Next Article in Journal
Paid Access to Information Promotes the Emergence of Cooperation in the Spatial Prisoner’s Dilemma
Next Article in Special Issue
Left (Right) Regular Elements of Some Transformation Semigroups
Previous Article in Journal
Intelligent Image Super-Resolution for Vehicle License Plate in Surveillance Applications
Previous Article in Special Issue
Characteristic, C-Characteristic and Positive Cones in Hyperfields
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Novel Method for Generating the M-Tri-Basis of an Ordered Γ-Semigroup

1
Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
2
Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India
3
Department of Applied Science, Umm Al-Qura University, Mecca P.O. Box 24341, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(4), 893; https://doi.org/10.3390/math11040893
Submission received: 4 January 2023 / Revised: 6 February 2023 / Accepted: 6 February 2023 / Published: 9 February 2023
(This article belongs to the Special Issue Algebraic Structures and Graph Theory)

Abstract

:
In this paper, we discuss the hypothesis that an ordered Γ -semigroup can be constructed on the M-left(right)-tri-basis. In order to generalize the left(right)-tri-basis using Γ -semigroups and ordered semigroups, we examined M-tri-ideals from a purely algebraic standpoint. We also present the form of the M-tri-ideal generator. We investigated the M-left(right)-tri-ideal using the ordered Γ -semigroup. In order to obtain their properties, we used M-left(right)-tri-basis. It was possible to generate a M-left(right)-tri-basis from elements and their subsets. Throughout this paper, we will present an interesting example of order m l t ( m r t ) , which is not a partial order of S . Additionally, we introduce the notion of quasi-order. As an example, we demonstrate the relationship between M-left(right)-tri-basis and partial order.

1. Introduction

Several applications of algebraic structures can be found in mathematics. Generalizing the ideals of algebraic structures and ordered algebraic structures plays an important role, making them available for further study and application. Mathematicians studied bi-ideals, quasi-ideals, and interior ideals during 1950–1980. However, during 1950–2019, it was only mathematicians who studied their applications. In fact, the notion of one-sided ideals of rings and semigroups can be regarded as a generalization of the notion of ideals of rings and semigroups, as is the notion of quasi-ideals of semigroups and rings. In general, semigroups are generalizations of rings and groups. In semigroup theory, certain band decompositions are useful for studying semigroup structure. A new field in mathematics could be opened up by this research, one that aims to use semigroups of bi-ideals of semirings with semilattices that are additively reduced. The many different ideals associated with Γ -semigroups [1] and Γ -semirings [2] have been described by several researchers. Partially ordered relation satisfies the conditions of reflexivity, antisymmetry, and transitivity. There are different classes of semigroups and Γ -semigroups based on bi-ideals that have been described by researchers in [3,4,5,6]. Munir [7] introduced new ideals in the form of M-bi-ideals over semigroups in 2018. An ordered semigroup is a generalization of a semigroup with a partially ordered relation constructed on a semigroup, so that the relation fits with the operation. An algebraic structure such as the ordered Γ -semigroup was introduced by Sen et al. in 1993 [8] and has been studied by several authors [9,10,11,12].
For an ordered semigroup S and subsemigroup A of S , A m = A . A A ( m t i m e s ) , where m is a positive integer. Clearly, for any subsemigroup A of ordered semigroup S , A n A for all positive integers n, which are similarly right case. Hence, A r A t for all positive integers r and t, such that r t , but the converse is not true. As a generalization of the bi-ideal of semirings and semigroups, a tri-ideal of semirings and semigroups can be characterized as a generalization of the bi-ideal. In the context of Γ -semigroups, an ordered Γ -semigroup is an extension of the Γ -semigroup. In contrast to the notion of the tri-ideal of semigroups, the notion of the tri-ideal of an ordered semigroup is a general form of the notion of the tri-ideal of semigroups. In semigroup theory, the M-tri-ideal is a generalization of the tri-ideal. Similarly, an ordered M-tri-ideal is a generalization of an ordered tri-ideal. In this paper, we describe the basic properties of the M-tri-basis from an algebraic standpoint. The fact that semigroups can be generalized to Γ -semigroups and Γ -semigroups to ordered Γ -semigroups is a result of these facts. It was work by Jantanan et al. that introduced the concept of bi-basis of ordered Γ -semigroups in 2022. We further describe the relationship between partial order and bi-basis [13]. As recently discussed in Palanikumar et al. [14,15,16], algebraic structures such as semigroups, semirings, ternary semigroups, and ternary semirings are all ideals and the generators of these structures are ideals. Rao introduced the tri-ideals of semigroups and semirings in [17,18]. Our paper extends a bi-basis of an ordered Γ -semigroup into a M-bi-basis of an ordered Γ -semigroup. We also generalize the tri-ideal of an ordered Γ -semigroup to an M-tri-basis of an ordered Γ -semigroup. The notion of almost bi-ideals and almost quasi-ideals of ordered semigroups is discussed in Sudaporn et al. [19]. The novel concept of M-bi-basis generators of an ordered Γ -semigroup is introduced by Palanikumar et al. [20]. Susmita et al. have discussed some important properties of bi-ideals of an ordered semigroups [21].
This paper discusses several important classical results for M-tri-basis and Γ -semigroups characterized by M-tri-ideals and M-tri-basis. Furthermore, we demonstrate how the elements and subsets of an ordered Γ -semigroup yield the M-tri-ideal and basis. This paper extends the notion of Γ -semigroup information into ordered Γ -semigroup information. The paper is divided into five sections. Section 1 is the introduction. There is a brief description of an ordered Γ -semigroup in Section 2, as well as relevant definitions and results. A numerical example of an M-left-tri-basis generator can be found in Section 3. As part of Section 4, a numerical example is given for the M-right-tri-basis generator concept. Our conclusions are provided in Section 5. In this paper, our purpose is to describe:
  • The generator of the M-tri-ideal for an ordered Γ -semigroup;
  • To interact, the order relation based on the M-tri-basis should not be a partial order.
  • For example, the subset of an M-tri-basis is not an M-tri-basis itself.

