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Abstract: Glass is a common object in living environments, but detecting it can be difficult because of
the reflection and refraction of various colors of light in different environments; even humans are
sometimes unable to detect glass. Currently, many methods are used to detect glass, but most rely
on other sensors, which are costly and have difficulty collecting data. This study aims to solve the
problem of detecting glass regions in a single RGB image by concatenating contextual features from
multiple receptive fields and proposing a new enhanced feature fusion algorithm. To do this, we
first construct a contextual attention module to extract backbone features through a self-attention
approach. We then propose a VIT-based deep semantic segmentation architecture called MFT, which
associates multilevel receptive field features and retains the feature information captured by each
level of features. It is shown experimentally that our proposed method performs better on existing
glass detection datasets than several state-of-the-art glass detection and transparent object detection
methods, which fully demonstrates the better performance of our TGSNet.

Keywords: glass detection; transformer; feature fusion algorithm; image classification

MSC: 68T45; 68T07; 68U10

1. Introduction

Glass is widely used; it is made into windows, door frames, appliances, decorations,
lamps, furniture, and other items, and it is an indispensable resource. However, glass
can pose problems, such as when robots fail to recognize glass, leading to collision, and
3D point cloud reconstruction fields generate considerable noise owing to the effect of
glass reflections. Therefore, the detection of glass is essential, and it is a new and difficult
computer vision challenge. There are many types of glass, such as common flat glass,
nondual-transparent matte glass, and colorful fancy window glass. These types of glass
can be affected by the surrounding environment and lighting conditions to show different
characteristics, and their patterns, scattering, reflection, and color make them difficult to
detect. At the same time, the presence of glass has a significant impact on many other
areas of research, such as point cloud denoising tasks [1], depth estimation algorithms [2,3],
salient object detection methods [4-6], and semantic segmentation methods [7-14]. Owing
to the nature of the glass itself, it can easily be confused with the scene, resulting in low
performance on these tasks in scenes with a large amount of glass.

To solve the impact caused by glass, the first task is to collect a large amount of
image data containing glass objects and glass-like objects to construct datasets; authors
of [15-17] accomplished the task of constructing glass datasets. Based on these datasets,
great progress has been made in the fields of semantic segmentation and salient object
detection for detecting glass in 2D images [18-22], and our TGSNet is implemented based
on these datasets. We designed a semantic segmentation method to implement glass
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detection. Many glass region detection methods that depend on extra data have been used
to detect glass in images, such as using heat maps (RGB-T) [23], depth maps (RGB-D) [24],
and polarization maps (RGB-P) [25]. Although these studies achieved good results, their
data requirements are rigorous, and their methods are not applicable if only RGB images are
used. In other methods that use only RGB images, authors of [15] designed a structure for
extracting different layer contexts from backbone features to detect different sizes of glass
in a scene, and authors of [26] devised an enhanced boundary learning method to detect
glass-like objects. However, the experimental results of these methods can be improved. To
solve these problems, we believe that using a vision transformer (VIT) is a good solution,
where VIT [12] provides a new idea for migrating natural language processing (NLP) tasks
to computer vision tasks, which can achieve good results with fewer training resources.
However, the limitations of VIT are that it cannot handle different input sizes, and its
position encoding has a fixed-length limitation.

To solve the problem of detecting glass objects from a single RGB image and the
limitations of VIT mentioned above, we propose TGSNet, which is a transformer-based
glass region segmentation network. First, we design a contextual attention module (CAM)
that uses self-attention to concatenate the multilayer results obtained from the feature
backbone. Then, we design a network called a multifield transformer (MFT) based on the
VIT model, which can provide different receptive field outputs. Because the features of glass
objects are usually difficult to capture, we associate multiple receptive fields to infer the
glass regions and retain the feature information obtained at each level of the receptive field.
Finally, to fully utilize the feature information at each level of receptive field, a cross-modal
contextual feature fusion (CCFF) module consisting of multiple transformer heads is built
into TGSNet. First, the features are separated cross-modally into segmentation features
and boundary features and analyzed separately. Then, a multiheaded self-attention-based
transformer and dilation convolution are used for multi-size perceptual field feature fusion.
Dilation convolution is a deep structural extension of our atrous spatial pyramid pooling
module (ASPP) in DeepLabv3 [18], whereby we designed the unique cross-modal ASPP
(C-ASPP). It allows the analysis of boundary features and segmentation features separately,
inspired by AdaptiveASPP [19].

Effectively, when we used ResNeXt101 as the backbone network, the method presented
in this paper showed significant performance improvement, similar to other existing
methods. Our method can visually detect glass objects with more detailed boundaries and
produce more accurate segmentation results on a glass detection dataset (GDD) [15] than
can existing methods.

Concisely, the contribution of our proposed method is as follows:

o  We first construct a CAM to extract backbone features through a self-attention ap-
proach. We then propose a VIT-based deep semantic segmentation architecture, called
MFT, which associates multilevel receptive field features and retains the feature infor-
mation captured by each level of features.

e A CCFF module is designed. It can extract boundary and segmentation features
from multiscale and cross-modal features and associate contextual field-of-view
fusion features.

e A model named TGSNet is constructed, which outperforms existing glass detection
methods in terms of both performance and visual performance.

