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Abstract: In recent decades, railway passenger transport enterprises have been exploring numerous
operation and management strategies to improve service quality and market competitiveness of rail-
way passenger transport so as to ensure that the interests of railway passenger transport enterprises
are maximized when taking social welfare into account. However, there are still shortcomings in the
current research with respect to determining the pricing mechanism and formulating a reasonable
price. This paper systematically reviews the scientific literature related to railway pricing, focusing
on the application of basic price methods, mathematical programming methods, and data-driven
methods in railway pricing, with the hope of proposing an innovative direction to solve existing
problems. The main subjects involved in the formulation of railway pricing are passenger groups
and transportation companies. The research can be conducted from four broad aspects: passenger
demand, passenger time value, market segmentation, and the equilibrium relationship between rail
service supply and passenger demand. On the basis of absorbing and summarizing the strengths and
weaknesses of previous studies, this paper puts forward suggestions for improvement and innovative
directions which will help promote railway passenger transport services from the perspective of
pricing, thereby enhancing the sustainability of railway transport.
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1. Introduction

Since human society entered the age of industrialization, the research of railway
pricing in railway operation management has received extensive attention and has achieved
great results. In the current era of information and digitalization, the research on railway
pricing has also gradually exposed some urgent problems, such as digital dynamic pricing.
Therefore, this paper systematically sorts out, summarizes, and reviews the research status
of railway pricing in the past 30 years in order to provide reference and inspiration for
subsequent researchers.

Passenger fare revenue is the main source of economic income for railway operating
departments. Considering the complexity of railway pricing, the formulation of railway
prices must take into account the interests of all aspects of society. The pricing rule based
on revenue management is a profit maximization method for enterprises to improve their
own and social benefits, which has been widely used in hotels (e.g., Bitran and Mondschein
(1995) [1] and Bitran and Gilbert (1996) [2]), electricity (e.g., Schweppe et al. (1987) [3] and
Oren and Smith (1993) [4]), retail (e.g., Bitran and Mondschein (1997) [5] and Subrahmanyan
and Shoemaker (1996) [6]), transportation (e.g., Ciancimino et al. (1999) [7] and Kasilingam
(1997) [8]), and other fields. The earliest pricing rules were fixed pricing by operators
based on a basic price system, but with the continual development of the market, the
simple pricing mechanism could no longer meet the needs of the market and the country.
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For this reason, Cournot [9], in 1983, used mathematical functions to establish a product
price–demand model and calculated the optimal pricing in order to expose the internal
evolution law of pricing; however, his method was considered static pricing. Since then, in
order to deal with time-varying demand and complex network issues, researchers have
proposed dynamic pricing strategies, differentiated pricing strategies, and collaborative
optimization strategies in consideration of product availability and timeliness. The goal
was to improve the railway price formation mechanism and build a diversified pricing
system, and this system has made a huge contribution.

Recently, traffic engineers and traffic economists have paid increasingly more atten-
tion to the research on railway pricing. Traffic engineers have continually improved the
construction of railway passenger transport service facilities and mastered the operation
rules of the traffic system through modeling. In addition, transportation economists build
models mainly through mathematical theoretical knowledge in order to obtain comprehen-
sive and optimal railway operating enterprise benefits and social welfare. After reviewing
the literature on railway pricing in recent years, we found that revenue management has
become one of the main research methods. As a classic method in economics, revenue
management is a management mode that implements various price standards to customers
by establishing a real-time forecasting model and analyzing demand behavior on the basis
of market segmentation. It can translate the right data into clear and tangible actionable
recommended decisions that enable clients to price, forecast, and report quickly and with
confidence, leading to improved business performance. Revenue management is widely
used in coordination and pricing problems, and the key to the pricing problem lies in
the construction of participants, influencing factors, and models. This paper uses content
analysis and bibliometric methods to review the railway pricing on the basis of revenue
management and summarizes and evaluates the literature from three aspects: methodology,
pricing strategy, and influencing factors. The aim is to determine the decision-making and
pricing model construction of railway pricing through a literature review so as to provide
scientific and practical methods for subsequent railway pricing researchers, to help them
provide new ideas for railway pricing innovation, and to create new mathematical models.

The writing framework of the article is as follows. In the second section, we briefly
introduce the methods of the literature review, mainly including research questions, key-
words, and literature selection criteria. In Section 3, we categorize in detail the research
methods on the basis of revenue management, including the basic price system, the math-
ematical programming method, and the data-driven method. The mathematical pro-
gramming method concentrates on the detailed discussion of the pricing considering the
characteristics of dynamic pricing, time–space differentiation, and market segmentation.
Finally, some conclusions and suggestions for future railway pricing research are presented.