2. Basic Concepts

It is assumed throughout this article that S denotes a Γ -semigroup, unless stated otherwise.
Definition 1
([1]). Let S and Γ be any two non-empty sets. Then, S is called a Γ-semigroup from S · Γ · S S , which maps ( f 1 , π , f 2 ) f 1 · π · f 2 , satisfying the condition ( f 1 · π · f 2 ) · θ · f 3 = f 1 · π · ( f 2 · θ · f 3 ) for all f 1 , f 2 , f 3 S and π , θ Γ .
Definition 2
([8]). The algebraic system ( S , Γ , ) is said to be an ordered Γ-semigroup if it satisfies the following conditions:
1.
S is a Γ-semigroup,
2.
is a relation from a partially ordered set (poset) S ,
3.
If s s , then s π s s π s and s π s s π s for any s , s , s S and π Γ .
Remark 1
([8]). Let G and G be any two subsets of S . Then, the following properties hold:
1.
G Γ G = { x π x | x G , x G , π Γ } ,
2.
( G ] = { s S | s x f o r s o m e x G } ,
3.
G ( G ] ,
4.
If G G , then ( G ] ( G ] and ( G ] Γ ( G ] ( G Γ G ] .
Definition 3
([17]). Let S be a Γ-semigroup and G be a subset of S called left-tri-ideal(right-tri-ideal) (or LTI and RTI, respectively) if it satisfies the following conditions:
1.
G is a Γ-subsemigroup,
2.
G Γ S Γ G Γ G G ( G Γ G Γ S Γ G G ) ,
Lemma 1
([18]). Let S be a Γ-semiring, G a subset of S , and a S . Then, the following statements hold:
1.
G l t = G G Γ G G Γ S Γ G Γ G is the smallest Γ-LTI of S containing G ,
2.
G r t = G G Γ G G Γ G Γ S Γ G is the smallest Γ-RTI of S containing G ,
3.
a l t = a a Γ a a Γ S Γ a Γ a is the smallest Γ-LTI of S containing a ,
4.
a r t = a a Γ a a Γ a Γ S Γ a is the smallest Γ-RTI of S containing a .
Definition 4
([18]). (i) Let S be an ordered semigroup. A subsemigroup G of S is called an M-left-ideal of S if S M G G and ( G ] = G , where M is a positive integer that is not necessarily one.
(ii) 
A subsemigroup G of S is called a M-right-ideal of S if G S M G and ( G ] = G , where M is a positive integer that is not necessarily one.
Definition 5
([18]). Let G be a subsemigroup of an ordered semigroup G . Then,
(i) 
The M-left-ideal generated by G is ( G ) m l = ( G S M G ] .
(ii) 
The M-right-ideal generated by G is ( G ) m r = ( G G S M ] .
Definition 6
([7]). Let G be a subset of S , which is called an M-bi-ideal of semigroup S if it satisfies the following conditions:
1.
G is a Γ-subsemigroup,
2.
G · S M · G G , where M is a positive integer.
Definition 7
([13]). Let G be a subset of S that is called a bi-basis of S if it satisfies the following conditions:
1.
S = G b .
2.
If F G such that S = F b , then F = G .
Definition 8.
Let G be the subset of S that is called an M-bi-basis of S if satisfies the following conditions:
1.
S = G m b .
2.
If F G such that S = F m b , then F = G .