2. Related Work

The essence of the glass detection task is to label the glass regions in an image, usually
using the glass and background as labels for classification; therefore, the core problem is the
same as semantic segmentation. This can be regarded as a semantic segmentation subtask.

Semantic segmentation: Semantic segmentation associates each pixel in an image with
its corresponding class (label) to classify the image content. Some early approaches [27,28]
used fully convolutional networks and proposed the concepts of feature map fusion and
stitching. Badrinarayanan et al. [29] optimized the fully connected layer using an encoder—
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decoder structure and proposed the use of a maximum pooling index for up-sampling.
Chen et al. [18,30,31] proposed a null pyramid pooling method in combination with the
Zhao et al. pyramid pooling module [10], which uses null convolution to expand the
receptive fields of view and refine the boundaries. He et al. [8] extended Fast R-CNN [32]
using binary segmentation and proposed the use of bilinear interpolation to upsample the
features for accuracy.

Transformer for semantic segmentation: In recent years, transformers have commonly
been used in the computer vision field. Wang et al. [11,33] designed a pure transformer
backbone and developed a pyramidal structure of attention layers that could save compu-
tational resources and detect multiscale features. Guo et al. [34] designed a convolutional
attention module that saves a large amount of computational resources compared with
self-attention while guaranteeing good performance. Xie et al. [16] provided a large trans-
parent object dataset containing glass types and designed an encoder—decoder network
that could provide a global receptive field and classify glass region based on the VIT net-
work [12]. Zhang et al. [35] proposed a deeper encoder—decoder network and designed a
small transformer head to prevent overfitting.

Glass detection: Recently, Mei et al. [15] contributed to a glass detection dataset, GDD,
and proposed a method to extract different layer features from the backbone network
and fuse deep and shallow features to detect glass. Cao et al. [19] proposed a method to
enhance the ability to distinguish boundaries that could extract features across modali-
ties and multiple scales. Hao et al. [26] proposed a boundary-aware module that could
model the boundaries of global shapes. Some methods use multidimensional data; for
example, Mei et al. [20] used polarization information to detect glass. Huo et al. [23] used
thermograms to fuse RGB images and thermal modal features to detect glass. Lin et al. [24]
constructed an RGB-D glass dataset and used depth information to analyze glass features.

After reviewing existing methods in related fields, we found that there was room for
improvement. Some approaches concatenate contextual features but ignore the differences
between different levels of features. There are also approaches that use a combination
of boundary and segmentation features, but they ignore the holistic nature of the target
features. By combining the advantages of the above approaches and summarizing the
drawbacks of the current methods, we propose TGSNet. Compared with previous works,
our backbone uses a multilayer transformer based on convolutional attention and designs
a novel feature fusion module consisting of transformer heads.

3. Proposed Method

Our approach combines the strengths of and addresses the weaknesses of existing
state-of-the-art techniques. We first design the CAM module, which extracts and connects
contextual information from the backbone network with features of different sizes using
self-attention. We use the convolutional transformer structure in MFT to obtain richer
feature semantics from different receptive fields. Therefore, deeper structures must be
used to achieve a greater number of receptive field scales. However, when we use self-
attention with a multilayer transformer structure, the number of parameters increases as
the structure deepens. To solve this problem, we chose to use multiscale convolutional
attention, and multiscale convolutional attention structures ensure the use of a smaller
number of parameters while ensuring as much accuracy as possible [18]. The CCFF module
aims to transform feature information into cross-modality boundary and segmentation
features and enhance both features. The background feature information is then gradually
cascaded from a large receptive field to a small receptive field.

As shown in Figure 1, our network consists of four parts: a feature backbone, CAM,
MFT backbone, and CCFF module. The base feature backbone network we use is ResNeXt-
101, with an output of four layers of size, (%, %, 256), (%, %, 512), (%, %, 1024), and (%,
%, 2048) features. CAM contains four sets of attention-transforming header blocks for
obtaining the output of the feature backbone network, as described in Section 3.1. The MFT
contains six encoders to obtain receptive field features of different sizes, as described in
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Section 3.2. The CCFF multiscale attention to the adaptive fusion of different receptive field
features is described in Section 3.3.
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Figure 1. Overall framework structure of TGSNet.

