroup populations were set based on the population size
and division sizes obtained from different sources of their past census. This was in order to
set a population value closer to reality.
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Contact matrices were created by using a two-step procedure. First, an initial contact
matrix was created based on a weighted random graph.

There are different methods like Erdös–Rényi or Barabási–Albert to create random
graphs. For more information about different methods to create random graphs Gao [34],
Volchenkov and Blanchard [35], Vega Yon et al. [36] can be revised. The method used in
this work is similar to the Bianconi–Barabási model. It consists of assigning each subgroup
to one of the three types of nodes according to its betweenness centrality (how strong a
connection it has with other subgroups). The first type of node has the highest betweenness
centrality, the second type has medium betweenness centrality, and the third type has the
lowest betweenness centrality. The number of nodes of each type is computed based on
how many main divisions the population has. For example, in Chile there is only one main
division, the metropolitan region with almost 41.89% of the population from 16 divisions.
Then, there are other six divisions corresponding to medium betweenness nodes and the
remaining divisions have low betweenness nodes. From the previous distributions, contact
values are generated with random values based on their node betweenness. Nodes with
high betweenness will get higher values than those with low betweenness, keeping the
sum of all these contacts per subgroup to 1. For all the countries, the inner interaction of
the node is set to a value between 0.4 and 0.6, given that a large fraction of the population
in these big divisions work or visit the same division.

After the contact matrix is created, the values per each subgroup can recreate the
distribution of contacts with other subgroups but not necessarily with the correct subgroups.
In order to get closer to the real situation, a geographical adjustment step is performed
based on their proximity.

There is a rule for nonadjacent divisions with the intention of maintaining the be-
tweeness of all subgroups. In the case of nonadjacent divisions, if one of them has a
higher degree or is a node of high betweeness centrality, then the subgroup will get the
highest value. After these two steps, the final contact matrix is obtained for its use in the
SEAIRV model.

6.1.2. SEAIR Curve Adjustments per Input Data

The parameters to adjust are divided in two: the COVID-19-based parameters, i.e., pa-
rameters that depend on the virus, and the SEAIR parameters created to resemble as much
as possible the local reality related to the restrictions and movements of the population.

COVID-19 Parameters

Once the parameters related to the number of subgroups, the population size, and the
contact rate matrix of Section 6.1.1 are defined, it is necessary to adjust the parameters of
the SEAIR models to the real data curves of COVID-19.

Some of the parameters needed are obtained directly from the disease characteristics.
These are the incubation rate (δ), recovery rate (γ), and percentage of infected that are
asymptomatic (µ), although they may vary depending on each person. There are two
other parameters that are related to the disease—the basic reproduction number R0, which
depends on the way of contact of the disease (air, blood), and the contact of the population,
and the detection of asymptomatic (η) that will depend on how COVID-19 testing is
performed. For these five parameters, the range values of four of them—δ, γ, µ, R0—were
determined from two sources, the Centers for Disease Control and Prevention (CDC) [37]
and The Centre for Evidence-Based Medicine (CEBM) [38]. The parameter η depends on
each country having a range between 5% and 80% that is seated.

The ranges of the parameters are shown in Table 1. The first column correspond to the
name of the parameter. The second, fourth, and sixth columns correspond to the minimum,
average, and maximum quantity in days or percentage, each of them followed by the
corresponding parameter value.
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Table 1. Parameter values ranges based on estimated values from CDC and CEBM.

Parameter Minimum Value Average Value Maximum Value

δ 2 days 0.5 5–6 days 0.2 14 days 0.07

γ 12 days 0.08 2 weeks 0.07 6 weeks 0.024

µ 10% 0.1 40% 0.5 70% 0.7

η 5% 0.05 30% 0.3 80% 0.8

Initial R0 2 2 3 3 6 6

SEAIR Parameters

From the SEAIR Model there are six parameters to set for each input file. The param-
eters are A1, B1, and MIPα for the movement function of the noninfected individuals in
populations (including asymptomatic) and A2, B2, and MIPβ for the movement function
of infected individuals in the population. The parameters A1, B1, A2, and B2 are related
to the inclination and variation of the data curve due to small changes in the number of
those infected. For this, eight possible combinations of the four values that maintain the
quantity of infected people (and which are close to the maximum quantity of the infected
population for the subgroup) were seated. The parameters MIPα and MIPβ define the
maximum percentage of the population, noninfected and infected, respectively, allowed to
apply a quarantine. Due to this, their values can change between countries according to
how restrictive the measures are in terms of population movement.

Adjustments

To set all the previous parameters, we seek to have them resemble as much as possible
the SEAIR curve with the real COVID-19 data. Figure 3 shows a curve of newly infected
individuals per day. Two curves are shown here. The blue curve shows the data coming
from information systems, and the violet curve shows the SEAIR model. The x-axis shows
the days, and the y-axis the total population. It can be seen how the SEAIR curve and the
COVID-19 curve have similarities after the adjustment process. Both of these epidemic
curves have a peak—the highest value—at approximately 17,500 newly infected individuals.
Both curves show a specific time during which a high increase in the number of cases can
be identified (close to day 75). Furthermore, the way the curve decreases after the peak
can be really prominent, reaching values close to zero. In some cases, this decrease can be
slower and converge to an equilibrium state of the number of infected people. Curves of
different scenarios are different; hence, it is not always possible to get a close-fitting curve
to the original one. Despite this, the adjustment process searches for a set of parameters
that lead to the most similar curve.