3. M-LTB Generator

In this paper, we present some results on the M-left-tri-ideal (M-LTI) generator, based on an ordered Γ -semigroup.
Definition 9.
Let G be the subset of S called an M-LTI of S if it satisfies the following conditions:
1.
G is a Γ-subsemigroup,
2.
G · Γ · ( S · Γ · · Γ · S ( M t i m e s ) ) · Γ · G · Γ · G G , where M is a positive integer,
3.
If g G and s S such that s g , then s G .
Remark 2.
If f 1 S and N a n d M are positive integers, then the following statements hold:
1.
N f 1 = f 1 · Γ · f 1 · Γ · · Γ · f 1 ( N t i m e s )
2.
S · Γ · S · Γ · · Γ · S ( ( M t i m e s ) ) S · Γ · · Γ · S ( M 1 t i m e s )
Remark 3.
1. Every M-bi-ideal is an M-LTI.
2.
Every LTI is an M-LTI.
Here is an example showing that the converse does not need to be true, as demonstrated by Example 1.
Example 1.
L e t S = { 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 0 0 a 8 a 9 a 10 a 11 a 12 a 13 0 0 0 a 14 a 15 a 16 a 17 a 18 0 0 0 0 a 19 a 20 a 21 a 22 0 0 0 0 0 a 23 a 24 a 25 0 0 0 0 0 0 a 26 a 27 0 0 0 0 0 0 0 a 28 0 0 0 0 0 0 0 0 | a i s Z }
and Γ is a unit matrix. Now, we define the partial order relation ⪯ on S : for any A , B S , A ( S 1 , S 2 ) B , if and only if a i j b i j , for all i and j. Then, S is an ordered Γ-semigroup of matrices over Z (non-negative integer) with the partial order relation .
(i) Clearly,
B 1 = { 0 b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 4 0 0 0 0 0 0 0 0 | b i s Z . }
Although B 1 is an M-LTI, it is not an M-bi-ideal of S .
(iii) Clearly,
B 2 = { 0 b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 2 b 3 b 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 6 0 0 0 0 0 0 0 0 | b i s Z . }
Hence, B 2 is an M-LTI, but not an LTI of S .
Theorem 1.
1. Let f 1 S . The M-LTI generated by an element f 1 is f 1 m l t = { f 1 N ( f 1 · Γ · f 1 ) f 1 · Γ · ( S · Γ · · Γ · S ( M t i m e s ) ) · Γ · f 1 · Γ · f 1 } and N M , where N and M are positive integers.
2.
Let G be a subset of S . The M-LTI generated by set G is G m l t = { G G · Γ · G G · Γ · ( S · Γ · · Γ · S ( M t i m e s ) ) · Γ · G · Γ · G } .
Definition 10.
Let G be a subset of S , known as an M-left-tri-basis (LTB) of S if it meets the criteria listed below:
1.
S = G m l t .
2.
If F G such that S = F m l t , then F = G .
Example 2.
Let S = { k 1 , k 2 , k 3 , k 4 , k 5 , k 6 } and Γ = { π 1 , π 2 } , where π 1 and p i 2 are defined on S with the following table:
π 1 k 1 k 2 k 3 k 4 k 5 k 6 π 2 k 1 k 2 k 3 k 4 k 5 k 6
k 1 k 1 k 1 k 1 k 1 k 1 k 6 k 1 k 1 k 4 k 1 k 4 k 4 k 6
k 2 k 1 k 1 k 1 k 2 k 3 k 6 k 2 k 1 k 2 k 1 k 4 k 4 k 6
k 3 k 1 k 2 k 3 k 1 k 1 k 6 k 3 k 1 k 4 k 3 k 4 k 5 k 6
k 4 k 1 k 1 k 1 k 4 k 5 k 6 k 4 k 1 k 4 k 1 k 4 k 4 k 6
k 5 k 1 k 4 k 5 k 1 k 1 k 6 k 5 k 1 k 4 k 3 k 4 k 5 k 6
k 6 k 6 k 6 k 6 k 6 k 6 k 6 k 6 k 6 k 6 k 6 k 6 k 6 k 6
: = { ( k 1 , k 1 ) , ( k 1 , k 6 ) , ( k 2 , k 2 ) , ( k 2 , k 6 ) , ( k 3 , k 3 ) , ( k 3 , k 6 ) , ( k 4 , k 4 ) , ( k 4 , k 6 ) , ( k 5 , k 5 ) , ( k 5 , k 6 ) , ( k 6 , k 6 ) } . Clearly, ( S , Γ , ) is an ordered Γ-semigroup.
The covering relation : = { ( k 1 , k 6 ) , ( k 2 , k 6 ) , ( k 3 , k 6 ) , ( k 4 , k 6 ) , ( k 5 , k 6 ) } is represented by Figure 1, since G = { k 4 , k 5 } is a M-LTB of S .
Theorem 2.
Let G be the M-LTB of S and f 1 , f 2 G . If f 1 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] , then f 1 = f 2 .
Proof. 
Assume that f 1 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] , and suppose that f 1 f 2 . Let F = G { f 1 } . Obviously, F G since f 1 f 2 , f 2 F . To show that F m l t = S , clearly, F m l t S . Still, to prove that S F m l t , let s S . By our hypothesis, G m l t = S , and hence, s ( G G · Γ · G G · Γ · ( S · Γ · · Γ · S ) · Γ · G · Γ · G ] . We have s g for some g G G · Γ · G G · Γ · ( S · Γ · · Γ · S ) · Γ · G · Γ · G . As a result, the following cases will be discussed.
Case-1:
Let g G . There are two subcases to examine:
Subcase-1:
Let g f 1 , then g G { f 1 } = F F m l t .
Subcase-2:
Let g = f 1 . We have g = f 1 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( F · Γ · F F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Case-2:
Let g G · Γ · G . Then, g = g 1 · π · g 2 , for some g 1 , g 2 G and π Γ . In addition, there are four subcases to be considered.
Subcase-1:
Let g 1 = f 1 and g 2 = f 1 . Now,
g = g 1 · π · g 2 = f 1 · π · f 1 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) · Γ ·
( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) ] ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Subcase-2:
Let g 1 f 1 and g 2 = f 1 . Now,
g = g 1 · π · g 2 ( G { f 1 } ) · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( ( G { f 1 } ) · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) ] ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Subcase-3:
Let g 1 = f 1 and g 2 f 1 . Now,
g = g 1 · π · g 2 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] · Γ · ( G { f 1 } ) ( ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) · Γ · ( G { f 1 } ) ] ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Subcase-4:
Let g 1 f 1 , g 2 f 1 , and F = G { f 1 } . Now,
g = g 1 · π · g 2 ( G { f 1 } ) · Γ · ( G { f 1 } ) F m l t .
Case-3:
Let g G · Γ · ( S · Γ · · Γ · S ) · Γ · G · Γ · G . Then, g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 for some g 3 , g 4 , g 5 G , s 1 , s 2 , , s n S and π , θ , θ 1 , π 1 , π 2 , , π n Γ . We will examine eight subcases.
g i S u b c a s e g 3 g 4 g 5
S u b c a s e 1 f 1 = g 3 f 1 = g 4 f 1 = g 5
S u b c a s e 2 f 1 g 3 f 1 = g 4 f 1 = g 5
S u b c a s e 3 f 1 = g 3 f 1 g 4 f 1 = g 5
S u b c a s e 4 f 1 = g 3 f 1 = g 4 f 1 g 5
S u b c a s e 5 f 1 g 3 f 1 g 4 f 1 = g 5
S u b c a s e 6 f 1 = g 3 f 1 g 4 f 1 g 5
S u b c a s e 7 f 1 g 3 f 1 = g 4 f 1 g 5
S u b c a s e 8 f 1 g 3 f 1 g 4 f 1 g 5
Subcase-1:
Let g 3 = f 1 , g 4 = f 1 , and g 5 = f 1 . Now,
g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 = f 1 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 1 · θ 1 · f 1 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] · Γ · ( S · Γ · · Γ · S ) · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( { ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) · Γ · ( S · Γ · · Γ · S ) · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) } · Γ · ( N ( f 2 · Γ · f 2 )
f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Subcase-2:
Let g 3 f 1 , g 4 = f 1 , and g 5 = f 1 . Now,
g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 ( G { f 1 } ) · Γ · ( S · Γ · · Γ · S ) · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( ( G { f 1 } ) · Γ · ( S · Γ · · Γ · S ) · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) · Γ · ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Subcase-6:
Let g 3 = f 1 , g 4 f 1 , and g 5 f 1 . Now,
g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] · Γ · ( S · Γ · · Γ · S ) · Γ · ( G { f 1 } ) · Γ · ( G { f 1 } ) ( ( N ( f 2 · Γ · f 2 ) f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ) · Γ · ( S · Γ · · Γ · S ) · Γ · ( G { f 1 } ) · Γ · ( G { f 1 } ) ] ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Subcase-8:
Let g 3 f 1 , g 4 f 1 , g 5 f 1 , and F = G { f 1 } . Now,
g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 ( G { f 1 } ) · Γ · ( S · Γ · · Γ · S ) · Γ · ( G { f 1 } ) · Γ · ( G { f 1 } ) ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
It is similar to prove other subcases. Hence, for all the cases, we have S F m l t . Thus, S = F m l t , which is a contradiction. Hence f 1 = f 2 . □
Lemma 2.
Let G be the M-LTB of S and f 1 , f 2 , f 3 , f 4 G . If f 1 ( N ( f 3 · Γ · f 2 ) f 3 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 4 ] , then f 1 = f 2 or f 1 = f 3 or f 1 = f 4 .
Proof. 
Theorem 2 leads to the proof. □
Definition 11.
For any s 1 , s 2 S , s 1 m l t s 2 s 1 m l t s 2 m l t is called a quasi-order on S .
Remark 4.
The order m l t is not a partial order of S .
Example 3.
By Example 2, k 5 m l t k 6 m l t and k 6 m l t k 5 m l t but k 5 k 6 . Hence, the relation m l t is not a partial order on S .
If F is an M-LTB of S , then F m l t = S . Let s S . Then, s F m l t , and so, s f 1 m l t for some f 1 F . This implies s m l t f 1 m l t . Hence, s m l t f 1 .
Remark 5.
If G is a M-LTB of S then for any s S , there exists f 1 G such that s m l t f 1 .
Lemma 3.
Let G be an M-LTB of S . If f 1 , f 2 G such that f 1 f 2 , then neither f 1 m l t f 2 nor f 2 m l t f 1 .
Proof. 
Assume that f 1 , f 2 G , such that f 1 f 2 . Suppose that f 1 m l t f 2 . Let F = G { f 1 } . Then, f 2 F . Let s S . By Remark 5, there exists f 3 G , such that s m l t f 3 . We think about two cases to be discussed. If f 3 f 1 , then f 3 F . Thus, s m l t f 3 m l t F m l t . Hence, S = F m l t , which is a contradiction. If f 3 = f 1 , then s m l t f 2 . Hence, s F m l t , since f 2 F . Hence, S = F m l t , which is a contradiction. A similar argument can be made for other cases. □
Lemma 4.
Let G be the M-LTB of S and f 1 , f 2 , f 3 G and s S .
1.
If f 1 ( { f 2 · π · f 3 } N ( { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } ) { f 2 · π · f 3 } · Γ · ( S · Γ · · Γ · S ) ·
Γ · { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } ] , then f 1 = f 2 or f 1 = f 3 ,
2.
If f 1 ( { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } N ( { f 2 · π · ( s 1 · π 1 · s 2 · ·
π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ) { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · ( S · Γ · · Γ · S ) · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ] , then f 1 = f 2 or f 1 = f 3 or f 1 = f 4 .
Proof. 
(1) Assume that f 1 ( { f 2 · π · f 3 } N ( { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } ) { f 2 · π · f 3 } · Γ · ( S · Γ · · Γ · S ) · Γ · { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } ] and suppose that f 1 f 2 and f 1 f 3 . Let F = G { f 1 } . Clearly, F G , since f 1 f 2 and f 1 f 3 implies f 2 , f 3 F . To prove that G m l t F m l t , it suffices to determine that G F m l t . Let f G , if f f 1 that f F , and hence, f F m l t . If f = f 1 , then