3.1. CAM

Extracting the features of a backbone network is usually done with the convolution
method to obtain feature information at different scales, but the convolution method
limited receptive field prevents them from aggregating global context [36]. Therefore, to
obtain more accurate features, we designed a CAM that, as the name suggests, uses four
groups of light transformer header blocks in parallel, as shown in Figure 2, to extract
features from the backbone network output from the four layers of contextual information
to obtain preliminary backbone fusion features. The purpose of doing this is to weight
the target region, so the self-attention can focus on important information and ignore
useless information [37,38]. The role of the parallel structure in this study is to reduce the
differences that exist between the feature information that is output by different layers
to suppress useless information and to enable global and local linkage [12], as specified
in Section 4.5 (A). In each transformer header block, a multiheaded self-attention layer
and feed-forward network (FFN) layer are included, which are used for the multiheaded
self-attention layer to add weights to the features, and FFN converts all the shapes of the
features to (f, &, 64). The output shape of the first layer is (£, &, and 64). The output
shape of the second layer is (%, %, and 64). The third layer output shape is (%, %, 64), and
the fourth layer output shape is (352, 3%, 64). These shapes are all transformed, upsampled
to (4, &, 64), and fused with the features of the previous layer. The attention weighting
process of each layer can be expressed as:

head; = Attention(q;, K, V) 1)
K"
Attenti K, V)= t %4 2
ention(q; ) =sof max(\/ﬂ> ()
MultiHead Attention(Q, K, V) = Concat(heady, head,, . . ., head,, )W 3)

where g; € R% is the query for each layer, K € R% is the key, V € R% is the value, d; is the
scaling factor, and W is the learnable parameter.
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Figure 2. Contextual attention module structure.

After multi-head self-attention layer weighting and FFN transformation to a specified
number of channels, we have 64 channels. The feature map obtained from each layer is
upsampled to the size of the first layer using a bilinear interpolation method. The feature
maps of all layers are fused, and the operation process can be expressed as follows:

Fcam = contact(Fry, Fra, Fr3, Fr4) 4)

Fcam represents the attention-weighted backbone features obtained by fusion, Fr; denotes
the weighted features of each layer, and “contact” denotes the feature fusion step.

3.2. MFT

After the backbone features are fused, the features have redundant information be-
cause of the different features in the different layers [39,40]. Therefore, we designed a
multilevel field-converter backbone with the structure shown in Figure 3. The main pur-
pose was to fuse the backbone features obtained from CAM one by one with six different
receptive fields, (5, ¥, 64), (8, ¥, 128), (&, ¥, 192), (i, 1, 256), (£}, ¥, 320), and (£}, ¥,
512), for feature analys1s where H and W refer to the length of the input features in the
longitudinal and lateral directions, respectively; the smaller the input size, the larger the
receptive field. We obtain more details about the local features from the small receptive field
and then correlate them downward to realize the local-to-global concatenation. The entire
feature analysis process is performed sequentially from the small to the large receptive
fields. The input of the first layer is the fused features of the CAM, and the input to layers
2-6 is the output of the previous layer. The output of each layer is stored and input to the
next module, while the features of each layer are retained.
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Figure 3. Multilevel field transformer structure.

We follow the overall structure of the traditional visual transformer, which contains
patch embedding, position embedding, an attention block, and a feedforward network.
However, unlike VIT [12], as shown in Figure 3, a convolutional attention block [34] instead
of a multiheaded self-attention block is used in this study to construct a new convolutional

attention transformer, whose internal details are shown in Figure 4.
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Figure 4. Convolutional attention module.
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This convolutional attention module contains several main parts. One is the cross-
channel linear combination of input feature information that uses 1 x 1 convolution, that
is, linear transformation along different channels, to integrate the information between
different channels. Second, for multiscale contextual feature integration, we choose to use a
5 x 5 convolution to guarantee an effective receptive field [41]. Although using two 3 x 3
convolutional stacks reduces the number of parameters, the proper use of large convo-
lutional kernels can strengthen localization and classification ability [42]. Subsequently,
convolutional attention is divided into (1 x 7,7 x 1), (1 x 11,11 x 1), and (1 x 21,21 x 1)
convolutional sizes. Dividing a two-dimensional convolution into a series of asymmetric
convolutions can effectively reduce the total number of parameters to a great extent, while
the banded convolution facilitates the analysis of narrowly shaped targets [43], which
also ensures accuracy. Therefore, we use three asymmetric convolutional kernels of differ-
ent sizes instead of multiheaded self-attention, and the process of multiscale attentional
analysis from can be expressed as:

atten = Convsys(F) (5)
atteny = Convyx1(Convyyy(atten)) (6)
atteny = Convyyx1(Convix1y (atten)) ?)
attens = Convyy«1(Convy o1 (atten)) (8)

where F is the feature obtained by channel integration, “atten;” is the attention weight
matrix obtained by the convolution of size (1 x 7,7 x 1), “atteny” is the attention weight
matrix obtained by the convolution of size (1 x 11, 11 x 1), “attens” is the attention
weight matrix obtained by the convolution of size (1 x 21, 21 x 1), and “Convyx, " is the
convolution size.

The three obtained weight outputs are fused with the attention weights of the 2D
convolutional output, and a convolutional attention weight matrix is then output. The
feature “F” will then be multiplied with the attention weighting matrix attention, as in the
self-attention mechanism, to obtain the attention-weighted features Fep-

Attention = atten + atten, + atten, + attens 9)

Fatten = F ® Attention (10)

This operation considerably reduces the number of parameters without an excessive
loss of accuracy. Subsequently, the module integrates the channel information usinga 1 x 1
convolution and correlates it with the original features. Finally, the convolutional attention
module outputs a feature with the convolutional attention weights.