It starts seating the COVID-19 parameters in the average values and the SEAIR pa-
rameters in the first possible combination of A1, B1, A2, and B2, and for MIPα and MIPβ a
value of 0.02 and 0.005.

After this, the COVID-19 values are increased or decreased, prioritizing the change of
the R0 and η values because these are based on features of the population. Moreover, the
other three values can be changed without trying to set them far away from the average
value. These changes are performed until the peak of both curves (real data and SEAIR
model curve) are positioned similarly in the same day (with respect to to the x-axis) and
also how flat/extended is the curve. Basically, δ, γ, and R0—with highest values—move the
peak of the curve to the left (because it is more exponential in that case) and also make the
amplitude higher. The longitude and amplitude of the curve is related to all the parameters
in a greater or lesser way.

With the COVID-19 parameters set, it is possible to change the MIPα and MIPβ values.
MIPβ determines the maximum quantity of infected or the peak (highest value) of the
curve, and MIPα determines how the curve decreases after the peak and also if it reaches
equilibrium or tends to zero. The combination of A1, B1, A2, and B2 parameters gives more

www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html 
http://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/


Mathematics 2023, 11, 834 13 of 32

or less amplitude to the curve. It also gives a bigger or smaller fall of the curve after the
peak, and in the case of equilibrium, a greater or lesser difference with regard to the value
of the peak.

Figure 3. Example of newly infected persons per day data and SEAIR adjusted curve in Belgium.
Second wave.

The data files of Austria, Belgium, and Denmark were adjusted to the second wave
and the Chilean data was adjusted to the first and second wave. This, due to the peak of
the curve, is higher in the first wave in this case. The restrictive values for the infected
population (MIPβ) are between 0.0100 and 0.0030 and those for the noninfected population
(MIPα) are between 0.1 and 0.02 of the division population. For the combination of param-
eters A1, A2, B1, and B2, the infected curve of the values A1 = 0.010 and B1 = 1.1 are
the most used. For the noninfected curve, the values A2 = 0.001 and B2 = 1.0 are seated
for most cases. Furthermore, the best vaccination plan in the case of covers between 9.48%
in the worst case and 31.19% in the best case. The R0 obtained for the cases that are fitted
to their first wave are much higher than the other values due to the fact that the number
of tests that were conducted at the beginning of the pandemic was lower, resulting in the
need to use a higher R0, which increases the quantity of the infected population moving
the corresponding curves much more quickly to the left.

6.2. Experiments

In order to set the parameters of the algorithm of the SEAIRV model, three experiments
were analyzed. The objective of the first experiment was to evaluate the relevance of the
three proposed movements into the local search approach proposed. The second experiment
is focused on evaluating the three initialization methods proposed. The last experiment
evaluates the two objective functions studied in this approach.

Each experiment was executed 30 times considering the stochastic nature of the tabu
search approach. Each one considered a maximum of 100 iterations and a stopping criteria
of 30 iterations without improvement of the best solution. Tabu search list size was fixed to
20% of the corresponding vaccination plan size. These parameter values were mainly fixed
based on preliminary experiments. Due to the extensive computational times required by
the method, we fixed a low number of maximum iterations ensuring that convergence is
reached in most cases.

6.2.1. Movement Relevance

For this experiment, we evaluate a set of six probabilities values for the tree movements:
Choose a subgroup and give a random quantity of vaccines (Give Random), change the
quantity of vaccines between two subgroups (Swap Random) and invert all the vaccines
between two subgroups as a mirror (Invert Random) that were explained in Section 5.2.
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Each experiment was executed 30 times. Each one considered a maximum of 100 iter-
ations, a stopping criteria of 30 iterations without improvement of the best solution and
initialization of the Inner Interaction. This process was made for six different parameter
configurations.

6.2.2. Initialization Procedures

The second experiment was for setting which of the initialization processes—All to
One, Inner Interaction, Outer Interaction, Mixed Interaction, or Equity, as explained in
Section 5.1—to use. Again we made 30 runs of the algorithm with 100 iterations and a end
criteria of 30 iterations without changing the best solution. In this case, the previously set
distribution of the movements were 80%, 10%, 10%.

6.2.3. Objective Functions

The last test is focused on analyzing the factors to optimize—Maximum Infected
at the same time and Total Infected in the period of the objective function, as explained
in Equation (19) of Section 5. This execution is to run 30 times for the algorithm with
100 iterations and an end criteria of 30 iterations without changing the best solution by
using the previously seated movement distribution and initialization.

6.2.4. Vaccination Plan per Input Data

Experiments were made per each input file. As before, each experiment was executed
30 times, choosing the best solution obtained from the 30 executions. Each one considered a
maximum of 100 iterations and a stopping criteria of 30 iterations. Moreover, each iteration
had the parameters of movements for Give Random at 80%, Swap Random at 10%, and
Invert Random at 10%. This wa accomplilshed by using the All to One initialization and
objective functions seated at 50% and 50%.

7. Results

This section presents the results of the experiments. It is composed of the SEAIRV
parameter results and the vaccination plans for different problems.