f = f 1 ( { f 2 · π · f 3 } N ( { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } ) { f 2 · π · f 3 } · Γ · ( S · Γ · · Γ · S ) · Γ · { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } ] ( F · Γ · F F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F F m l t .
Thus, G F m l t . This implies G m l t F m l t , as G is an M-LTB of S and S = G m l t F m l t S . Therefore, S = F m l t , which is a contradiction. Hence, f 1 = f 2 or f 1 = f 3 .
(2)
Assume that f 1 ( { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } N ( { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ) { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · S   · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ] and suppose that f 1 f 2 and f 1 f 3 and f 1 f 4 . Let F = G { f 1 } . Clearly, F G , since f 1 f 2 , f 1 f 3 , and f 1 f 4 imply that f 2 , f 3 , f 4 F . To prove that G m l t F m l t , it remains to prove that G F m l t . Let f G if f f 1 that f F , and so, f F m l t . Hence,
f = f 1 ( { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } N ( { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ) { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · ( S · Γ · · Γ · S ) · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ] ( F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] F m l t .
Thus, G F m l t . This implies G m l t F m l t as G is an M-LTB of S and S = G m l t F m l t S . Therefore, S = F m l t , which is a contradiction. Hence, f 1 = f 2 or f 1 = f 3 or f 1 = f 4 . □
Lemma 5.
Let G be an M-LTB of S ,
1.
If f 1 f 2 and f 1 f 3 , then f 1 m l t f 2 · π · f 3 .
2.
If f 1 f 2 , f 1 f 3 and f 1 f 4 , then f 1 m l t f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 , for f 1 , f 2 , f 3 , f 4 G , π , π i , θ , θ 1 Γ and s i S , i = 1 , 2 , , n .
Proof. 
(1) For any f 1 , f 2 , f 3 G , let f 1 f 2 and f 1 f 3 . Suppose that f 1 m l t f 2 · π · f 3 and
f 1 f 1 m l t { ( f 2 · π · f 3 ) } m l t = ( { ( f 2 · π · f 3 ) } N ( { ( f 2 · π · f 3 ) } · Γ · { ( f 2 · π · f 3 ) } ) { ( f 2 · π · f 3 ) } · Γ · ( S · Γ · · Γ · S ) · Γ · { ( f 2 · π · f 3 ) } · Γ · { ( f 2 · π · f 3 ) } ] .
By Lemma 4 (1), it follows that f 1 = f 2 or f 1 = f 3 , which is a contradiction.
(2)
For any f 1 , f 2 , f 3 , f 4 G , let f 1 f 2 , f 1 f 3 , and f 1 f 4 . Suppose that f 1 m l t f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 , we have
f 1 f 1 m l t { ( f 2 · Γ · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 ) } m l t = ( { ( f 2 · Γ · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 ) } N ( { ( f 2 · Γ · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 ) } · Γ · { ( f 2 · Γ · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 ) } ) { ( f 2 · Γ · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 ) } · Γ · ( S · Γ · · Γ · S ) · Γ · { ( f 2 · Γ · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 ) } ] .
By Lemma 4 (2), it follows that f 1 = f 2 , f 1 = f 3 , or f 1 = f 4 , which contradicts our assumption. □
Theorem 3.
Let G be the M-LTB of S , if and only if G satisfies the following
1.
For any s S ,
(1.1) there exists f 2 G such that s m l t f 2 (or),
(1.2) there exists g 1 , g 2 G such that s m l t g 1 · π · g 2 (or),
(1.3) there exists g 3 , g 4 , g 5 G such that s m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 ;
2.
If f 1 f 2 and f 1 f 3 and f 1 f 4 , then f 1 m l t f 2 · π · f 3 , for any f 1 , f 2 , f 3 G ;
3.
If f 1 f 2 and f 1 f 3 and f 1 f 4 , then f 1 m l t f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 , for any f 1 , f 2 , f 3 , f 4 G , s i S and π i , π , θ , θ 1 Γ , i = 1 , 2 , , n .
Proof. 
Assume that G is an M-LTB of S , then S = G m l t . To prove that (1), let s S , s ( G G · Γ · G · Γ · G G · Γ · ( S · Γ · · Γ · S ) · Γ · G · Γ · G ] . As s ( G G · Γ · G · Γ · G G · Γ · ( S · Γ · · Γ · S ) · Γ · G · Γ · G ] , we have s g for some g G G · Γ · G · Γ · G G · Γ · ( S · Γ · · Γ · S ) · Γ · G · Γ · G , we think about the three following cases.
Case-1 :
Let g G . Then, g = f 2 for some f 2 G . This implies g m l t f 2 m l t . Hence, g m l t f 2 . As s g for some g f 2 m l t . To find out s m l t f 2 m l t . Now, s N ( s · Γ · s ) · Γ · ( S · Γ · · Γ · S ) · Γ · s · Γ · s f 2 m l t N ( f 2 m l t · Γ · f 2 m l t ) f 2 m l t · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 m l t f 2 N ( f 2 · π · f 2 ) f 2 · π · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] . We have ( s N ( s · Γ · s ) · Γ · ( S · Γ · · Γ · S ) · Γ · s · Γ · s ] ( f 2 N ( f 2 · π · f 2 ) f 2 · π · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] . Thus, s m l t f 2 m l t , and hence, s m l t f 2 .
Case-2 :
Let g G · Γ · G . Then, g = g 1 · π · g 2 for some g 1 , g 2 G and π Γ . This implies g m l t g 1 · π · g 2 m l t . Hence, g m l t g 1 · π · g 2 . As s g for some g g 1 · π · g 2 m l t . We have s g 1 · π · g 2 m l t . We determine that s m l t g 1 · π · g 2 m l t . Now, s N ( s · Γ · s ) · Γ · ( S · Γ · · Γ · S ) · Γ · s · Γ · s ( { g 1 · π · g 2 } N ( { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ) { g 1 · π · g 2 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ] . Hence, ( s N ( s · Γ · s ) · Γ · ( S · Γ · · Γ · S ) · Γ · s · Γ · s ] ( { g 1 · π · g 2 } N ( { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ) { g 1 · π · g 2 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ] . This implies s m l t g 1 · π · g 2 m l t . Hence, s m l t g 1 · π · g 2 .