3.3. CCFF

The CCFF module, whose structure is shown in Figure 5, contains six groups of feature
fusion modules composed of three parts: C-ASPP, transformer conversion head (TCH), and
mixing head block (MHB). The purpose of the C-ASPP is to transform the input feature
information cross-modally into boundary and segmentation features. TCH reuses self-
attention weighting for the obtained boundary and segmentation features. MHB fuses the
features of the previous layer and reuses the self-attention weighting for the fusion results.
The input of each group comes from the output of MFT, and its top-to-bottom input shapes
are (3, %W 64), (5, 7, 128), (£, ¥¥ 192, (2, ¥, 256), (}, ¥, 320), and (&, &, 512).
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Figure 5. Cross-modal contextual feature fusion module.

To avoid losing accuracy by downsampling and to generate redundant computations
by repeatedly convolving the same region, we invoke a dilation convolution method called
ASPP [31]. Our C-ASPP also benefits from the structure of the cross-modal analysis bound-
ary and segmentation features in AdaptiveASPP [19], which uses dilation convolution
with five dilation rates. Owing to the multilevel structure of our MFT, we further extend
ASPP [31] to ensure that each receptive field can obtain sufficient features. The C-ASPP
structure shown in Figure 6 was also designed with a dilation convolution structure having
six dilation rates of 6, 12, 18, 24, 30, and 36 steps. Dilation rates can serve to increase the
receptive field without downsampling to analyze a larger range of feature information.
First, features are input to C-ASPP to obtain boundary and segmentation features across
modalities to obtain more information about the scaled receptive field. We use the ASPP [31]
to obtain multiscale features with different dilation rates and to preserve the overall data
features and prevent overfitting using adaptive, two-dimensional averaging pooling:

F, = SeparableConv2dy (Fytten ) (11)

fn = Adaptive AvgPool2d(F,) (12)

where F;, denotes the feature acquired at dilation rate n. SeparableConv2d, is the depth-
separable convolution method used to implement void convolution, and it corresponds
to the dilation rate. AdaptiveAvgPool2d is an adaptive two-dimensional averaging pooling
method, Fuen denotes the feature output from the corresponding layer of MFT, and f;
denotes the feature after average pooling at the n dilation rate.

However, the features of the detection boundary differ from those of the detection
target region. Therefore, we use a branch of boundary feature extraction to extract the
boundary and segmentation features separately at multiple scales. This section references
the AdaptiveASPP approach [19], where the boundary modal branch and the segmentation
modal branch are feature-enhanced using the original features separately, and a residual
layer is added to prevent network degradation. The process of feature-enhanced can be

expressed separately as:
6

S = R(concat(y_ ¢(f;) + Fu)) (13)

n=1
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where “S” is the segmentation feature output, “B” is the boundary feature output, “concat”
is the operation of convolving 6 layers of dilation convolution, “¢” refers to the FC-Relu-
FC-Tanh block, “s” refers to the segmentation mode, and “b” refers to the boundary mode.
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Figure 6. Cross-modal atrous spatial pyramid pooling module structure.

The C-ASPP module processes the features of each MFT layer and outputs the bound-
ary and segmentation features cross-modally. During feature fusion, redundant information
is generated owing to differences in the features of different cascades [39,40]. Therefore,
they are input into the two lightweight TCHs, as shown in Figure 7; then, attention weights
are added to them, and the redundant information is filtered. The green branch repre-
sents the boundary flow, and the blue branch represents the segmentation flow. The same
attention-weighting formula as in Equations (1)—(4) is used and applied to the boundary
and segmentation features, respectively.

<— Boundary stream

<—— Segmentation stream

PN ||| FN
4
Multi-headed Multi-headed
Self-Attention Self-Attention

Figure 7. Transformer conversion head.
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To realize the contextual linkage of multilevel receptive fields, it is necessary to fuse
the boundary features with the segmentation features and the features of the previous layer
at each layer. Because the features in the previous layer need to be upsampled for fusion,
some features are lost during the upsampling process. To ensure accuracy, it is necessary
to perform feature analysis again after fusion; therefore, we designed MHB. As shown in
Figure 8, it contains a lightweight ASPP layer and a lightweight transformer header. The
segmented features are first fused and enhanced with boundary features, and then passed
to ASPP along with the features of the previous layer to achieve context-dependent feature
fusion of multilevel receptive fields, which is represented as:

F:

gl

fix (fiof) (15)

Il
—_

“

“F” is the final feature obtained by fusion, “f,” is the boundary feature, “f;” is the segmenta-
tion feature, and “i” is the number of layers.

<— Boundary stream

<— Segmentation stream

< TFusion feature stream

[ mv ]

—P

Multi-headed
Self-Attention

Norm
Linear
Flatten

| Previous
ASPP laver features
A
A
v

Boundary Segmentation
features X< features

D

Figure 8. Mixed head block.