2. Methodology

In order to ensure the objectivity of the research results and the repeatability of the
research, this paper systematically reviews the research on railway pricing on the basis
of revenue management in the past 30 years by referring to the method of a structured
literature review [10]. The research methodology of the paper includes three main stages:
(1) research planning; (2) examination paper identification and analysis; and (3) research
evaluation and synthesis. In the first stage, the research questions and the scope of the
literature review are determined, and then the literature search plan is designed to de-
termine the inclusion and exclusion criteria of the literature. The second stage conducts
preliminary quantitative research and descriptive analysis on the selected literature and
evaluates and classifies the literature according to the research questions. In the third stage,
a comprehensive review of the literature is performed. The literature is evaluated and
analyzed using content analysis and bibliometric methods to identify gaps in previous
research and to identify future research trends. As mentioned above, railway pricing is a
key issue affecting the sustainability of rail services. After identifying the need for such a
review and research gaps, we set three main research questions (RQ 1, RQ 2, and RQ 3):
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RQ 1: What are the main players and key research scenarios of railway pricing?
RQ 2: Which pricing management strategies and methods are optimal?
RQ 3: What are the main and most important factors affecting railway prices?
To answer the posed research questions, we conducted a comprehensive review of

scientific papers in the field of railway pricing. Utilization of clear literature selection criteria
minimized investigator inclusion and exclusion bias and increased data heterogeneity. The
literature was mainly from Web of Science, SCOPUS, and X-mol databases; these three
databases are leading and extensive citation databases, covering most of the railway pricing
literature. We conducted a subject search in the database using keywords such as “railway”,
“revenue management”, and “pricing”, and we identified a total of 397 papers. Papers were
evaluated and selected through a two-step screening process. First, we further reviewed
the titles, abstracts, and keywords of the papers according to the inclusion and exclusion
criteria, and a total of 121 papers were considered relevant to the topic. Second, we
performed a full-text read, followed by a snowball search of their references, applying the
same inclusion and exclusion criteria. Ultimately, 57 papers were retained for review in this
study. The literature selection process is shown in Figure 1. The inclusion and exclusion
criteria of the literature are listed in Table 1.
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Table 1. The inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Full journals and conference proceedings Lectures, grey literature, and presentations

English language Non-English language

Peer-reviewed Not peer-reviewed

The method of revenue management is used to
study railway pricing

The paper only mentions railway, revenue
management, or prices as one of the important
aspects, but does not carry out specific analysis

and research

Railway price is a decision variable which is
not endogenous to the system Railway price is an exogenous variable

Figure 2 presents the literature publication and citation report in Web of Science
searched by using the railway pricing and revenue management. As we can see, from 2000
to 2022, the number corresponding to the height of the histogram in the figure represents
the number of publications in that year. In total, there were 72 articles published, and
the number of articles published after 2016 increased sharply, indicating that research on
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railway pricing was becoming increasingly favored by researchers. The blue line represents
the number of citations per year, which also shows a trend of increasing year by year, with a
sharp increase after 2016, which further shows that railway pricing is receiving increasingly
more attention.
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3. Literature Classification and Analysis

The essence of the revenue management (RM) pricing method is that operating com-
panies regard revenue as the operating goal. The cost is introduced into the mathematical
model as a variable to provide accurate forecasts, improve pricing decisions, and provide
in-depth business insights for operating companies to help them achieve revenue improve-
ment, including improving revenue management operations and fostering sustainable
profitability. Revenue management theory was initially applied in the aviation field and
was then gradually introduced into other transportation fields. Revenue management
pricing is a dynamic pricing method that considers the impact of current passenger flow on
the next period’s pricing; hence, it is also called a real-time pricing scheme. The dynamic
adjustment of railway pricing based on the revenue management method includes three
complete steps: first, predicting short-term passenger flow; second, allocating tickets during
the pre-sale period and establishing a passenger ticket allocation model; and finally, adding
a dynamic ticket adjustment mechanism to adjust the price of previously allocated tickets.

Revenue management theory can provide industry-leading revenue management
solutions for businesses of all types and sizes in the global hotel and tourism industry. In
1999, when revenue management theory was first introduced into the research of railway
passenger transport pricing, it was widely accepted and formed a complete mathematical
formula [7]. It involves not only ticket pricing but also capacity allocation, route optimiza-
tion, timetable optimization, and other considerations. Revenue management was applied
primarily in two price structures: fixed pricing and dynamic pricing. Under fixed pricing,
revenue management methods consider mainly how capacity allocation balances limited
supply and fluctuating demand. However, it considers only pricing linked to seat control
not the possibility of demand shifting between similar time slots or between different
classes of fares. Under dynamic pricing, revenue management methods focus on how to
use differentiated pricing schemes to meet different passenger needs. In other words, the
dynamic pricing model (i.e., the model pricing of products according to the market demand
for products and the purchasing power of customers) is based on the idea that revenue
management can solve the problem of demand transfer. Two models within the area of
dynamic pricing are (1) multi-layer ticket price and multi-segment-trip model and (2) the
single-trip dynamic pricing model [11]. In other words, it can construct a differentiated
itinerary model, formulating differentiated fares according to the differentiated needs of
passengers so as to improve the flexibility of railway pricing.
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3.1. Basic Price Method

Early studies on revenue management focused more on capacity management and
overbooking; railway pricing was usually based on a basic price, with managers typically
maximizing revenue by opening and closing different price levels. In order to cope with
long-distance passenger transport and to address overbooking, seat allocation, and net-
work flow management, Amtrak developed the ARROW revenue management system and
achieved an average additional revenue of 3–5% [12]. French National Railways (SNCF), in
the early 1990s, cooperated with SABER to design, develop, and implement the railway
ticket booking, distribution system, and comprehensive decision support system, which in-
cluded the revenue management system (RailRev), timetable preparation system (RailPlus),
and seat management system (RailCap) [13]. These revenue management systems were
then utilized to increase revenue by increasing attendance. Deutsche Bahn (DBAG) estab-
lished a new revenue management system (PET) for railway transportation on the basis
of fundamental price and other services [12]. This system was comparable to low-cost air
transportation, whereby they provided preferential tickets and multi-level discount tickets
for passengers who booked in advance. These revenue management systems based on a
basic price system have greatly improved the revenue of railway operators. They have,
however, ignored the principle that price is one of the most effective means to adjust de-
mand in a short period of time. Traditional research focuses, such as capacity optimization,
stock management, and other issues, are inseparable from price decisions.

Table 2 shows the application of existing revenue management systems in the railway
transportation industry and revenue management systems in different countries.

Table 2. The existing revenue management systems.

United States France Germany

Operator Amtrak SNCF DBAG

Development time 1991 1993 2002

Development purpose

Increase the
attendance rate of
long-distance lines

and increase the
income of busy lines

Improve off-peak
occupancy and

increase revenue on
busy lines

Alleviate peak
hour congestion

Present situation Expanded Simplified Simplified

3.2. Mathematical Programming Method

The mathematical programming method establishes a mathematical model through
the basic information provided by the investigation. It reflects the relationship between
pricing activities and other economic factors and obtains alternative solutions by means of
computer technology. The model then reveals the impact of pricing activities on various
policies, thus providing several options. The development of many factors in the pricing
system is restricted by both objective factors and subjective factors of traffic participants.
To determine a scientific pricing mechanism is to specifically determine the optimal sub-
jective control variables in the pricing structure system so as to optimize the overall goal.
Among them, dynamic pricing strategy, differentiated pricing strategy, and collaborative
optimization strategy are the most widely studied methods.

3.2.1. Dynamic Pricing Strategy

The dynamic pricing strategy is a pricing method that is derived from the static pricing
strategy to overcome the shortcomings of that method. Dynamic pricing means that the
seller dynamically adjusts the commodity price over time on the basis of information, such
as sales time, demand information, and commodity inventory. Dynamic pricing is also
the most common pricing strategy for civil aviation and railway transportation, and its
theoretical basis is dynamic programming theory. The advantage of dynamic programming
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is that, as the supply and demand change, it can calculate the optimal ticket price under
any state (that is, the combination of the number of remaining seats and the remaining
pre-sale time); thus, it is also known as real-time pricing (RTP) [14]. Although applied
to other fields, Kincaid and Darling [15] were the first to study the problem of dynamic
pricing of perishable products in continuous time. As the research on the related theories
and methods of dynamic pricing became more mature, many scholars began to introduce
the dynamic pricing method into the railway field to improve the pricing system of railway
passenger transport.

Whelan et al. [16], Chang [17], and Sibdari et al. [18] proposed a pricing model for
congestion and travel time on railways in the early peak hours, and they used real data to
verify the fare difference between peak and off-peak hours. The rationality and applicability
of the value show that the adopted pricing method can indeed alleviate the congestion
during peak hours. Following is the pricing model proposed by Sibdari et al. [18]; the
model successfully addresses issues such as peak hour pricing and ticket limits without
reducing passenger demand.

Max V
(

t, ti, pi, p, T, R, ∆early
i , ∆late

i

)
(1a)

subject to px +
r

∑
i=1

di pi = R[λ] (1b)

t +
r

∑
i=1

diti = T[µ] (1c)

ti ≥ ti[ki] (1d)

ei(toi − ti) = ∆early
i [θi] (1e)

li(−toi + ti) = ∆late
i [ϑi] (1f)

ei∆
early
i ≤ ∆∗early[vi] (1g)

li∆late
i ≤ ∆∗late[ψi] (1h)

{di, ei, li} = (0, 1),
{

t, ti, pi, p, T, R, ∆early
i , ∆late

i

}
≥ 0 (1i)

where

i—travel choice index (i = 1 · · · r)
V—utility
R—income level (in thousands of dollars)
t—time spent in activities other than travel time (in hours)
ti—travel time for selected travel choice i (in hours)
ti—minimum time requirement to travel on travel choice i (in hours)
toi—(desired arrival time)-(departure time to travel on travel choice i) (in hours)
T—total available time (in hours)
pi—cost of travel choice i (in dollars)
p—cost of goods other than travel (in dollars)
x—consumption of goods other than travel
di—1 if travel choice i is selected, 0 otherwise
ei—1 if early arrival is observed when travel choice i is selected, 0 otherwise
li—1 if late arrival is observed when travel choice i is selected, 0 otherwise
∆∗early—maximum available early arrival flexibility (in hours)
∆∗late—maximum available late arrival flexibility (in hours)

∆early
i —early arrival time when travel choice i is selected (in hours)

∆late
i —late arrival time when travel choice i is selected (in hours)

λ—the Lagrangian multiplier of income constraint
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µ—the Lagrangian multiplier of time constraint
ki, θi, ϑi, vi—the Lagrangian multipliers of the marginal utilities of decreasing the early/late
arrival amount by reducing the departure time

Equation (1a) represents the object function considering travel costs, benefits, and
early/late arrival times during peak hours. Constraint Equation (1b) indicates that the
total cost consists of travel costs and consumption costs other than travel. Similarly,
the second constraint (Equation (1c)) indicates that the total time includes travel time,
work time, and leisure time, while (1d) ensure that passengers will choose the optimal
option in terms of travel time selection. The remaining constraints (Equations (1e)–(1h))
state that the passenger will arrive at the destination early or late within the optimal
early/delay range interval. Finally, the individual parameters in Equation (1i) represent
the Lagrangian multipliers.

In order to explore the characteristics of the scenarios of travel differences, Ozbay
et al. [19] optimized the fare model by taking into account the destination of passengers
and the choice of arrival and departure times of trains and used New Jersey railway data
to validate the model. Hetrakul [20] further explored the travel choices of passengers
and quantified the influence of different travel factors on the travel choices of railway
passengers on the basis of the online booking data. Sato and Sawakil [21] used a dynamic
programming method to study the dynamic pricing problem of high-speed rail on the
basis of the travel choice behavior of passengers. However, the conclusion is still far from
solving the actual problem due to limited data. Gama [22] improved the pricing model of
the railway system by evaluating the cross-elasticity between American airline and rail
fares, and Vuuren [23] used the Ramsey pricing model to prove the relationship between
marginal cost and demand price elasticity. Bharill and Rangaraj [24] proposed a pricing
model considering overbooking and cancellations on the basis of analyzing demand price
elasticity. Cirillo, Hetrakul, and Toobaie [25] used the multinomial logit model (MNL) of
the Amtrak Acela Express train to construct a model for passenger choice of booking time.
They determined the response of passenger demand to price through linear regression
and used a nonlinear model to maximize predicted revenue. Zhang, Lang, and Jin [26]
proposed a dynamic pricing model for Chinese train passenger groups. They assumed that
booking requests follow a Gaussian distribution and described the size of each group by a
Poisson distribution. Then, the authors considered that the effect of fare on the probability
of purchase was in line with the logit model.

3.2.2. Differentiated Pricing Strategy

Differentiated pricing originates from price discrimination in economics. Basically, it
sets different prices for different commodity attributes and characteristics of substitutable
products. With the continual improvement of this pricing method, it has been gradually
applied in many fields. The diversified development of the railway industry was impeded
by the structure of its ticket prices. Inspired by the differentiated pricing problems of
other industries, the research on the difference of railway fares has gradually attracted
widespread attention of scholars. Si-Ming Li [27] was one of the first researchers to develop
differentiated pricing in railway transportation. Through that research, it was found that
it is feasible to apply differentiated pricing, a traffic management method, to a highly
automated railway system.

Demand Differentiation

When the supply exceeds the demand in the passenger transport market, the pricing
discourse power will shift from the supply-side to the demand-side. Especially when the
“inertia” and “asymmetry” of passenger preference are discovered, the research begins to
pay attention to the demand elasticity of passenger travel. Demand elasticity describes the
relationship between ticket price and passenger volume. Inertia is the cost of searching
for other modes of travel, so maintaining the status quo until larger expenditures occur
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is the best decision. “Asymmetry” is due to the ratchet effect, in which passengers react
differently to price increases and decreases of the same magnitude [28].

The application of demand elasticity in railway ticket pricing is more common, which
is generally shown as base price plus flexible adjustment price. This type of pricing scheme
is actually a price discrimination scheme. Its difficulty lies in the measurement of elasticity
of demand. Some scholars use survey data [29] or regression methods to carry out research
in this area. Through the demand elasticity analysis of different transport distances, it is
found that the longer the distance is, the greater the elasticity is, and the low-price strategy
should be adopted for long-distance tickets [30]. Through the demand elasticity analysis of
different seasons, passenger demand is flexible with regard to the high season ticket price
floating and flexible with regard to the low season ticket price floating; the high season
should not raise the price, and the low season should reduce the price [31]. The demand
elasticity of middle- and high-income groups is small, whereas that of the low-income
group is larger [32]. For example, on the basis of accurately forecasting traffic volume,
the demand function is determined, and the demand elasticity of railway passengers is
obtained by using the least squares method [33]. Most of the above methods consider linear
demand elasticity, yet nonlinear demand elasticity is also involved in the pricing model
of high-speed railway passenger transport [34]. Due to the different demand elasticity of
different routes, transport distances, short and high seasons, different groups, different
seats, and different economic regions, the appropriate ticket prices should be set. Although
the elasticity coefficient of passenger demand can be obtained by the above methods, the
data are limited by time and space and do not have real-time and representative.

In addition, there is literature combining demand elasticity with other pricing methods.
Examples include using price elasticity on the basis of market segmentation to establish a
pricing model for high-speed rail tickets [35] or combining the demand elasticity with the
marginal cost pricing method to ensure that the purpose of maximizing consumer surplus
is achieved under the premise of balance between revenue and expenditure.

Market Segmentation

Market segmentation means that railway operators divide the passenger transport
market into several sub-markets according to certain standards. This division standard
has two main directions: consumer-oriented and product-oriented [36]. Product-oriented
segmentation refers to the subdivision of services in different spaces at the same time,
such as the subdivision of business seats, first-class seats, and second-class seats, as well
as the subdivision of different time stages in the same space, namely peak and off-peak.
The consumer-oriented type of segmentation is to segment the market according to the
characteristics of passenger travel and apply a differentiated pricing strategy, including
differentiated pricing based on elements such as travel distance, travel time, site selection,
route, or service selection [37]. After combing the relevant literature, it can be seen that the
research on railway ticket pricing based on market segmentation is classified into two types:
those divided by time factors (ticket purchase time and travel time) and those divided by
passenger type (annual ticket, monthly ticket, or round-trip discount).

1. Time factor

The time factor is viewed in three ways: first, based on passenger travel value; second,
based on the difference in travel time; and third, segmented according to travel time and
pre-sale time.

As a generalized cost, the time value of passenger travel directly determines the
willingness of passengers to pay for services and will affect travel choices of passengers.
Han et al. [38] calculated the time value of passenger travel, such as calculating the time
value of passengers according to the fatigue recovery time model and labor market salary
level [34] or by collecting passenger survey data to establish a railway pricing model on
the basis of time value [19]. This calculation uses the time value as the basis for market
segmentation and flexibly adjusts the ticket price on the basis of the time value of the
existing ticket price, which is a highly operable differential pricing method.
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The second differential pricing method distinguishes between peak and valley periods.
Considering the double peaks (Spring Festival and Summer Transport) of China’s railway
passenger transport as an example, the pricing goal of the inelastic peak period is welfare
maximization; the pricing goal of the elastic off-peak market is profit maximization [23,39].
For the low and peak seasons of high-speed rail travel, the rising and falling ratios, respec-
tively, can be set, and the elastic formula is applied to describe the relationship between
volume and price [40]. There is also an article that divides the peak-to-valley ratio of China’s
high-speed rail passenger transport into 1/3 and 2/3 according to the proportion of holi-
days; this methodology uses the Ramsey pricing method to determine the fare strategy for
maximizing welfare [41].

The third differential pricing method sets differential fares for trains with different
travel times to maximize the revenue of high-speed rail tickets [42]. With the change
of income level, passengers pay more attention to travel time, and differential fares can
increase high-speed rail attendance., Thus, the fare should be reduced on weekdays and
increased on holidays [43].

2. Passenger Type

There are five common classifications of passenger types: (1) Time and fare are the two
main factors affecting passenger travel, and thus become the basis for passenger type clas-
sification. For example, passengers are divided into departure-time-sensitive passengers
and price-sensitive passengers [44]. (2) The market can be divided according to the income,
consumption level, and consumption structure of passengers. For example, passengers
are divided into four types: efficiency type, economy type, leisure type, and high-end
type, and a personalized service fare strategy is proposed for each type of passenger [45].
(3) Passenger types can be classified according to loyalty. For example, the demand for
high-speed passenger transport is divided into three categories: loyal airline passengers,
high-speed rail loyal passengers, and potential passengers, and the choice of potential
passengers is described by using probability [46]. (4) Passengers can be divided by travel
purpose, such as migrant workers, non-economic travel, and business travel [47]. (5) On the
basis of the number of tickets purchased at one time, passengers can be divided into group
passengers and individual passengers. For example, 20 tickets purchased at one time can be
considered as the standard to distinguish between group passengers and individual passen-
gers, and this cut-off value can be used to design group and individual ticket prices [26]. In
addition, there are also studies in the literature that combine multiple indicators to classify
passenger groups, such as age, gender, travel date, travel distance, ticket purchase method,
and advance ticket purchase time as classification indicators to segment the high-speed
rail passenger transport market [48]. Targeting passenger demand is an important revenue
growth point for high-speed rail. Short-term discounts are implemented for groups with
high demand elasticity, and long-term discounts are implemented for passenger groups
with inelastic demand.

Different fare structures for different travel groups not only have appeared in academic
research, but also have traces in practice. For example, in the current high-speed rail fare
structure, the first-class and second-class fares are also comparable to those of business
travelers and leisure travelers. Accurate passenger type classification is the premise of set-
ting ticket price classification, and the ticket price design based on passenger heterogeneity
can guide passengers to arrange travel scientifically and rationally.

3.2.3. Collaborative Optimization Pricing Strategy

At present, the optimization of railway pricing has received great attention, but
the joint optimization of existing fares and seat allocation, vehicle operation plan, ticket
allocation, etc., to make full use of train seat capacity is still an urgent problem to be solved
in the current market-oriented reform of railway transportation enterprises.

In the literature, the joint optimization problem was first considered by Kuyumcu and
Garcia-Diaz [49], who considered seat waste in the air transportation network and thus
established a 0–1 integer programming model to jointly optimize the ticket price and seat
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allocation. Then, Ongprasert [50] introduced this theory into railway revenue management
in 2006, which gradually aroused the interest of traffic researchers in the joint optimization
of railway fares. However, when Bertsimas and de Boer [51] studied the joint pricing
and seat allocation problems of air transport, they found that the optimization problem
is not always concave, so the iterative nonlinear optimization algorithm used does not
always guarantee the optimal solution. This is also the shortcoming of current research.
In subsequent studies, scholars are also continually improving the joint optimization of
railway fare and seat allocation (Xu et al., [52] and B; Xu et al., [53]). In order to overcome the
defects of iterative nonlinear algorithm, Xu et al. [54] established a non-concave nonlinear
mixed integer optimization model considering the sensitivity of demand to fare and applied
linearization technology and relaxation technology to calculate the global optimal solution.
In addition, the deterministic and stochastic models proposed by Cizaire [55] are also
worthy of research for the joint optimization problem of ticket price and seat allocation for
solving two products and two time-frames in railways.

On the basis of revenue management theory, we see that the overall optimization of
the railway network is affected not only by seat allocation, but also reasonable railway
passenger train operation plans and ticket allocation are important factors affecting railway
fares. In order to maximize the comprehensive income of the railway network system,
Zhang et al. [56] established an integrated model that considers train frequency, parking
mode, and ticket allocation and considered multiple related factors to achieve global opti-
mization. Through the case study of this model, it is easy to realize that joint optimization
of railway planning can significantly increase revenue and reduce passenger waiting time.
This optimization follows a specific mathematical expression:

Max R =
T
∑
t

n−1
∑

i=1

n
∑

j=i+1
Pij(t)× τi(t)× xij(t)

−
(

T
∑

t=1

n
∑

i=1
τi(t)(Fi(t)) +

T
∑

t=1
α(t)Y(t)

)
−
(

K× S
T
∑
t

n−1
∑

i=1

n
∑

j=i+1
τi(t)× xij(t)

)

−
T
∑
t

n−1
∑

i=1

n
∑

j=i+1
α(t)× τi(t)× xij(t)×Wi

−
T
∑
t

n−1
∑

i=1

(
((1− α(t)) + α(t)(1− τi(t)))× di ×

(
At−1

i × β + At
i

))

(2a)

s.t.

(
i

∑
k=1

n

∑
j=i+1

xkj(t)

)
≤ C, ∀i, j ∈ N (2b)

[1− α(t)]xkj(t) = 0, ∀i, j ∈ N (2c)

[1− τi(t)]xkj(t) = 0, ∀i, j ∈ N (2d)

[1− α(t)]τi(t) = 0, ∀i ∈ N (2e)

τn(t) = α(t) (2f)

Ai(t) ≤ AMax
i , ∀i ∈ N (2g)

α(t), τi(t) ∈ {0, 1} (2h)

where

n—Number of stations
N—The set of station node N = [1, 2, . . . , n]
t—Operation period t ∈ [1, 2, . . . , T]
Pij—The price between the station i and station j
xij(t)—The number of passengers onboard from station i to station j in period t Y—Fixed
operation costs per train
Fi—Fixed stopping costs at the station i
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K—Coefficient of time values
S—Fixed stopping time at stations
Wi—Fixed waiting costs per passenger at the station i
dt—Fixed delayed cost per passenger if the train does not operate/stop in period t
β—Passenger transfer rate from one period to next period
At

i—Passenger arrival rate for station i in period t
AMax

i —The maximization capacity of station i
τi(t)—If a train stops at the station i in period t, then τi(t) = 1, otherwise τi(t) = 0
α(t)—If a train operates in period t, then α(t) = 1, otherwise α(t) = 0

Equations (2a) and (2b) represent the optimal total revenue and capacity of trains,
respectively. Equation (2c) ensures that passengers have a certain correspondence with
service decision α(t) at time t. Similarly, Equation (2d) defines the correspondence between
the stopping pattern τi(t) and the onboard passengers at time t; in other words, passengers
cannot board the train if the train does not stop at station i. Equation (2e) means that there
is no train at the station during the train rest time t, and Equation (2f) ensures that trains
will stop at the terminal. Finally, Equations (2g) and (2h) reveal the capacity of each station
and the meaning of the variable, respectively, and τi(t) and α(t) are both variables whose
values are 0 or 1.

In order to improve the adaptability of the joint optimization model, taking into
consideration the complex vehicle operating environment of the railway network, Deng
et al. [57] established a multi-train ticket system that considers the ticket purchase process
and passenger demand during the pre-sale period. This is system is constructed on the
basis of Han’s [58] research on the collaborative optimization of high-speed rail parking
planning and ticket allocation. The joint allocation model greatly improves the adaptability
of the joint optimization model of fare and ticket allocation. In addition, Wang et al. [59]
and Qin et al. [35], taking into account the differences in passenger demand, proposed a
joint optimization method for multi-level fare and ticket allocation for high demand, which
improved the service quality of railway trains.

To sum up, the existing research on collaborative optimization of passenger ticket
pricing in the field of railway transportation is relatively small, most of the research methods
are unable to solve large-scale problems, and there is a certain gap between them and
practical applications. Regarding pricing strategies, the research primarily considers only
the differentiated pricing strategy or the dynamic pricing strategy but does not combine
the two strategies.

3.3. Data-Driven Approach

Most scholars have ignored the importance of historical booking data and railway
network information for road network optimization when studying dynamic pricing in
spite of extensive studies of existing dynamic pricing methods. Reasonable use of road
network information and data can grasp all business characteristics and factors affecting
demand patterns, which is of great significance for optimizing comprehensive income
under variable road network conditions.

In contrast to other recent scholars who consider the relationship between supply and
demand and other influencing factors to establish a mathematical model to determine the
optimal price, establishing a data-driven optimization program is more suitable for the
railway service system and can improve the comprehensive income of the railway. The
current research on data-driven railway passenger fare optimization is still in its infancy.
Talluri and Van Ryzin [60] first applied sales data to railway passenger revenue management
(RPRM) in 2004, and it was widely accepted by later generations. In subsequent studies,
scholars continue to mine and use data. Dutta and Ghosh [61] used data forecasting
technology, optimization technology, and numerical simulation technology to improve the
comprehensive benefits of national railways in emerging Asian economies (NREAE) as well
as to consider passenger demand and expected marginal seats in their mathematical model
income. Sun et al. [62] exploited booking data to mine passengers’ choice preferences and
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used two machine learning methods to quantify the attractiveness of different types of
transportation products. Their model expression is as follows:

f (X) = 〈W, X〉+ b ω ∈ Rm, b ∈ Rl (3a)

while min
(W,b,ξi ,ξi

∗)

1
2
‖W‖2 + C

n

∑
i=1

(ξi + ξi
∗) (3b)

kRBF
(
X, X′

)
= exp

(
−γ
∥∥X− X′

∥∥2
)

(3c)

s.t. yi〈W, X1〉 − b ≤ ε + ξi, ∀i (3d)

〈W, X1〉+ b− yi ≤ ε + ξi
∗, ∀i (3e)

ξi, ξi
∗ ≥ 0, ∀i (3f)

where

〈·, ·〉—dot product
ξi, ξi

∗—slack variables
ε—insensitive
C—penalty parameter
f —function
Xi—feature vector of i− th set of training data
‖W‖2—the Euclidean norm
yi—the target output of the i− th set of training data
n—the size of training dataset
γ—kernel parameter

Equation (3a) is the objective function that can obtain the target output yi as flat as
possible for all training sets. In order to find the function that satisfies the requirement
of accuracy ε, the convex optimization problem is utilized and the objective function
(Equation (3b)) is obtained. Equation (3c) is the most widely used kernel function currently,
and the remaining formulation (Constraints (3d), (3e), and (3f)) are used to solve constrained
convex optimization.

With the continual development of data in the application of railway passenger pricing,
Salehi et al. [63] comprehensively considered the train supply capacity and demand capacity
on the basis of Sun et al. [62]. Facing the problem of station congestion, Yin et al. [64], Mo
et al. [65], and Kamandanipour et al. [66] modeled railway networks considering demand
over time, and their method was evaluated using historical data. Hetrakul and Cirillo [67]
focused more on the heterogeneity of passengers, predicted the purchase information of
heterogeneous passengers through historical data, and proposed a comprehensive pricing
method. In addition to studying factors such as supply and demand uncertainties, recent
research will also mine the inherent distribution laws of data and apply them. Pratikto [68]
developed a general model for RPRM problems, including demand forecasting, air ticket
pricing, and seat allocation, during which he applied hierarchical Bayesian estimation,
stochastic preference simulation, and cubic spline interpolation methods to estimate travel
demand, solving the model through enumeration rules using the expected marginal seat
revenue (EMSR) heuristic method. Yan et al. [69] proposed a nonlinear programming model
for high-speed rail passenger transport network with probabilistic requirements. They
considered the revenue optimization of seat inventory control decisions. Kankanit and
Moryadee [70] introduced a dynamic pricing scheme for Thai high-speed trains in response
to changes in service specification and purchase timing. They applied a linear demand
function to find the optimal price on the basis of historical data. In order to improve the
accuracy and availability of data, Kaushik [71] introduced the expectation maximization
(EM) theory to the historical data of railway fares and designed corresponding algorithms
to modify the incorrect data and eliminate invalid assumptions.
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With the continual development and maturity of computer technology, increasingly
more scholars are actively applying these new methods to the optimization of railway fares,
among which the most widely used is the machine learning method. Alamdari, Anjos,
and Savard [72] introduced machine learning methods to fast rule generation models and
applied them to a major European railway service provider to test their proposed machine
learning techniques. Kamandanipour et al. [71] proposed a data-driven RPRM approach
with the aim of determining the optimal payoff of combined dynamic fare and capacity
allocation in a single-train, multi-service mode. In the subsequent study, Kamandanipour
et al. [73] further improved the approach and proposed a data-driven dynamic pricing
method in 2022, which used a three-step process of machine learning and optimization
tools to maximize the train capacity constraint The results of numerical research using
Fadak’s five-star train booking data also prove this point.

In order to highlight the guidance of the three research questions in Section 2 of this
paper, the literature is roughly classified according to these three questions shown in Table 3,
highlighting the main logic of the paper.

Table 3. Reference category corresponds to the three research questions.

Classification Criteria Paper References

Main player Besanko et al. [32], Worcester et al. [36], Cervero [37]

Scenarios Sibdari et al. [18], Ozbay et al. [19], Zhang, Lang, and Jin [26]

Management strategies Qin et al. [31], Qin et al. [35]

Methods Sato and Sawakil [21], Cirillo et al. [25], Sun et al. [62]

Influencing factors Xu et al. [52], Xu et al. [54]

4. Discussion and Conclusions

As one of the fundamental industries of the national economy, the reform of railway
pricing involves many interests and will have a tremendous impact on the development of
the national economy. Therefore, it is important to discuss and explore the deficiencies of
the railway pricing mechanism so as to provide theoretical support for the further railway
pricing reform. Through the review of railway pricing research in this paper, we found that
many revenue management methods are used to solve railway pricing problems in complex
railway networks under the combined influence of various influencing factors. In addition,
a comprehensive examination of the relevant literature was carried out using content
analysis methods and bibliometric methods, which will contribute to the development
of innovative scientific methods and models. The following discussion provides some
suggestions and opinions on future research directions.

First of all, emerging research methods (such as machine learning, which uses data or
past experience to optimize performance criteria for computer programs) have considerable
advantages for explaining and computing current problems and models. Applying these
emerging research methods to the existing complex networks of multi-level, multi-train
railway pricing and other joint optimization models of influencing factors will greatly
promote the research innovation of railway pricing. Furthermore, these emerging research
methods can also be used to analyze the impact of different pricing or sales strategies
on the comprehensive revenue of railway operators. In addition, combined with the
current data on the impact of travel demand in society since the coronavirus disease
2019 (COVID-19) pandemic, exploring the development direction of railway pricing under
special circumstances will increase the flexibility and applicability of the pricing mechanism.

Secondly, the existing joint optimization research considers mainly single factors,
such as pricing, seat allocation, travel plan, and ticket allocation. When addressing the
complex railway network systems, joint optimization considering a single influencing
factor may have insufficient applicability. Thus, the joint optimization model of railway
pricing, which considers the integration of multiple factors comprehensively, may increase
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the computational difficulty. Therefore, an algorithm exploring the multi-factor joint
optimization model of pricing, seat allocation, route planning, and travel plan urgently
needs to be solved.

Finally, with the continual development of the application of information and digital
technology, the complexity of the railway transportation network environment continues
to increase, which also brings greater challenges to the differentiated railway pricing.
When formulating a differentiated railway pricing scheme, regional differences, passenger
product differences, and passenger differences will all lead to the uncertainty in demand.
Therefore, it is also a breakthrough point of the current research to comprehensively
consider the different perceptions of different types of passengers on fare, time, and
comfort so as to formulate a multi-level price, optimize resource allocation, and maximize
the benefits of both parties. Furthermore, in addition to improving operational efficiency
and optimizing services from the above three aspects, improving operators’ revenue can
also improve the competitiveness of railway passenger transport compared with air and
road transport from the perspective of service quality.
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