Case-3:
Let g G · Γ · ( S · Γ · · Γ · S ) · Γ · G · Γ · G . Then, g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 for some g 3 , g 4 G . This implies g m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . Hence, g m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . As s g for some g g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . We have s g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . To prove that s m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . Now, s N ( s · Γ · s ) · Γ · ( S · Γ · · Γ · S ) · Γ · s · Γ · s ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } N ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ) { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ] . Hence, ( s N ( s · Γ · s ) · Γ · ( S · Γ · · Γ · S ) · Γ · s · Γ · s ] ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } N ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ) { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ] . This implies s m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . Hence, s m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 . By Lemma 5(1) and Lemma 5(2), we have the proof of (2) and (3), respectively.
Conversely, assume that (1), (2), and (3) hold to prove that G is an M-LTB of S . To determine that S = G m l t , clearly, G m l t S . By (1), S G m l t and S = G m l t . It remains to be determined whether G is a minimal subset of S , S = G m l t . Suppose that S = F m l t for some F G . As F G , there exists f 2 G F . As f 2 G S = F m l t and f 2 F , it follows that f 2 ( F · Γ · F · Γ · F F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] . As f 2 ( F · Γ · F · Γ · F F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F ] , this implies f 2 g for some g F · Γ · F · Γ · F F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F . There are two cases to be observed.
Case-1:
Let g F · Γ · F · Γ · F . Then, g = g 1 · π · g 2 for some g 1 , g 2 F and π Γ . We have g 1 , g 2 G . As f 2 F , f 2 g 1 and f 2 g 2 . As g = g 1 · π · g 2 , g m l t g 1 · π · g 2 m l t . Hence, g m l t g 1 · π · g 2 . As f 2 g for some g g 1 · π · g 2 m l t , we have f 2 g 1 · π · g 2 m l t to prove that f 2 m l t g 1 · π · g 2 m l t . Now, f 2 N ( f 2 · π · f 2 ) f 2 · π · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ( { g 1 · π · g 2 } N ( { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ) { g 1 · π · g 2 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ] . Hence, ( f 2 N ( f 2 · π · f 2 ) f 2 · π · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( { g 1 · π · g 2 } N ( { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ) { g 1 · π · g 2 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 1 · π · g 2 } · Γ · { g 1 · π · g 2 } ] . This implies f 2 m l t g 1 · π · g 2 m l t . Hence, f 2 m l t g 1 · π · g 2 . This contradicts (2).
Case-2:
Let g F · Γ · ( S · Γ · · Γ · S ) · Γ · F · Γ · F . Then, g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 for some g 3 , g 4 F , s i S and π i , π , θ Γ , i = 1 , 2 , , n . We have g 3 , g 4 G . As f 2 F , so f 2 g 3 and f 2 g 4 . As g = g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 , g m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . Hence, g m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 . Since f 2 g for some g g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t , we have f 2 g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . We determine that f 2 m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . Now, f 2 N ( f 2 · π · f 2 ) f 2 · π · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } N ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ) { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ] . Hence, ( f 2 N ( f 2 · π · f 2 ) f 2 · π · ( S · Γ · · Γ · S ) · Γ · f 2 · Γ · f 2 ] ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } N ( { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ) { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · ( S · Γ · · Γ · S ) · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } · Γ · { g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 } ] . This implies f 2 m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 m l t . Hence, f 2 m l t g 3 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · g 4 · θ 1 · g 5 , which is a contradiction to (3). Therefore, G is an M-LTB of S . □
Theorem 4.
Let G be an M-LTB of S . Then, G is an ordered Γ-subsemigroup of S , if and only if g 1 · π · g 2 = g 1 or g 1 · π · g 2 = g 2 , for any g 1 , g 2 G and π Γ .
Proof. 
If G is an ordered Γ -subsemigroup of S , then g 1 · π · g 2 G . As g 1 · π · g 2 ( N ( g 1 · Γ · g 2 ) g 1 · Γ · ( S · Γ · · Γ · S ) · Γ · g 2 · Γ · g 2 ] , it follows by Lemma 2 that g 1 · π · g 2 = g 1 or g 1 · π · g 2 = g 2 . □