The transformer head uses the same principle as TCH to suppress useless information
in the fused features, and it uses the attention weighting of the fused features to enhance
the features. However, the difference is that the FFN layer reduces the dimensionality of
the changed output to adapt the feature dimensions of the latter layer while reducing the
number of parameters, and the dimensionality is compressed by a convolution in the last
layer to achieve classification.

3.4. Loss Function

In the network framework designed in this paper, segmentation loss and boundary
loss are mainly used, where “G” is the ground truth. “G,” represents the ground truth
of the boundary, “P” represents the prediction result, and “P},” represents the boundary
prediction result. The segmentation loss and boundary loss can then be expressed as
follows, respectively.

2|P N G| + smooth
 |P| + |G| + smooth

_ 2[Py N Gy| + smooth
|Py| + |Gp| 4 smooth

Lseg =1 (16)

Lboundary =1 17)

where the value of “smooth” is 1 to prevent the denominator from becoming zero.
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4. Experiment
4.1. Dataset and Settings

GDD Dataset [15]: This is a dataset focusing on glass detection and covering various
scenarios such as shopping malls, streets, offices, and residences. It contains 2827 indoor
images and 1089 outdoor images, and in the same way as for the data division provided
by the GDD dataset, we used 2980 of the images as training data and the remaining 936
images as test data.

Implementation Details: First, we binarized the ground truth of the dataset and
transformed it into a single-channel image, which facilitated the training process to focus
on learning the labels of the target objects. We built our network model using PyTorch
1.8.0 and Cuda 11.3. The platform we used to perform the training was 3 RTX A6000,
with an initial learning rate of 1 x 10~* decayed by the poly strategy [44]. We used a
ResNeXt-101 [45] backbone network pretrained on ImageNet [46], and the learning rate
decayed linearly to 1 x 10~° after training. The optimizer used was Adamw, with epsilon
setto 1 x 1078 and weights decaying to 1 x 10~*. The batch size was set to 12 for each GPU.
After training on GDD [15] for 500 epochs, convergence was achieved after an average time
of 36 h. The input size for the experiments was 512 x 512 resolution. For a fair comparison,
we did not use any augmented data, online hard example mining (OHEM), auxiliary loss,
or class-weighted loss.

4.2. Evaluation Metrics

We followed the work of [20] using four semantic segmentation metrics to evaluate the
performance of glass detection: intersection over union (IoU), F-measure (FB) [47], mean
absolute error (MAE), and the balance error rate (BER) [48].

The IoU is a widely used evaluation tool in the semantic segmentation field and is

defined as:
Y (G j) < P(i )
L X (G j) + PG j) = GUi,j) x P(i, )

where “H” and “W” are the height and width of the image, “G” is the ground truth mask,
and “P” is the binarized prediction result mask. The glass region is labeled 1, and the other
regions are labeled 0.

The F-measure is also an evaluation criterion commonly used in the segmentation
field to assess the performance of classification models. Following [49], this study uses the
weighted F-measure [47], which has been proven to be more accurate than the F-measure
for evaluation results according to some recent studies. It is specifically defined as:

IoU =

(18)

Precision®” x Recall%
B = (1+8) -
B +B B2 x Precision® + Recall?

(19)

where B (B = 1) is the parameter that regulates whether the detection is excessive, “precision®”
is the weighable accuracy, which represents a measure of accuracy, and “Recall*” is the
weighted recall, representing a measure of completeness.

The MAE is the average of the absolute error between the ground truth and prediction
result, which is used in this study in the form of:

1 gEwo o .
MAE = 5 ;];W(l/]) —G(i,j)| (20)

where “P(i,j)” denotes the label information of the binary prediction outcome mask on “(i,j)”.
The BER evaluates the mean value of the respective prediction error rate in positive
and negative case samples and is calculated as:

BER =100 x (1— ~(L2 L IN

2'Np VH)) (21)
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where “TP” is the number of pixels predicted to be correct for the target, “TN” is the
number of pixels predicted to be correct for the nontarget, N, is the total number of pixels
for the target, and N, is the total number of pixels for the nontarget.

Higher values of IoU and F-measure are desired, whereas lower values of MAE and
BER are desired.

4.3. Comparison Methods

We selected 21 methods for comparison with our approach to validate the performance
of our TGSNet, based on papers in fields related to our research topic and arranged by year
of publication. These included the semantic segmentation methods PSPNet [10], ICNet [50],
DeepLab3+ [31], BiSeNet [51], DANet [7], CCNet [52], GFFNet [53], FaPN [54]; salient
object detection methods RAS [55], DSS [56], EGNet [36], F3Net [57]; transparent object
segmentation methods TransLab [58], Trans2Seg [16], Trans4Trans [35]; mirror segmen-
tation methods MirrorNet [17]; and glass segmentation methods GDNet [15], GSD [59],
EBLNet [26], and PGSNet [20]. To fairly compare the performance of the network frame-
works, without any augmented data, we used the recommended optimal parameters for
the public code papers, and we trained on the GDD dataset. For nonpublic code papers,
we used the values provided in a previous study [20]. All the evaluation results were
computed using the same evaluation codes.

4.4. Comparison with Existing Methods

In Table 1, we show the evaluation results of our method on the GDD dataset compared
against other studies, with specific evaluation results from the aforementioned previous
study [20]. As can be seen from the comparison in the table, our method has a much higher
IoU score than do the other methods. The IoU metric is the most important performance
metric in the field of semantic segmentation, and the IoU of our method is 0.66% higher than
that of the current state-of-the-art glass segmentation method PGSNet, and the Fg’ of our
method is 0.7% higher than PGSNet. As shown in Figure 9, a qualitative comparison was
made with six state-of-the-art glass and transparent object segmentation methods (salient
object detection method ITSD [60], transparent object segmentation methods Trans2Seg [16]
and Trans4Trans [58], mirror segmentation method MirrorNet [17], glass segmentation
method EBLNet [26], and GDNet [15]). Our TGSNet can segment glass regions in dark light
(rows 2 and 3), in multiple glass regions (rows 4, 5, 6, 8, 9, and 10), and in large glass region
(rows 1, 7, and 13), as well as outdoor natural lighting conditions (rows 4, 5, 11, and 14),
and the rest are lighting conditions for different types of lights indoors with almost no false
detection with almost no false detection and with smoother edges than the other methods
while ensuring the integrity of the segmented glass regions. This is mainly because the
multiple-use lightweight transformer header in TGSNet can filter redundant information
and explore different background levels to enhance the features. For example, on the right
side of the resulting image in row 6, other methods would label part of the nontarget region
as glass, while our method filters the redundant information contained in the features
multiple times due to its different receptive fields. Filtering is carried out both to locate the
glass region more accurately while limiting the impact of the background (rows 1 and 7)
and to retain more detail (rows 12 and 14).

Table 1. Quantitative comparison of our designed network TGSNet with classical and non-open-
source algorithms on the GDD dataset. Red indicates the best results, and blue indicates the second-
best results.

. GDD [15]
Method Published Journals Backbone ToUt F'g 1 MAE/| BER|
PSPNet [10] CVPR'17 ResNet-50 84.06 0.867 0.084 8.79
ICNet [50] ECCV’18 ResNet-50 69.59 0.747 0.164 16.10
DeepLab3+ [31] ECCV’18 ResNet-50 69.95 0.767 0.147 15.49

BiSeNet [51] ECCV'19 ResNet-50 80.00 0.830 0.106 11.04
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Table 1. Cont.

Method Published Journals Backbone JoUt - GDD [151]\/IAEi BER
DANet [7] CVPR’19 ResNet-50 84.15 0.864 0.089 8.96
CCNet [52] ICCV’'19 ResNet-50 84.29 0.867 0.085 8.63

GFFNet [53] AAAT'20 ResNet-50 82.41 0.855 0.090 9.11
FaPN [54] ICCV21 ResNet-101 86.65 0.887 0.062 5.69

RAS [55] ECCV'18 ResNet-50 80.96 0.830 0.106 9.48

DSS [56] TPAMI'19 ResNet-50 80.24 0.799 0.123 9.73
EGNet [36] ICCV'19 ResNet-50 85.05 0.870 0.083 7.43
F3Net [57] AAAT'20 ResNet-50 84.79 0.870 0.082 7.38

ITSD [60] CVPR’20 ResNet-50 83.72 0.862 0.087 7.77

MirrorNet [17] ICCV'19 ResNeXt-101 85.07 0.866 0.083 7.67
TransLab [58] ECCV’20 ResNet-50 81.64 0.849 0.097 9.70
GSD [59] CVPR’21 ResNeXt-101 87.53 0.895 0.066 5.90
PGSNet [20] TIP22 ResNeXt-101 87.81 0.901 0.062 5.56
TGSNet (our) \ ResNeXt-101 88.47 0.908 0.058 5.70

10

11

12

13

14

-
Image

Figure 9. Results of visual comparison between our TGSNet and six other methods.

EBLNet

GDNet
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Since the GDD dataset does not contain test data for lighting conditions, we took
photos of glass doors at the same location during the day and night as a small light
condition experiment. Figure 10 shows that our method works well for glass segmentation
both in the daytime and nighttime, where we made the ground truth manually.

Daytime Image GT Result Nighttime GT Result

Figure 10. Results under different lighting conditions (day and night).

As shown in Table 2, we retrained some open-source glass and transparent object
detection methods strictly according to the parameters provided in the original paper and
evaluated them for comparison. In particular, none of the tested methods use any data
augmentation or OHEM, auxiliary, or class-weighted loss. We evaluated only the glass
segmentation performance. Comparing the values of the results in Table 2, the IoU, which
is the most important evaluation metric, of our method is much higher than that of the
other methods, thus showing that our method’s performance is the best.
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Table 2. Comparison results of our algorithm with open-source glass and transparent object segmen-
tation methods on the GDD dataset. The red color marks the best results, and the blue color marks
the second-best results.

Method Published Journals Backbone ToU' - GDD [11\5/[]AE¢ BER,
Trans2seg [16] IJCATI'21 ResNet-50 84.41 0.872 0.078 7.36
Trans4Trans [35] ICCVW"21 PVT-Medium 84.94 0.878 0.076 6.86
GDNet [15] CVPR’20 ResNeXt-101 87.63 0.898 0.063 5.62
EBLNet [26] CVPR21 ResNeXt-101 84.98 0.879 0.076 7.24
TGSNet (our) \ ResNeXt-101 88.47 0.908 0.058 5.70
As shown in Table 3, the results of the computational efficiency as well as the number
of parameters, inference speed, and memory usage between our TGSNet and the state-of-
the-art glass segmentation methods are compared. Since GSD [59] and PGSNet [20] are not
open-source, we can only obtain partial results from paper [20]. The results of all methods
are obtained in the same environment using the python library “ptflops” [61]. In terms
of computational efficiency, TGSNet requires 40% less FLOPs than PGSNet [20] for each
resolution of the input, while it is lower than all other methods. In terms of number of
parameters, it is slightly lower than GDNet [15] and higher than EBLNet [26]. The inference
speed and memory usage are higher than other open source methods.
Table 3. Comparison results of our algorithm with state-of-the-art glass and transparent object
segmentation methods in terms of computational efficiency as well as average inferred speed per
image and memory usage. Red indicates the best results, and blue indicates the second-best results.
Methods FLOPs (G) MParams (pesrplf:::ge) Memory
352 x 352 384 x 384 416 x 416 512 x 512
GDNet [15] 194.48 231.45 271.63 411.46 201.72 0.18s 1623 MiB
GSD [59] 77.892 92.697 108.790 / / / /
EBLNet [26] 255.34 303.87 356.63 540.2 111.45 0.23s 6515 MiB
PGSNet [20] 80.789 96.145 112.837 / / / /
TGSNet (our) 49.86 58.98 69.57 104.87 185.472 0.26 s 8921 MiB

4.5. Ablation Experiments

In this section, we describe three sets of ablation experiments. We verified the effec-
tiveness of the CAM, MFT, and CCFF components through different experiments. We
compared the performance of the CAM module with CNN in extracting backbone features,
the effect of using self-attention versus convolutional attention on the number of param-
eters in MFT, and the effect of each feature analysis module on the overall performance
in CCFF. We present the results in Tables 4—6 and Figures 10-12. In the table, “Networks”
represents the network structure used, “Backbone” represents the backbone network used
for training, and “MParams” represents the number of parameters.

Table 4. CAM module ablation experimental results: “conv” refers to the extraction of back-
bone features at different levels using convolutional methods, and “CAM” denotes our contextual
attention module.

GDD [15]
Networks Backbone ToU?t FgT MAE| BER|
a. Conv + MFT + CCFF ResNeXt-101 87.29 0.898 0.062 6.36
b. CAM + MFT + CCFF ResNeXt-101 88.47 0.908 0.058 5.70
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Table 5. Results of ablation experiments show that using convolutional attention in MFT can effec-
tively reduce the number of parameters without loss of accuracy; “atten” indicates self-multi-headed
attention, and “conv atten” indicates multiscale convolutional attention.

GDD [15
Networks Backbone MParams ToUt Py [M]AE 1 BER|
a. CAM + CCFF ResNeXt-101 63.260 87.58 0.884 0.074 6.36
b. CAM + self atten +CCFF ResNeXt-101 249.389 88.28 0.902 0.060 5.89
c. CAM + conv atten +CCFF ResNeXt-101 185.472 88.47 0.908 0.058 5.70

Table 6. Results of CCFF module ablation experiments; “C-ASPP,” “MHB,” and “TCH,” are the
multiscale cross-modal feature extraction, fusion head block, and transformer transformation head in
the CCFF module, respectively.

GDD [15]

Networks Backbone ToUt Py MAE] BER|
a. CAM + MFT + C-ASPP ResNeXt-101 87.31 0.896 0.063 6.58
b. CAM + MFT + C-ASPP + MHB ResNeXt-101 88.05 0.903 0.060 6.00
c. CAM + MFT + C-ASPP + TCH + MHB ResNeXt-101 88.47 0.908 0.058 5.70

Image a. Conv + MFT + CCFF

b. CAM + MFT + CCFF

Figure 11. Comparison of results of CAM module ablation experiments. (a) uses the convolution
method and (b) uses the CAM module.

4.5.1. Effectiveness of the CAM Module

In this section, to verify the validity of CAM, the convolution method is used for
comparison with CAM and to replace the CAM structure and continue the experiment
without change in the other structures. The experiment was divided into two parts, (a) and
(b). Part (a) uses convolution to obtain backbone features and uses MFT and CCFF, and
part (b) uses our CAM to obtain backbone features and also uses MFT and CCFF.