All experiments were executed on a computer with an AMD Ryzen 5 3600 6-Core
Processor running at 3.60 GHz, using 16 GB RAM in Windows version 22H2. The code was
executed in Jupyter notebook 6.5.2. using the library scipy version 1.10.0.

7.1. SEAIRV Parameter Setting Results

The results of the three experiments to determine SEAIRV parameters are shown
and explained below. Each of them has its own table showing results, description, and
interpretation.

7.1.1. Movements Relevance

Six parameter configurations were tested to evaluate the relevance of the movements
in the algorithm’s performance. Each one represents the probability of use of the three pro-
posed movements: Give Random, Swap Random, and Invert Random. From preliminary ex-
periments, we selected for study the following parameter configurations: c1 = 30− 40− 30,
c2 = 40− 40− 20, c3 = 80− 10− 10, c4 = 80− 20− 0, c5 = 90− 5− 5, and c6 = 100− 0− 0
for Give Random, Swap Random, and Invert Random, respectively. Table 2 shows the
average execution time and the average number of infected obtained by each parameter
configuration in each case and their corresponding standard deviation.

The first column of the table corresponds to the input data name, and the second col-
umn shows the configuration identification; then the corresponding average execution time
in seconds and the average maximum infected resulting from 30 executions and their corre-
sponding standard deviation are shown. Each one considers a maximum of 100 iterations
and stopping criteria of 30 iterations without improvement of the best solution.
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For three of the four files—Belgium, Austria, and Denmark—the use of only one
movement, Give Random (configuration c6) shows the best quality, but for Chile, it is the
opposite. In Chile, the worst number of infected was obtained with this configuration.
In terms of time, there is not a significant difference or any observable pattern related to
the probability of the movement for the Belgium and Denmark files, but for Chile and
Austria the execution time increases with the use of the movement Give Random. Still, it
can be noticed that depending on the number of subgroups, the time taken to obtain the
solutions increases.

Table 2. Average time and maximum infected population obtained per country file for different
probabilities of the movements. The best value per file is highlighted in bold.

Input Data Configuration Average Average
Time [s] Maximum Infected

Austria

c1 139 30,392.8 ± 416
c2 146 30,169.8 ± 370
c3 170 29,426.7 ± 401
c4 178 29,430.8 ± 450
c5 184 29,138.2 ± 345
c6 200 28,968.2 ± 321

Belgium

c1 233 166,553.210 ± 119
c2 240 166,464.9 ± 165
c3 286 166,157.8 ± 238
c4 292 166,156.1 ± 303
c5 308 166,045.5 ± 296
c6 319 165,623.0 ± 309

Denmark

c1 54 3202.901 ± 25
c2 49 3189.4 ± 25
c3 48 3156.8 ± 13
c4 49 3157.3 ± 10
c5 49 3155.7 ± 13
c6 52 3149.9 ± 6

Chile

c1 391 125,554.613 ± 78
c2 439 125,601.3 ± 122
c3 595 125,799.9 ± 351
c4 617 125,966.4 ± 230
c5 643 126,038.0 ± 272
c6 620 126,205.0 ± 241

Although using only one movement in three of the four cases shows the best perfor-
mance, using only one movement in the search process can result in poor performance in
other problem instances (like Chile, in this case). It can be suggested that the use of only
one movement does not allow enough diversification during the search process. This can
enable a fast convergence to local optima and premature search stagnation.

Wilcoxon signed-rank tests were also executed on results from Table 2. Table 3 sum-
marizes these results. Here, asterisks show pair comparisons where statistical differences
with 95% confidence were found.

A difference between the configuration c1 and c2 with 95% confidence was not found
for any file; this may be due to the fact that neither of these configurations prioritize any
specific movement. Configuration c6 obtained significantly different results compared to
all other configurations. Configurations c1 and c2 are considerably different with the other
configurations for all instances.

To maintain the use of all movements while prioritizing the move Give Random,
which gave the best results in three out of four instances; for the following experiments, we
consider parameter configuration c3.
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Table 3. Wilcoxon comparison for different probabilities of the movements results. Asterisks indicate
each comparison where a statistical difference with 95% confidence was found.

Austria Belgium Denmark Chile

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6
c1 - - * * * * - - * * * * - - * * * * - - * * * *
c2 - * * * * - * * * * - * * * * - * * * *
c3 - - * * - - - * - * * * - - - *
c4 - * * - - * - - * - - *
c5 - * - * - * - *
c6 - - - -

7.1.2. Initialization Procedures

Here, we evaluate the initialization process’s relevance to the proposal’s performance.
Five initialization methods were proposed: All to One, Inner Interaction, Outer Interaction,
Mixed Interaction, and Equity. Each experiment was executed 30 times, considering a
maximum of 100 iterations and stopping criteria of 30 without improvement. Moreover, in
this experiment, the movement probabilities were seated as c3. Table 4 shows the results of
these experiments.

Table 4. Average time and maximum infected population obtained per country file for different
initialization procedures. The best value per file is highlighted in bold.

Input Data Initialization Average Average
Time [s] Maximum Infected

Austria

All to One 134 28,657.059 ± 0
Inner Interaction 170 29,426.7 ± 401
Outer Interaction 165 29,359.6 ± 400
Mixed Interaction 155 29,138.2 ± 313

Equity 180 29,428.9 ± 544

Belgium

All to One 237 165,184.1 ± 0
Inner Interaction 286 166,157.8 ± 238
Outer Interaction 295 166,177.1 ± 283
Mixed Interaction 290 165,869.9 ± 295

Equity 312 166,162.5 ± 313

Denmark

All to One 33 3146.7 ± 0
Inner Interaction 48 3156.8 ± 13
Outer Interaction 48 3158.2 ± 16
Mixed Interaction 45 3152.0 ± 7

Equity 48 3156.0 ± 10

Chile

All to One 423 126,665.0 ± 0
Inner Interaction 595 125,799.9 ± 351
Outer Interaction 642 125,773.9 ± 302
Mixed Interaction 606 126,135.6 ± 222

Equity 612 125,897.7 ± 193

The first column of the table corresponds to the problem instance; the second column is
the initialization method used, and the corresponding average time in seconds and average
maximum infected as a result of the 30 executions are listed next.

In this case, the best value for three of the four instances: Belgium, Austria, and
Denmark, was obtained by using the All to One initialization procedure. Moreover, in all
cases, the execution time using the All to One strategy is lower than the execution times
obtained by using any other initialization method. This may be due to faster convergence
or stagnation of the search process. Despite the time, again for the Chile instance, the worst
quality was obtained by using the All to One procedure.

In this case, we also computed the Wilcoxon signed-rank tests on results from Table 4.
Table 5 summarizes these results. Here, asterisks show pair comparisons where statistical
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differences with 95% confidence were found. AO indicates All to One, II indicates Inner
Interaction, OI indicates Outer Interaction, MI indicates Mixed Interaction, and Eq indicates
Equity initialization.

For the initialization, Inner Interaction had a 95% confidence, and a difference between
every other initialization was found for each instance. The same can be observed for
initialization Mixed Interaction but only for three of the four instances. Despite the best
average result, for the instances of Austria, Belgium, and Denmark it was found that for All
to One the initialization difference was demonstrated only against Inner Interaction and
Mixed Interaction.

For the results of the Chile case with regard to the All to One initialization and the
results from previous analyses, the initialization was set to All to One for the following
experiments.

Table 5. Wilcoxon comparison for different initialization procedures results. Asterisks indicate each
comparison in which a statistical difference with 95% confidence was found.

Austria Belgium Denmark Chile

AO II OI MI Eq AO II OI MI Eq AO II OI MI Eq AO II OI MI Eq
AO - * - * - - * - * - - * - * - - * - - -
I I - * * * - * * * - * * * - * * *
OI - * - - * - - * - - - -
MI - * - * - * - *
Eq - - - -

7.1.3. Objective Functions

This experiment aims to analyze the performance of the approach concerning the two
objective functions defined: minimizing the quantity of infected population at the same
time and minimizing the number of infected people in the whole period. The experiments
were executed by using the same parameter values of the previous experiments: move-
ment probabilities c3 and All to One initialization. Table 6 shows the results obtained for
these experiments. Values of α parameter were selected from {0, 0.2, 0.5, 0.8, 1}, setting the
influence of each objective function.

The first column of the table corresponds to the problem instance; the second and third
columns show the percentage in the evaluation function to minimize the maximum number
of infected at the same time and to minimize the total infected in the period. After this,
the corresponding average time in seconds, average evaluation function value (obtained
from Equation (19), average maximum infected, and average total infected as a result of
the 30 executions. Standard deviations were not included in this table because in all cases
its value was very close to 0.

In this case, the majority of the executions obtained the same values for maximum
number of infected individuals and the total number of infected individuals for different
weighing values. In the study case of Austria and Denmark, when the objective function
gives 100% priority to the maximum number of infected, a very slight improvement in the
maximum number of infected was achieved. In the case of Denmark, we prioritize the
maximum number of infected and also lightly improve the total infected value. For the
Chile instance, a 100% priority of the maximum number of infected or the total infected
shows a small improvement in the total infected. It can be seen that the improvement of
the value in one of the objective functions does not necessarily improve the value of the
other objective function. Additional experiments, not included in this paper, show a small
but noticeable tradeoff between the objective functions. These were obtained by using
different initialization procedures that lead the algorithm search to different areas of the
search space. For the remaining experiments, we used a 50%, 50% balance to consider both
objectives having the same relevance.



Mathematics 2023, 11, 834 18 of 32

Table 6. Average time, maximum infected as MI, total infected as TI, and average function value per
problem for different weighing in the evaluation function. The best time per file is highlighted in
bold, and the best objective function value is shown in bold.

Input data Percentage Percentage Average Average Average Average

of MI of TI Time [s] Function
Value MI TI

Austria

100% 0% 133 28,657.0 28,657.0 48,154.5
80% 20% 142 32,556.5 28,657.1 48,154.5
50% 50% 137 38,405.8 28,657.1 48,154.5
20% 80% 136 44,255.0 28,657.1 48,154.5
0% 100% 149 48,154.5 28,657.1 48,154.5

Belgium

100% 0% 237 165,184.1 165,184.1 487,775.6
80% 20% 230 229,702.4 165,184.1 487,775.6
50% 50% 235 326,479.8 165,184.1 487,775.6
20% 80% 246 423,257.3 165,184.1 487,775.6
0% 100% 241 487,775.6 165,184.1 487,775.6

Denmark

100% 0% 33 3146.6 3146.6 6304.9
80% 20% 35 3778.3 3146.7 6305.0
50% 50% 36 4725.8 3146.7 6305.0
20% 80% 36 5673.3 3146.7 6305.0
0% 100% 33 6305.0 3146.6 6305.0

Chile

100% 0% 423 126,665.0 126,665.0 324,734.1
80% 20% 469 166,278.8 126,665.0 324,734.2
50% 50% 460 225,699.6 126,665.0 324,734.2
20% 80% 472 285,120.3 126,665.0 324,734.2
0% 100% 485 324,734.1 126,665.0 324,734.1

7.2. Vaccination Plan per Problem Instance

In this section, we show for each problem instance its final adjusted curve to their
COVID-19 test data. Moreover, the best vaccination plan obtained from previous ex-
periments is applied to the case, the changes between the scenarios with and without
vaccination are computed, and the new adjusted curve is displayed.

7.2.1. Austria

Once the adjustment between curves is made for the data of the second wave, the
results shown in Figures 4 and 5 of the newly infected per day curve and cumulative cases
of the second wave were obtained. The x-axis shows the days since the start of the disease,
and the y-axis indicates the number of individuals. It is observed from the newly infected
cases that, in the beginning, there is a slow increase, but after 1000 infected per day multiply
to the peak, the decay is less abrupt. Moreover, from the cumulative cases near the day of
the peak value in both curves, the results are close.

The heuristic algorithm was executed six times with 150 iterations as stopping criteria
and 40 iterations with no improvement and the parameter values set in Section 6.2.1. After
the execution of the heuristic algorithm proposed, the vaccination plan of 250,000 vaccines
per period is obtained. Part of it is shown in Table 7. This table shows the six subgroups to
which the higher number of vaccines were allocated.

The first column of the table shows the period of vaccination; all other columns show
the subgroups analyzed—in this case, six of the nine states of Austria, including Vienna,
Lower Austria, Styria, Tyrol, Salzburg, and Vorarlberg.

It can be observed that in the first two periods, Vorarlberg has a high number of
vaccines. This may be due to the fact that at the beginning of the outbreak, this state had
more infected individuals than others, and the number of infected did not increase much
until the third vaccination. In the fourth and fifth vaccination, Lower Austria and Styria
have a high number of vaccines. This can be attributed to how connected these states are to
other states.
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Figure 4. Comparison of newly infected people between SEAIR model and COVID-19 tests in Austria.
Second wave.

Figure 5. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Austria. Second wave.

Table 7. Vaccines corresponding to the most vaccinated subgroups of the best vaccination plan
obtained from SEAIRV model.

Vienna Lower
Austria Styria Tyrol Salzburg Vorarlberg

1st Vac. 0 0 0 0 0 250,000

2nd Vac. 80,493 4436 767 3231 5138 111,973

3rd Vac. 3040 89,984 48,955 8555 82,470 139

4th Vac. 0 136,992 23,061 51,267 0 0

5th Vac. 0 18,918 132,868 71,411 0 0

The resulting curves after the vaccination process are shown in Figures 6 and 7. Here,
the x-axis shows the days, and the y-axis shows the number of individuals. From the newly
infected per day curve, it can be observed that the peak decreases from more than 7000 to
almost 6000, compared with the previous SEAIR curve without vaccination of Figure 4,
which drops to nearly zero on day 250. In this case, the curve decreases slowly after the
peak value. Moreover, from the cumulative instances, it is observed that the number of
cases increases a bit after day 100 compared to the curve of COVID-19 tests, which starts
almost at day 0.
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Figure 6. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Austria’s second wave after applying the best vaccination plan found.

Figure 7. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Austria’s second wave after applying the best vaccination plan found.

Figure 8 shows the curves of each of the subgroups in Austria when the best vacci-
nation plan found is applied. In these Figures, the number of susceptible (S), exposed
(E), asymptomatic (A), infected (I), and recovered (R), and new infections over time are
presented. In all these plots, the x-axis shows the days since the start of the disease, and the
y-axis indicates the number of individuals. It can be observed from the exposed, asymp-
tomatic, infected, and newly infected curves how the Voralberg subgroup has its peak
after day 200. This is when all the other subgroups have peaks close to day 180. This
can be due to the first and second vaccination because it covers more than two-thirds of
their populations.

8× 103 The results of the vaccination plan compared to the nonvaccination plan are
shown in Table 8. The first column of the table corresponds to the evaluated criterion: the
total infected population, maximum number of infected and asymptomatic at the same
time, maximum number of infected at the same time, and maximum number of newly
infected individuals per day (or the peak of the curve). The following columns show the
corresponding result with the best vaccination plan, without vaccination, and the related
perceptual gain. This vaccination plan covers about 13.99% of the total Austrian population,
and it is observed that, in this case, the decrease percentages are higher than this value.
The whole infected is the value that decreases when vaccination is applied. Regarding
the other criterion, they have almost the same decreasing value; this can be attributed to
the movement restrictions and the quantity of asymptomatic population of 30% being the
lower from all the problem instances.



Mathematics 2023, 11, 834 21 of 32

Figure 8. Plots of susceptible, exposed, asymptomatic, infected, recovered, and newly infected
individuals per day for each region of the SEAIR model with the best vaccination plan found.

Table 8. Comparison table of infections with and without vaccination.

With Without Decrease
Best Vaccination Percentage

Vaccination

Total Infected 245,494.840 306,179.115 19.820%

Maximum Infected
and Asymptomatic 70,114.634 85,351.480 17.852%

Maximum Infected 68,085.025 82,903.757 17.875%

Maximum Newly
Infected per Day 4648.093 5645.949 17.674%

7.2.2. Belgium

Adjustments to the SEAIRV model are shown in Figures 9 and 10. These Figures show
the curve of the newly infected per day and cumulative cases of the second wave. From
the newly infected cases, it can be observed that the curve has a very marked peak and a
similar inclination between the increase in patients until the peak and the decrease of the
curve after the peak value. Moreover, the COVID-19 test curve does not end close to zero;
rather, it shows an equilibrium state close to 2500 newly infected per day. Regarding the
cumulative cases, both curves have a prominent inclination between days 75 and 100.

Figure 9. Comparison of newly infected people between SEAIR model and COVID-19 tests in
Belgium. Second wave.

From the experiments of the heuristic approach, the vaccination plan of 300,000 vac-
cines per period was obtained. Part of it is shown in Table 9, which shows the six subgroups
to which a higher number of vaccines were allocated. The first column of the table shows
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the period of vaccination; all other columns show the subgroups considered. In this case,
six of the 11 provinces of Belgium—Flemish Brabant, Antwerp, Liège, Walloon Brabant,
Limburg and Namur—were considered.

Figure 10. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Belgium. Second wave.

During the first and fourth vaccination periods, all the vaccines were allocated to
Antwerp province, but in the other periods, there were almost no allocations. The first
possible reason can be related to the number of infected populations after the vaccination
starts decreasing and different subgroups start to have more infected people. Another
possible explanation can be connected to the restriction measures. Antwerp province had
too many infected populations, and individuals here started decreasing their movement
reaching the point that vaccination would little change the spread of the virus.

Table 9. Vaccines corresponding to the most vaccinated subdivision of the best vaccination plan
obtained from SEAIRV model.

Flemish
Brabant Antwerp Liège Walloon

Brabant Limburg Namur

1st Vac. 0 0 300,000 0 0 0

2nd Vac. 91,507 47,449 0 20,133 4935 10,067

3rd Vac. 59,017 29,817 16 13,188 83,452 30,376

4th Vac. 0 0 0 300,000 0 0

5th Vac. 1380 2656 0 62,231 0 225,805

In Figures 11 and 12, the resulting curves after the vaccination plan are displayed.
Again, the x-axis shows the days since the start of the disease, and the y-axis indicates the
number of individuals. It is observed how the curve of newly infected individuals per day
shifts to the right; also, the peak decreases its value, and the decay after the peak is softer
and takes longer to get to zero newly infected individuals per day. This is compared to
the curve without the vaccination obtained with the SEAIR model. The cumulative cases
maintain a similar shape, but the values of the SEAIR model are always lower.

Figure 13 shows the curves of each of the subdivisions in Belgium when the best
vaccination plan found is applied. It can be observed that most subgroups’ exposed,
asymptomatic, and newly infected curves have a similar shape concerning the plot of
the first curve without vaccination. However, there are two exceptions. The first one
corresponds to Wallon Brabant, from which one can see two waves or two peak values due
to vaccination. The other exception is Hainaut, which has a slower, smoother fall from the
curve after the peak value that looks more like the infected curve. From the susceptible and
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recovered plots, it is observed that vaccinations were varied, distributing different vaccines
to different groups in each period.

Figure 11. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Belgium’s second wave after applying the best vaccination plan found.

Figure 12. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Belgium’s second wave after applying the best vaccination plan found.

Figure 13. Plots of susceptible, exposed, asymptomatic, infected, recovered, and newly infected
individuals per day for each region of the SEAIR model with the best vaccination plan found.

This vaccination plan covers about 13.12% of the total Belgian population, and it is
observed that, in this case, the decrease percentages are lower than this value (Table 10).
Unlike the other vaccination plans, a slight increase in the total number of infected is
obtained here. This can be due to the movement factors of the infected population. This
instance has the highest movement factor for the infected people. This can induce a higher
value of the infected population to restrict their movement completely. By decreasing the
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maximum number of newly infected per day, more freedom to move to the infected people
can be allowed.

Table 10. Comparison table of infections with and without vaccination.

With Without Decrease
Best Vaccination Percentage

Vaccination

Total Infected 502,679.096 495,482.655 −1.452%

Maximum Infected
and Asymptomatic 155,287.904 169,063.317 8.148%

Maximum Infected 148,644.350 161,669.909 8.057%

Maximum Newly
Infected per Day 15,914.796 18,116.113 12.151%

7.2.3. Denmark

To apply the SEAIRV model, Figures 14 and 15 show the curve of newly infected per
day and cumulative cases of the second wave. The x-axis shows the days since the start of
the disease, and the y-axis indicates the number of individuals. It can be observed that the
peak of the newly infected individuals per day curves is almost the same; also, after the
peak, there is a decrease of both curves to a comparable value. For the cumulative cases,
the curves get close and show a moderate slope between days 100 and 200.

Figure 14. Comparison of newly infected people between SEAIR model and COVID-19 tests in
Denmark’s second wave.

Figure 15. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Denmark’s second wave.

Once it has been verified that the curves are similar, it is possible to execute the
algorithm, in this case, with the goal to vaccinate 250,000 people every 30 days five times,
or vaccinate until day 150. The best-obtained vaccination plan is shown in Table 11.
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The first column of the table corresponds to the period of vaccination. The following
columns correspond to the subgroup’s name. In this case, Hovedstaden, Midtjylland,
Syddanmark, Sjælland, and Nordjylland are the five regions of Denmark.

Table 11. Best vaccination plan obtained from SEAIRV model.

Hovedstaden Midtjylland Syddanmark Sjælland Nordjylland

1st Vac. 0 0 0 0 250,000

2nd Vac. 168,060 56,363 419 25,158 0

3rd Vac. 14,360 0 196,157 39,483 0

4th Vac. 179,988 15,631 32,347 22,034 0

5th Vac. 13,176 124,383 41,548 70,893 0

The first vaccination allocates all the vaccines to the subgroup that starts with the
infected population. For this case, the problem instance has the lowest basic reproduction
number (R0), implying that the virus spreads more slowly than in the other cases. At the
beginning of the first period, between days 0 and 30, the infected population started in
Nordjylland and, because of the instance characteristics, did not spread enough to other
subgroups. The distribution is more varied for the other vaccination periods; this is because
the infected population starts spreading faster and is influenced by the contact between
subgroups. In addition, it is observed that Hovedstaden is the one that gets more total
vaccines; this is probably because it is the subgroup with a larger population.

In Figures 16 and 17, the resulting curves after the vaccination plan are displayed.
Again, the x-axis shows the days since the start of the disease, and the y-axis indicates the
number of individuals. It is observed how the curve of newly infected per day is now much
flatter and grows more slowly, generating a shift in the position of the peak. Furthermore,
in the curve of the cumulative case, it is noticed how the maximum quantity of infected
decrease with vaccination and also how the slope has a lower inclination.

In Figure 18, the curves of each of the subgroups in Denmark after the best vaccination
plan found by the SEAIRV algorithm is applied are displayed. It can be observed from the
susceptible population that the vaccination does not follow a similar pattern in time. More-
over, for three of the five regions—Hovedstaden, Syddanmark, and Sjælland—vaccines are
granted for four periods consecutively. Moreover, the second region with less population
(Midtjylland) obtains fewer recovered people. This may be because this area is not a region
that is too infectious and does not infect other areas.

Figure 16. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Denmark’s second wave after applying the best vaccination plan found.
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Figure 17. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Denmark’s second wave after applying the best vaccination plan found.

Figure 18. Plots of susceptible, exposed, asymptomatic, infected, recovered, and newly infected
individuals per day for each region of the SEAIR model with the best vaccination plan found.

The comparison between values obtained with and without vaccination is shown in
Table 12. The first column of the table corresponds to the evaluated criterion, which can be
the total infected population, the maximum quantity of infected and asymptomatic at the
same time, the maximum amount of infected at the same time, and the maximum newly
infected individuals per day (or the peak of the curve). The following columns show the
corresponding results with the best vaccination applied and without vaccination. The last
column shows the improvement percentage after the vaccination plan is used.

Table 12. Comparison table of infections with and without vaccination.

With Without Decrease
Best Vaccination Percentage

Vaccination

Total Infected 74,113.695 218,113.191 66.021%

Maximum Infected
and Asymptomatic 26,976.820 49,953.341 45.996%

Maximum Infected 22,582.891 43,118.680 47.626%

Maximum Newly
Infected per Day 2141.13 3577.559 40.151%

In this case, the total number of vaccines applied at the end of the period corresponds
to 21.40% of the population. A decreasing percentage from the total infected of 66.021%
was obtained. This high value can be due to the fact that after vaccination, the curve
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flattens and reaches its peak value in many more days. The maximum number of infected,
asymptomatic, and newly infected individuals per day decreased similarly.

7.2.4. Chile

For Chile, the model was adjusted to fit both its first and second waves. The curve of
newly infected individuals per day after these adjustments is presented in Figure 19, and
the cumulative infected population is in Figure 20. For both graphs, the x-axis shows the
period (days), and the y-axis indicates the number of individuals. For this case, a vacation
period was applied from day 310 to 370 with an increase in the movement of infected and
noninfected population of 0.001. From the newly infected curve, it can be seen that the
peak occurs approximately on day 110; the COVID-19 data curve gets an equilibrium state
from day 150 to 300 of approximately 2000 people per day. The SEAIR model curve reaches
its equilibrium at about 3000 people per day. The cumulative cases after day 100 from both
curve values are similar until day 350.

Figure 19. Comparison of newly infected people between SEAIR Model and COVID-19 tests in Chile.
First and second wave.

Figure 20. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Chile. First and second wave.

The solution for the vaccination plan of 500,000 vaccines per period was obtained. Part
of it is shown in Table 13. This table shows the six subgroups to which a higher number of
vaccines were allocated. The first column of the table shows the period of vaccination; all
other columns show the subgroups considered. In this case, six of the 11 regions of Chile
are shown: Metropolitan, Bíobío, Los Lagos, Ñuble, Los Ríos, and Arica y Parinacota. It
can be seen that the metropolitan region and Los Lagos are the subgroups that have more
vaccines allocated. The metropolitan region is the subgroup with greater population and is
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the most connected. The Los Lagos region is where the infectious cases started. With regard
to the virus’s infectiousness, it was slow in the beginning, and during the first 30 days it
remained with the subgroup with the more highly infected population.

Table 13. Vaccines corresponding to the most vaccinated subdivision of the best vaccination plan
obtained from SEAIRV model.

Metropolitan Biobío Los Lagos Ñuble Los Ríos Arica y
Parinacota

1st Vac. 0 0 500,000 0 0 0

2nd Vac. 292,324 65,504 537 186 2084 113

3rd Vac. 410,403 0 0 0 0 0

4th Vac. 0 52,199 33,2241 94,743 0 0

5th Vac. 0 0 0 32,033 374,274 93,397

The resulting curve after the vaccination process is shown in Figures 21 and 22. Here,
the x-axis shows the days, and the y-axis shows the number of individuals. It is observed
from the newly infected per day that the peak value slightly decreases, and the curve shifts
moderately to the right side. From the cumulative cases, a modest decrease can be observed.

Figure 21. Comparison of cumulative infected people between SEAIR model and COVID-19 tests in
Chile’s second wave after applying the best vaccination plan found.

Figure 22. Comparison of cumulative infected people between the SEAIR model and COVID-19 tests
in Chile’s second wave after applying the best vaccination plan found.
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Figure 23 shows the curves of each of the subdivisions in Chile when the best vaccina-
tion plan found was applied. The big difference between the population of the metropolitan
region and other subgroups can be seen. Furthermore, the difference between the shape of
the asymptomatic and infected curves, where differences between the peak and the state of
equilibrium are much more pronounced in the asymptomatic curve, can be seen. This is
due to the freedom of movement that the asymptomatic population has.

Figure 23. Susceptible, exposed, asymptomatic, infected, recovered, and newly infected individuals
per day for each region of the SEAIR model with the best vaccination plan found.

The results of the vaccination plan compared to nonvaccination are shown in Table 14.
The first column of the table corresponds to the evaluated criterion: the total infected
population, maximum number of infected and asymptomatic at the same time, maximum
number of infected at the same time, and maximum number of new infected per day (or
the peak of the curve). The next columns show the corresponding results with the best
vaccination plan, without vaccination, and the related perceptual gain.

This vaccination plan covers about 14.23% of the total Chilean population, and it
is observed that, in this case, the decrease percentages are similar to this value. Unlike
the previous problem instances, the difference between the decreased percentage of total
infected and maximum infected is unimportant. It should be emphasized that, for this
problem, different parameter configurations showed better performance, so it is highly
possible that there were much better vaccination plans that delivered a better value for
these types of problems.

Table 14. Comparison table of infections with and without vaccination.

With Without Decrease
Best Vaccination Percentage

Vaccination

Total Infected 840,096.735 983,040.848 14.541%

Maximum Infected
and Asymptomatic 111,306.477 129,594.850 14.112%

Maximum Infected 101,152.092 117,983.213 14.266%

Maximum Newly
Infected per Day 6465.033 7410.361 12.757%

8. Conclusions

In this work, we studied and modeled the COVID-19 spread through subgroups
that were as close as possible to the observed, measured behavior. This mainly considers
geographic divisions and interactions with the idea of finding efficient vaccination plans
considering intervals of periods where vaccines are available. It also considers decreasing
the maximum number of infected people at the same time and the total infected population
of the obtained model.
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The adjustments to get closer to each COVID-19 test curve were based on COVID-
19 and SEAIR parameters that determine the restriction movement for infected and nonin-
fected populations. We sought to assimilate, as much as possible, the peak of the newly
infected curve, the day of the peak, the inclination in the cumulative case curve, and the
shape of the fall after the curve.

Two types of experiments were performed. The first ones were oriented to analyze
the SEAIRV parameter values, and the second ones were oriented to get the vaccination
plans for each problem. From the first experiments, it was possible to conclude that the best
parameter values for the SEAIRV algorithm were the All to One initialization due to the
lower time obtained with it with presumed faster convergence and stagnation. Probabilities
of 80%, 10% and 10% existed for the movements Give Random, Swap Random, and
Invert Random, respectively. There is a big necessity for the Give Random movement,
which changes the proportion of the number of vaccines per subgroup, and the other
two movements can support a faster convergence. Finally, the distribution of half of the
importance to each objective function is low because of the time taken to converge and
search for solutions with both objectives.

Another of the conclusions obtained from these experiments was that there are prob-
lematic instances with opposite objectives; for example, there are solutions with a more
infected population at the same time but a lower value of total infected individuals in
the period.

For the proposed method, when looking for the combination of vaccines per period
and taking into account that period and not future ones, the first population infected in
most of the cases influences the allocation of vaccines to these subgroups. Furthermore,
it has been shown that despite the percentage of the population vaccinated with small
portions, it is possible to make more significant changes depending on the vaccination plan,
the reproduction number, and the movements of the infected and noninfected population.

In future work, some additional scenarios can be studied, e.g. the use of real movement
data between subdivisions to get problem instances closer to reality. In addition, we can add
more subgroups with different ages and prioritize vaccinating some of them or seeing that
they have other movement or contact. We can change the way to find vaccines per period,
focusing on the time after the last vaccination to see if we can find better combinations. We
can find new movements to allow a faster convergence to high-quality solutions.
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