4. M-RTB Generator

We present some results on the M-right-tri-ideal (RTI) generator based on an ordered Γ -semigroup.
Definition 12.
Let S be an ordered Γ- semigroup. G S is said to be an M-RTI of S if it meets the criteria listed below:
1.
G is a Γ-subsemigroup,
2.
G · Γ · G · Γ · ( S · Γ · · Γ · S ( M t i m e s ) ) · Γ · G G ,
3.
If g G and s S , such that s g , then s G .
Theorem 5.
1. For f 1 S , the M-RTI generated by f 1 is f 1 m r t = { f 1 N ( f 1 · Γ · f 1 ) f 1 · Γ · f 1 · Γ · ( S · Γ · · Γ · S ( M t i m e s ) ) · Γ · f 1 } and N M , where N and M are positive integers;
2.
For G S , the M-RTI generated by G is G m r t = { G G · Γ · G G · Γ · G · Γ · ( S · Γ · · Γ · S ( M t i m e s ) ) · Γ · G } .
Definition 13.
Let G be a subset S called a M-right tri-basis (RTB) of S if it satisfies the following conditions:
1.
S = G m r t .
2.
If F G such that S = F m r t , then F = G .
Theorem 6.
Let G be an M-RTB of S and f 1 , f 2 G . If f 1 ( N ( f 2 · Γ · f 2 ) f 2 · Γ · f 2 · Γ · ( S · Γ · · Γ · S ) · Γ · f 2 ] , then f 1 = f 2 .
Proof. 
The proof is the same as in Theorem 2. □
Lemma 6.
Let G be an M-RTB of S and f 1 , f 2 , f 3 , f 4 G . If f 1 ( N ( f 3 · Γ · f 2 ) f 2 · Γ · f 4 · ( S · Γ · · Γ · S ) · Γ · f 3 ] , then f 1 = f 2 or f 1 = f 3 or f 1 = f 4 .
Proof. 
Theorem 2 leads to the proof. □
Definition 14.
For any s 1 , s 2 S , s 1 m r t s 2 s 1 m r t s 2 m r t is called a quasi-order on S .
Remark 6.
The order m r t is not a partial order of S .
Example 4.
By Example 2, k 4 m r t k 6 m r t and k 6 m r t k 4 m r t but k 4 k 6 . Hence, the relation m r t is not a partial order on S .
If F is an M-RTB of S , then F m r t = S . Let s S . Then, s F m r t and so s f 1 m r t for some f 1 F . This implies s m r t f 1 m r t . Hence, s m r t f 1 .
Remark 7.
If G is an M-RTB of S , then for any s S , there exists f 1 G such that s m r t f 1 .
Lemma 7.
Let G be an M-RTB of S . If f 1 , f 2 G such that f 1 f 2 , then neither f 1 m r t f 2 nor f 2 m r t f 1 .
Proof. 
The proof follows from Lemma 3. □
Lemma 8.
Let G be the M-RTB of S and f 1 , f 2 , f 3 G and s S .
1.
If f 1 ( { f 2 · π · f 3 } N ( { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } ) { f 2 · π · f 3 } · Γ · { f 2 · π · f 3 } · Γ · ( S · Γ · · Γ · S ) · Γ · { f 2 · π · f 3 } ] , then f 1 = f 2 or f 1 = f 3 ;
2.
If f 1 ( { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } N ( { f 2 · π · ( s 1 · π 1 · s 2 · ·
π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ) { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } · Γ · ( S · Γ · · Γ · S ) · Γ · { f 2 · π · ( s 1 · π 1 · s 2 · · π n · s n ) · θ · f 3 · θ 1 · f 4 } ] , then f 1 = f 2 or f 1 = f 3 or f 1 = f 4 .
Proof. 
The proof follows from Lemma 4. □
Lemma 9.
Let G be the M-RTB of S ,
1.
If f 1 f 2 and f 1 f 3 , then f 1 m r t f 2 · π · f 3 .
2.
If f 1 f 2 , f 1 f 3 and f 1 f 4 , then f 1 m r t f 3 · θ · f 4 · θ 1 · ( s 1 · π 1 · s 2 · · π n · s n ) · π · f 2 , for f 1 , f 2 , f 3 , f 4 G , π , π i , θ , θ 1 Γ and s i S , i = 1 , 2 , , n .
Proof. 
The proof follows from Lemma 5. □
Theorem 7.
Let G be the M-RTB of S , if and only if the following conditions are met by G .
1.
For any s S ,
(1.1) there exists f 2 G , such that s m r t f 2 (or),
(1.2) there exists g 1 , g 2 G , such that s m r t g 1 · π · g 2 (or),
(1.3) there exists g 3 , g 4 , g 5 G , such that s m r t g 4 · θ · g 5 · θ 1 · ( s 1 · π 1 · s 2 · · π n · s n ) · π · g 3 ;
2.
If f 1 f 2 , f 1 f 3 , and f 1 f 4 , then f 1 m r t f 2 · π · f 3 , for any f 1 , f 2 , f 3 G ,
3.
If f 1 f 2 , f 1 f 3 , and f 1 f 4 , then f 1 m r t f 3 · θ · f 4 · θ 1 · ( s 1 · π 1 · s 2 · · π n · s n ) · π · f 2 , for any f 1 , f 2 , f 3 , f 4 G , s i S and π i , π , θ , θ 1 Γ , i = 1 , 2 , , n .
Proof. 
Theorem 3 leads to the proof. □
Theorem 8.
Let G be an M-RTB of S . Then, G is an ordered Γ-subsemigroup of S , if and only if g 1 · π · g 2 = g 1 or g 1 · π · g 2 = g 2 , for any g 1 , g 2 G and π Γ .
Proof. 
The proof is the same as Theorem 4. □

5. Conclusions

Several characterizations of the M-LTB (RTB) of an ordered Γ -semigroup are described in this article. Our discussion has focused on some of their fundamental characteristics and has also examined some of them using the M-tri-ideal generator. We presented the M-LTB (RTB) of an ordered Γ -semigroup, which was constructed from an ordered Γ -semigroup element and subset. At the end of our discussion, we explored the relationship between partial order and the M-LTB (RTB). In the future, we plan to explore a few more types of tri-basis and tri-M-basis. Our study will examine their research on Γ -hyper semigroups using bi-basis and M-bi-basis.