As shown in Figure 11, using our CAM enhances the feature information from the
feature backbone while filtering out erroneous features owing to differences between differ-
ent layers (as shown in the blue dashed box in Figure 11) relative to using a convolution
approach to extract the feature backbone and perform feature fusion at different levels.
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GT a. CAM + CCFF b. CAM + self atten c. CAM + conv atten
+CCFF +CCFF

Figure 12. Comparison of the results of CCFF module ablation experiments; (a) is the result of using
only C-ASPP, (b) of using C-ASPP and MHB, and (c) of using C-ASPP + TCH + MHB.

In Table 4, we quantitatively compare the evaluation results of the two approaches and
clearly demonstrate that our CAM module is more effective for backbone feature extraction
and fusion.

4.5.2. Effectiveness of the MFT Module

In this section, we discuss the case where a structure other than the MFT is guaranteed
to be constant. We introduced the self-attention method and the multiscale convolutional
attention method into MFT separately to compare them quantitatively with the case where
MEFT was not used. The aforementioned experiments were conducted to verify the validity
of the MFT. This part is divided into groups (a), (b), and (c) for the experiments, where (a),
(b), and (c) all use the same CAM and CCFF; the difference is that (a) does not use the MFT
module, (b) uses MFT with multi-headed self-attention, and (c) uses MFT with multiscale
convolutional attention.

As shown in Table 5, it can be found that the total number of parameters significantly
declined after using the multiscale convolutional attention mechanism compared with
using the multi-headed attention mechanism. Simultaneously, the accuracy of segmentation
was ensured, and none of the four evaluation metrics decreased. It can be noted that
MFT improves the IoU value by 0.19% after using multiscale convolutional attention is
used relative to using self-attention, which proves that the feature extraction performance
is improved.

In addition, as shown in Figure 12, we qualitatively show that a more complete
detection of the glass region is possible with the introduction of the multi-head attention
mechanism and the multiscale convolutional attention mechanism (as shown in the blue
dashed box in row 1) and can segment the target and nontarget regions more precisely,
preserving greater detail (red-dashed boxes in b and c).
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4.5.3. Effectiveness of the CCFF Module

The purpose of this section is to verify the effectiveness of each module in the CCFF
by comparing the results of using (a) only C-ASPP, (b) using C-ASPP and TCH, and
(c) using C-ASPP, TCH, and MHB, while keeping other conditions constant. In the cross-
modal context feature fusion phase, C-ASPP is our basic multiscale cross-modal semantic
feature extraction module, and TCH aims to reweight the feature information and plays
a role equivalent to that of the transformer header in CAM. Because there is redundant
information when features are fused at different levels because of the differences between
feature information at different levels [39,40], feature fusion using only superposition will
produce performance limitations; therefore, we designed MHB to further enhance the fused
features. By performing another multiscale feature extraction at each fusion stage, the
effect of feature enhancement is achieved, and better results are obtained when MHB is
introduced to further filter the features (Figure 13).

|

|5 S B N 'S QU SR, 1 S g

a. CAM + MFT + b. CAM + MFT + c. CAM + MFT +
C-ASPP C-ASPP + MHB C-ASPP + TCH +

Figure 13. Comparison of experimental results of multiscale convolutional attention ablation; (a) does
not use MFT, (b) uses self-multi-headed attention, and (c) uses multi-scale convolutional attention.

We quantitatively tested the results after using only C-ASPP and gradually introducing
MHB and TCH. The results are shown in Table 6 and demonstrate that our CCFF module
plays an important role in improving the glass detection performance after MHB and TCH
are introduced.

In addition, we performed a qualitative analysis, as shown in Figure 13, which showed
that the enhancement of fused features using MHB can filter large error areas (blue dashed
box in row 1), whereas the algorithm that optimizes the features before introducing TCH to
fuse them makes the results more accurate in classifying nontarget regions (red dashed box
inrow 3). This indicates that the CCFF module we built for fusing features at different layers
filters redundant information and enhances the details, which promotes the optimization
of the overall framework performance.
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5. Conclusions

We challenged the glass segmentation task and designed a framework for transformer
glass detection, called TGSNet. We constructed a CAM to extract backbone features
using a parallel transformer head structure. We also designed MFT using convolutional
attention to obtain more detailed feature information by further analyzing the features
from different receptive fields. Our CCFF module aims to improve the overall performance
of the network through flexible use of the transformer header for augmenting features
and concatenating feature information across layers. All these structures have improved
in terms of performance of feature extraction. The experimental results show that our
method achieves state-of-the-art performance on the GDD dataset and achieves good
performance in experiments under different lighting conditions. In the future, we plan to try
to experiment on more datasets or build a dataset for light conditions for experimentation
and extend our approach to other areas, for example, to the video detection of glass,
removing the noise generated by glass in point clouds generated from 2D images, and
further enhancing the ability to detect glass in outdoor scenes as well as in ultra-high-
resolution images.
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