Author Contributions

Conceptualization, M.P. (M. Palanikumar); methodology, M.P. (Madhumangal Pal); writing original draft, M.P. (M. Palanikumar); conceptualization, C.J.; validation, C.J.; conceptualization, O.A.-S.; review and editing, O.A.-S. and writing—review and editing, M.P. (Madhumangal Pal). All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Informed Consent Statement

The article does not contain any studies with human participants or animals performed by the author.

Data Availability Statement

Not applicable.

Acknowledgments

The authors declare that the present work is a joint contribution to this paper and was not supported by any financial and material agency.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sen, M.K.; Saha. On Γ-semigroup. Bull. Cal. Math. Soc. 1996, 78, 180–186. [Google Scholar]
  2. Rao, M.M.K. Γ-semirings. Southeast Asian Bull. Math. 1995, 19, 49–54. [Google Scholar]
  3. Kapp, K.M. On bi-ideals and quasi-ideals in semigroups. Publ. Math. Debrecen. 1969, 16, 179–185. [Google Scholar] [CrossRef]
  4. Kapp, K.M. Bi-ideals in associative rings and semigroups. Acta Sci. Math. 1972, 33, 307–314. [Google Scholar]
  5. Kemprasit, Y. Quasi-ideals and bi-ideals in semigroups and rings. In Proceedings of the International Conference on Algebra and its Applications, Bangkok, Thailand, 18–22 March 2002; pp. 30–46. [Google Scholar]
  6. Kwon, Y.I.; Lee, S.K. Some special elements in ordered Γ-semigroups. Kyungpook Math. J. 1996, 35, 679–685. [Google Scholar]
  7. Munir, M. On M-bi-ideals in semigroups. Bull. Int. Math. Virtual Inst. 2018, 8, 461–467. [Google Scholar]
  8. Sen, M.K.; Seth, A. On po-Γ-semigroups. Bull. Cal. Math. Soc. 1993, 85, 445–450. [Google Scholar]
  9. Iampan, A.; Siripitukdet, M. On minimal and maximal ordered left ideals in ordered Γ-semigroups. Thai J. Math. 2004, 2, 275–282. [Google Scholar]
  10. Iampan, A. Characterizing ordered bi-ideals in ordered Γ-semigroups. Iran. J. Math. Sci. Inform. 2009, 4, 17–25. [Google Scholar]
  11. Iampan, A. Characterizing ordered Quasi-ideals of ordered Γ-semigroups. Kragujev. J. Math. 2011, 35, 13–23. [Google Scholar]
  12. Kwon, Y.I.; Lee, S.K. The weakly semi-prime ideals of ordered Γ-semigroups. Kangweon Kyungki Math. J. 1997, 5, 135–139. [Google Scholar]
  13. Jantanan, W.; Latthi, M.; Puifai, J. On bi-basis of ordered Γ-semigroups. Naresuan Univ. J. Sci. Technol. 2022, 30, 75–84. [Google Scholar]
  14. Palanikumar, M.; Arulmozhi, K. On new ways of various ideals in ternary semigroups. Matrix Sci. Math. 2020, 4, 6–9. [Google Scholar]
  15. Palanikumar, M.; Arulmozhi, K. On various tri-ideals in ternary semirings. Bull. Int. Math. Virtual Inst. 2021, 11, 79–90. [Google Scholar]
  16. Palanikumar, M.; Arulmozhi, K. On various almost ideals of semirings. Ann. Commun. Math. 2021, 4, 1–17. [Google Scholar]
  17. Rao, M.M.K. Tri-quasi ideals of Γ semigroups. Bull. Int. Math. Virtual Inst. 2021, 11, 111–120. [Google Scholar]
  18. Rao, M.M.K. Tri-ideals of Γ-semirings. Analele Univ. Oradea Fasc. Mat. Tom 2019, 2, 51–60. [Google Scholar]
  19. Suebsung, S.; Chinram, R.; Yonthanthum, W.; Hila, K.; Iampan, A. On almost bi-ideals and almost quasi-ideals of ordered semigroups and their fuzzifications. Icic Express Lett. 2022, 16, 127–135. [Google Scholar]
  20. Palanikumar, M.; Iampan, A.; Manavalan, L.J. M-bi-basis generator of ordered gamma-semigroups. Icic Express Lett. Part B Appl. 2022, 13, 795–802. [Google Scholar]
  21. Mallick, S.; Hansda, K. On the semigroup of bi-ideals of an ordered semigroup. Kragujev. J. Math. 2023, 47, 339–345. [Google Scholar]
Figure 1. Covering relation.
Figure 1. Covering relation.
Mathematics 11 00893 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Palanikumar, M.; Jana, C.; Al-Shanqiti, O.; Pal, M. A Novel Method for Generating the M-Tri-Basis of an Ordered Γ-Semigroup. Mathematics 2023, 11, 893. https://doi.org/10.3390/math11040893

AMA Style

Palanikumar M, Jana C, Al-Shanqiti O, Pal M. A Novel Method for Generating the M-Tri-Basis of an Ordered Γ-Semigroup. Mathematics. 2023; 11(4):893. https://doi.org/10.3390/math11040893

Chicago/Turabian Style

Palanikumar, M., Chiranjibe Jana, Omaima Al-Shanqiti, and Madhumangal Pal. 2023. "A Novel Method for Generating the M-Tri-Basis of an Ordered Γ-Semigroup" Mathematics 11, no. 4: 893. https://doi.org/10.3390/math11040893

APA Style

Palanikumar, M., Jana, C., Al-Shanqiti, O., & Pal, M. (2023). A Novel Method for Generating the M-Tri-Basis of an Ordered Γ-Semigroup. Mathematics, 11(4), 893. https://doi.org/10.3390/math11040893

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop