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Abstract: In biological evolution, organisms that are more adapted to the environment tend to
survive better, which can be explained in part by evolutionary game theory. In this paper, we propose
an improved spatial prisoner’s dilemma game model, which allows the focal player to access the
strategy of other agents beyond their nearest neighbors with a specified probability. During the
strategy update, a focal player usually picks up a randomly chosen neighbor according to a Fermi-like
rule. However, in our model, unlike the traditional strategy imitation, a focal agent will decide to
update their strategy through the modified rule with a specific probability q. In this case, the focal
agent accesses n other individuals who have the same strategy as the imitated neighbor, where the
information accessing cost needs to be paid, and then compares their discounted payoff with the
average payoff of those n + 1 agents to make the decision of strategy adoption; otherwise, they only
refer to their own payoff and their neighbor’s payoff to decide whether the strategy spread happens.
Numerical simulations indicate that a moderate value of n can foster the evolution of cooperation
very well, and increase in q will also improve the dilemma of cooperators. In addition, there exists an
optimal product of n× c to cause the emergence of cooperation under the specific simulation setup.
Taken together, the current results are conducive to understanding the evolution of cooperation
within a structured population.

Keywords: paid information access; prisoner’s dilemma game; evolution of cooperation
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1. Introduction

Darwinian theory about the origin of species [1] suggests that there is competition
for existence between organisms, the fittest ones will survive, while unfit species tend to
become extinct; that is, competition plays a central role in biological evolution and drives
the development of species from a low to a high level, and also from simple to complex
forms. However, in real world scenarios, there is not always a competitive relationship
between species and cooperation is also a very common behavior [2,3]. Such behaviour
includes cooperative actions during the migration of birds, collaborative behaviors during
the process of moving stones in ants, and coordinating acts during hunting behaviors for
some members of African tribes. Therefore, how to understand ubiquitous cooperating phe-
nomena in nature and human society is crucial and has become one of the top 25 scientific
problems confronting us in the twenty-first century [4].

At present, evolutionary game theory (EGT) provides a powerful mathematical frame-
work for us to probe into the evolution of cooperation [5–7]. In evolutionary game theory,
game players are not assumed to be totally rational individuals who can update or change
their strategy choices through imitating other neighboring players based on the specific
rules; thus, EGT offers a brand new perspective on the evolution of cooperation between
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agents. To mimic different conflicts or circumstances faced by players, various game models
can be embedded into the EGT in order that the evolution of cooperation can be deeply
analyzed. For example, typical two-player game models, including the prisoner’s dilemma
game (PDG) [8–14] and the snowdrift game (SDG) [15], are often used to resolve social
dilemmas that individuals may confront under realistic conditions. In addition, how to
deploy or distribute the public resource is also a significant issue for social governance.
Hamburger [16] formally proposed the N-person prisoner’s dilemma model in 1973, where
the public goods game (PGG) [17,18] is also utilized. For some realistic or specific en-
vironments, other game models have also been applied to solve real problems, such as
the boxed-pigs game [19], the chicken game [20], the cake-sharing game [21], the pirate
game [22] and others.

To be specific, Nowak declared that the main mechanisms to enhance the evolution of
cooperation can be summarized in terms of five rules, which include kin selection, direct or
indirect reciprocity, group selection, and spatial or network reciprocity [23]. Among them,
beyond well-mixed populations, Nowak and May [24] originally combined the spatial lat-
tice with EGT to investigate collective cooperation behavior based on the classic PDG. They
found that, in the spatial lattice, cooperative behaviors can exist since many cooperative
participants can form close clusters to defend the invasion of defectors, thus promoting
the spread of cooperative behaviors. As a further step, Nowak et al. reviewed related pro-
gresses in the field of EGT and focused on studies in spatially structured populations with
a finite size [25]. Subsequently, various network topologies, such as the small-world net-
work [26], scale-free network [27], random network [28] and interdependent network [29],
were combined with evolutionary game theory to explore how cooperation can be evolved
within a networked population. In addition, some specific mechanisms for understanding
the role of various factors and uncertainties in the evolution of cooperation have also
been proposed by many scholars, including reputation [30–34], noise interference [35],
punishment [36–40], reward [41,42], interaction diversity [43–46] and others.

In reality, gaming cost has always been an indispensable factor for players during
strategy selection. As an example, in the two-person donation game [47], the cooperator
pays the cost c to bring the payoff b to their opponent, so the payoff matrix of the donation

game is
{

b− c −c
b 0

}
; in the snowdrift game, the cooperator pays the cost c of shoveling

snow, while the defector does not pay the cost, and the corresponding payoff matrix is{
b− c

2 −c
b 0

}
; in the public goods game, the cooperator pays the cost c to the public

pool for the collective benefit, where N denotes the number of all individuals in the public
goods game and nc means the number of cooperators within this PGG group, and then
the payoff obtained by the defector is rncc/N, while the cooperator’s payoff is rncc/N − c,
which is smaller than that of the defector. The above-mentioned costs are all necessary ones
encountered inside the game and these costs are only paid by cooperators. However, does
there exist any cost for players to participate in the game process outside the game? To
address this issue, Masuda [48] put forward a kind of game participation cost, such as in
the PDG where two players interact. As long as they participate in this game, a participant
will bear a game participation cost regardless of whether the participant is a cooperator or
a defector. Their results indicate that the participation cost is irrelevant in homogeneous
networks, including the well-mixed population and regular lattice, but, in heterogeneous
networks, the participation cost will destroy the reciprocity of networks. Subsequently,
Jun and Atsuo [49] re-examined the results presented by Masuda [48], and found that the
influence of participation cost on transmission dynamics in heterogeneous networks is not
the same as that in [48] and that participation cost is helpful to cooperation in some specific
cases. For instance, the cost of game participation contributes to network reciprocity in
scale-free networks to a larger average degree in the weak prisoner’s dilemma.

In the past, various strategy imitation rules have been studied. An extensively adopted
strategy updating method is the Fermi updating rule, where strategy update is determined
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by, and only by, payoff or fitness comparison between a pair of players in the current
game round. In the Fermi rule, it is shown that an inferior strategy with lower benefit
is more willing to learn from a superior strategy within the system. However, it seems
one-sided and inaccurate to regard this strategy as an inferior strategy or a superior strategy
based only on the benefits to an individual in a certain round. To utilize more information
during previous game rounds, Lu et al. [50] studied the influence of memory effects on
the evolution of cooperation in the spatial prisoner’s dilemma game and found that a
moderate memory length was the most conducive to the emergence and evolution of
cooperation. Furthermore, Attila and Matjaž [51] used a Fermi-like update rule to discuss
the evolution of cooperation in the prisoner’s dilemma in a lattice network, where they
performed payoff or fitness comparison by considering the average gains of individuals
relative to their own neighbors who shared the same strategies with their opponents. It
was found that this novel payoff or fitness comparison significantly improved the level of
cooperation within the population. To more realistically simulate the game decisions of
players, we try to combine the abovementioned mechanisms to further enhance the level
of cooperation, and propose an improved prisoner’s dilemma game model on the regular
lattice to investigate the evolution of cooperation, where any individual not only relies
on the original Fermi update rule to update their strategies, but also on the new Fermi
update rule with a complementary probability. Under this improved Fermi rule, thestrategy
update for an agent depends on the average payoff among some selected players within
the population. In addition, any individual needs to pay a specific cost if they want to
obtain this information. We not only thoroughly analyze the influence of complementary
probability on evolutionary dynamics, but also discuss, in depth, the impact of information
acquired by individuals and the acquisition cost on evolutionary dynamics.

The rest of this paper is organized as follows: Firstly, we introduce our model in detail
in Section 2. Then, in Section 3, many numerical simulations undertaken are described
and the experimental results are analyzed and carefully explained. Finally, Section 4
summarizes the main contributions of this work and presents promising outlooks for the
future.

2. Game Model

Our model starts from a L× L regular lattice satisfying cyclic boundary conditions.
At the beginning, N = L2 players are randomly distributed onto each intersection point of
the lattice,. Then half of them are randomly selected and set as cooperators (C, represented
by the transposition of column vector Si = (1, 0)), while the rest are set as defectors (D,
represented by the transposition of column vector Si = (0, 1)).

In the model, each player will play the PDG with their neighbors. For simplicity,
we use the so-called weak prisoner’s dilemma game [24] as the baseline game model.
That is to say, the payoff obtained by mutual cooperation between two players is R = 1
and the payoff obtained by mutual betrayal is P = 0. If one defecting individual meets
a cooperative component, the former will get the payoff to defect T, while the latter will
obtain the sucker’s payoff S = 0. Thus, the only variable is T in the game model and the
payoff matrix can be written as Equation (1):

M =

(
1 0
T 0

)
(1)

Any focal player x will interact with their four nearest neighbors (that is, von Neumann
neighbors) and calculate the game payoff according to Equation (1). The total income of
the focal player x is then given by the following Equation (2):

Px = ∑
y∈Nx

ST
x MSy. (2)
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The system evolves in terms of Monte Carlo simulations until the system arrives at an
evolutionary stable state. A complete Monte Carlo step includes the following sub-steps:
(i) a randomly selected individual x, whose strategy is Sx, plays the weak PDG with their
von Neumann neighbors and computes the total payoff Px determined by Equation (2);
(ii) the focal individual x will randomly select an individual y with strategy Sy from their
nearest neighbors as the imitating object to perform the strategy update. If these two
players own the same strategy, player x will keep the current strategy, otherwise, player x
will adopt player y’s strategy with the following Fermi-like probability [52],

W(y← x) =
1

1 + exp
[
−
(
Πy −Πx

)
/K

] , (3)

where Πx and Πy represent the fitness of players x and y, respectively, K denotes the extent
of irrationality during the strategy update, which is a tunable parameter in the model,
and K is set to 0.1 without losing the generality. The Fermi-like function indicates that
game agents are more willing to imitate the strategies of neighbors with higher fitness
when updating their own strategies. After an individual completes the strategy update,
they randomly select another individual to update their strategy again until all individuals
complete the strategy update once.

As indicated in Equation (3), during the strategy update, players x and y need to first
calculate their fitness Πx and Πy. In order to obtain Πx and Πy, each agent will decide
whether to spend a certain cost n ∗ c (n indicates the number of players that player x
has visited within the population, and c is the cost that individual x has to pay for each
individual’s information) with the probability of q to obtain the income information of other
individuals in the population. When q = 1, player x will definitely refer to the average
income of individuals with the same strategy as y in the system when updating the strategy.
When q = 0, player x only refers to the income of their neighbor y to update their current
strategy. At this time, the model is reduced to the original prisoner’s dilemma model. In the
model, the focal player x needs first to determine whether they will visit the strategies and
payoffs of other n random individuals in the whole system with the probability of q. If the
individual x does this, they learn the strategy of y with Equation (3), and then Πx and Πy
are computed according to the following equation

Πx = Px − n× c
Πy = Pave,

(4)

where Pave represents the average income of the individuals with the same strategy as
y among n individuals acquired by x, Px is the game income of x at this game round, n
indicates the number of players that player x has visited within the population, c is the
cost that individual x has to pay for each individual’s information, and n× c represents the
total cost that individual x has to pay. Obviously, player x does not visit the information of
other individuals with the probability of (1− q), and, in this case, Πx is the game income of
player x in the current round and Πy is the game income of player y. Here, the maximum
value of q is set to 0.5 in order that a battle of the sexes is avoided.

Taking together, a full Monte Carlo step includes the following typical processes:
(i) randomly selecting a focal individual and calculating their own payoff and those of their
opponent, (ii) judging whether this individual obtains the information of other individuals,
then (iii) calculating the fitness of the individual and their opponent through Equation (4),
and, finally, (iv) updating the individual’s strategies through Equation (3). For the Monte
Carlo simulation (MCS) mentioned in this paper, the total number of simulation steps
is set to 10,000, the lattice size is set to L× L = 100× 100, and ρ denotes the fraction of
cooperators at the stationary state, which is averaged over the final 2000 Monte Carlo
steps after the system reaches the steady state. In order to reduce the error and the non-
contingency of the experiment, all simulations are conducted using at least 10 independent
runs and the final results are obtained by averaging over 10 independent runs.
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3. Simulation Results

In order to explore the impact of paid acquisition of information on the evolution of
cooperation, we first discuss the role of different information acquisition probabilities q.
As shown in Figure 1, we draw the evolution of ρ as a function of the temptation to defect
T for different values of q, in which the horizontal axis indicates the temptation to defect
T and the vertical axis denotes the level of cooperation ρ at the stationary state. It can be
clearly seen from the four panels in Figure 1 that, for specific values of n and c, the fraction
of cooperators ρ will also increase as the value of q increases. As shown in Figure 1a, when
q = 0, this indicates that individuals update their strategies only according to their own and
neighbors’ gains, and the system returns to the original prisoner’s dilemma model, where
the critical temptation to defect is Tc = 1.035 for K = 0.1. If q > 0, when the player updates
their strategy, they can obtain the information of other individuals in the population with
the probability of q; it can be observed that ρ will increase as the other parameters are kept
constant and q is continuously increased. As an example, in this case, the system will enter
the fully defective status only when T > 1.47; that is, the critical Tc is up to 1.47. In addition,
when n and q are fixed, the cost to acquire the payoff information becomes larger (e.g.,
c = 0.1), and the threshold leading to the full extinction of cooperation (Tc) becomes higher,
which can be easily observed by comparing panels (a) and (b), or comparing panels (c) and
(d). Nevertheless, introducing paid access to the payoff information for other players can
greatly enhance the evolution of cooperation.
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(a)  q=0.0
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 q=0.2
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Figure 1. Fraction of cooperators ρ at the stationary state as a function of T on a square lattice for
different values of q, n and c. From panel (a–d), n and c are set to be as follows: (a) n = 12, c = 0.1;
(b) n = 12, c = 0.01; (c) n = 8, c = 0.1; (d) n = 8, c = 0.01. Other model parameters are fixed as:
L = 100, K = 0.1.

As a further step, Figures 2 and 3 show characteristic snapshots of the strategy distri-
bution for different values of q at time-steps MCS = 0, 10, 1000 and 10,000, respectively.
Among them, cooperators and defectors are randomly placed onto the lattice intersection
at the initial step MCS = 0, as shown in the leftmost panel of Figure 2. In the right region
of Figure 2, from top to bottom, q is set to be 0, 0.2 and 0.5, respectively. In each row
of panels, the snapshot denotes the strategy distribution at MCS = 10, 1000 and 10,000,
respectively. By comparing the rightmost panels, it can be observed that the cooperators can
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gradually organize into compact clusters to resist the invasion of defectors as q increases;
thus, the fraction of cooperators ρ becomes higher and higher. The current results are also
consistent with those in Figure 1. Meanwhile, in Figure 3, we present the corresponding
snapshots under the same parameter setup, where the only difference is the initial strategy
distribution. As shown in the leftmost panel in Figure 3, all defectors are arranged onto the
upper panel, while all cooperators are distributed onto the lower panel; with respect to the
evolution of the characteristic snapshots, the results are qualitatively similar to those in
Figure 2. According to Figures 2 and 3, the difference in initial strategy distribution only
delays the invasion of defection or the formation of cooperative clusters, but has no effect
on the final distribution of defectors and defectors within the population.

q=0.5

q=0.2

q=0.0

Figure 2. Characteristic snapshots of cooperators and defectors on the lattice for different values of
information acquisition probability q. In the right area, from top to bottom, q is set to be 0 (traditional
model), 0.2 and 0.5; from left to right, MCS step is set to be 10, 1000 and 10,000, respectively. For each
case, the same temptation to defect T = 1.1 is applied here and the same initial state is assumed,
where cooperators and defectors are randomly distributed with equal probability, as shown in the left
area. In addition, the blue dots denote the defectors, while the dark red dots represent the cooperators.
Other model parameters are fixed as: L = 100, K = 0.1, n = 12, c = 0.1.

In particular, we re-examine the evolution of cooperation to check the impact of n and
c. By comparing panel (a) and (c) in Figure 1, it is found that, for n = 12, the cooperation
rate ρ is obviously improved when compared to that obtained for n = 8, and the critical
threshold for cooperators to be fully extinct Tc is also increased. In order to further explore
the influence of n on the level of cooperation, we set the probability q of information acquisi-
tion to be a fixed value of 0.5, and the cost c of acquiring a single piece of information to 0.1.
When n is different, the fraction of cooperators at the stationary state ρ is pictured as a func-
tion of T, as shown in Figure 4. Here, for n = 0, the model is equivalent to the traditional
prisoner’s dilemma model. With increase in T, the cooperation rate drops rapidly; the
system reaches full defection status when T = 1.035. It can be seen from Figure 4 that, when
n increases from 0 to 4, the stationary level of cooperation obviously increases and that the
critical threshold leading the extinction of cooperators (Tc) also increases from 1.035 to 1.283.
With further increase in n, the cooperation rate also increases and, finally, n = 12 renders
the optimal environments to foster the emergence of cooperation, where Tc is also increased
up to 1.482. In fact, if n > 0, when individuals update their strategies, they need to first pay
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a certain cost n ∗ c to obtain the information for other n individuals within the population.
Then they utilize the information they have obtained to make the decision about whether
they will adopt the strategy of an imitated object. When compared to the traditional PDG
model, the current method could be helpful for the spread of prosocial behaviors in the
population. It is obvious that, with increase in n, the more the information individuals
obtain from the system, the stronger the ability of collaborators to resist invasion by traitors.

However, as a result of the cost to obtain the information, too large a value of n leads
to a higher cost to acquire related information to help the decision; then it is found, as
shown in Figure 4, that the cooperation rate decreases rapidly with increase in b after
n ≥ 24. Compared with that for n = 12, the overall cooperation rate ρ becomes lower and
lower under the same temptation to defect for n = 24 or n = 48. Especially for n = 48,
the stationary ratio of cooperators ρ decreases much more rapidly and the cooperators tend
to be extinct even if T is just beyond 1.025, where the value of Tc is even smaller than that
for n = 0. Furthermore, since it costs a certain amount to obtain information, as mentioned
above, this means that the cost of obtaining information becomes higher and higher as n
increases for a fixed cost (e.g., c = 0.1). When the value of n is too large and exceeds a
certain threshold, this will lead to the fact that the individual’s game income is not enough
to pay the cost to obtain the information for other individuals. Therefore, when the value
of n is too large, this mechanism for paid access to promote cooperation will weaken or
even disappear.

q=0.5

q=0.2

q=0.0

Figure 3. Characteristic snapshots of cooperators and defectors on the lattice for different values of
information acquisition probability q. The only difference from Figure 2 is the initial distribution
of cooperators and defectors. Here, cooperators are arranged in the upper part of the whole lattice,
but the defectors occupy the lower part of the lattice. All other setup and model parameters are
identical to those in Figure 2.
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1.1 1.2 1.3 1.4 1.51.0
0.0

0.2

0.4

0.6

0.8

1.0

T

 n=0
 n=4
 n=8
 n=12
 n=24
 n=48

Figure 4. Fraction of cooperators at the stationary state as a function of T for different numbers of
information acquisition n when the probability of information acquisition q is fixed to be 0.5. Different
color curves denote the results under different n. Other model parameters are fixed as: L = 100,
K = 0.1 and c = 0.1.

Next, so as to search for the optimal number of visited individuals for the decision of
a focal player, Figure 5 shows the stable fraction of cooperators as a function of the number
of visited ones (n) when the temptation to defect T = 1.1 and the information cost c = 0.1
are fixed. No matter what the acquisition probability q is, with increase in the value of n,
the overall cooperation rate of the system presents almost a bell-shaped curve. However,
in Attila and Matjaž’s [51] work, the level of cooperation could be increased if individuals
are able to collect information from a larger range and the stationary fraction of cooperators
would saturate after a certain range is exceeded. At first, when the number of referenced
individuals n gradually increases from 0, when the strategy is updated, individuals can
get more information from the population. The cost at this time is within the range that
individuals can afford; thus, the overall level of cooperation is increasing and finally reaches
the maximum value when n is up to 12 or 13. After that, with continuous increase in n,
the focal player needs to bear more costs if they intend to obtain more information, which
means that some individuals’ incomes are not enough to support the cost of obtaining the
information, causing the total group cooperation level to decline. Eventually, after n exceeds
a certain range, all the individuals’ incomes are not enough to support the information cost,
which leads, finally, to full defection within the population.
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0.8

1.0
 q=0.0
 q=0.1
 q=0.2
 q=0.3
 q=0.4
 q=0.5

n
Figure 5. Fraction of cooperators at the stationary state as a function of n for different numbers of
information acquisition q when T is fixed to be 1.1. Different color curves denote the results under
different q. Other model parameters are fixed to be: L = 100, K = 0.1 and c = 0.1.

In order to understand in greater depth how the size of n affects the evolution of
cooperation within the whole population, in Figure 6, we present the fraction of cooperators
at each Monte Carlo step for different values of n under the condition of the temptation
to defect T = 1.1. When n = 0 (i.e., the traditional PDG on the lattice), the temptation
to defect causes the cooperation rate of the system to drop quickly and rapidly leads to
the extinction of cooperators. When n > 0, individuals can pay some costs to obtain the
information of other n individuals in the population when updating their strategies, which
can help to collect more information to aid the strategy choice during the evolution of
cooperation. The four curves, (colored red, blue, green and purple, respectively), in the
graph, all show a first downward and then increasing trend [53,54]. At the beginning of the
evolution, the defector strategy is an advantageous strategy compared with the cooperative
strategy, so the proportion of cooperators must first decrease; as time continues, some
defectors at the edge of the defective clusters change their strategy to a cooperative strategy
by obtaining information from other cooperators. The cooperators form clusters of different
sizes to jointly defend against the invasion of defectors, so the proportion of cooperators
starts to increase with the help of spatial or network reciprocity, and eventually coexists
with the defectors to arrive at a dynamic equilibrium. After the system is dynamically
stable, cooperators and defectors alternately prevail in the population, which, to some
extent, explains the fluctuations that occur in the tail region of each curve in Figure 6. If
the paid cost is not very high, this mechanism of paid access to information can effectively
inhibit the spread of defection when strategies evolve. With increase in n, this inhibition
effect is constantly strengthened. As an example, for a specific system step, when n is fixed
to be 4, 8, 12 and 24, the fraction of cooperators within the population at the stationary
state is finally stable at 0.478, 0.621, 0.753 and 0.484, respectively. However, the value
of n continues to increase to 48; it can be found that this curve basically coincides with
that obtained for n = 0, which can be explained as follows: since the cost of acquiring
information is too high and the game payoff may not be enough to pay the cost of acquiring
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information, the behavior of acquiring information becomes infrequent and reduces the
model and system evolution into the traditional case of n = 0.

1 10 100 1000 10,000
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 n=0
 n=4
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 n=12
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Figure 6. Fraction of cooperators as a function of time step when the amount of information available
to individuals varies. In all simulations, the system setup is assumed to be L× L = 100× 100, q = 0.5,
c = 0.1, T = 1.1 and the noise factor is set to be K = 0.1.

Next, we further consider the impact of the information acquiring cost c on the
stationary cooperation level ρ when q = 0.5 is a constant. As shown in Figure 6, ρ is plotted
as a function of T in panels (a), (b), (c) and (d), which correspond to the results obtained
for n = 4, 8, 12 and 24, respectively. In panel (a) of Figure 7, when c = 0, players do not
need to pay any cost to acquire the information of other individuals. With increase in
c, the level of cooperation improves, showing a monotonous trend, which indicates that
players must pay a certain cost to acquire the information so as to improve cooperation. We
emphasize that, although information acquisition can effectively improve the cooperation
rate, the defectors in the population can also obtain information unconditionally, without
spending the cost if the cost is too small or even 0. As is well known, if the collaborators can
not form effective clusters in the PDG without any additional mechanism, the defector’s
income is always greater than that of the cooperator, which is undoubtedly harmful to the
persistence and improvement of cooperation within the population. Similar results can
be observed in the other two panels (b) and (c) in Figure 7, but, by comparing panels (a),
(b) and (c), there is no doubt that the increase in the value of n will enhance the evolution
of cooperation, which is also consistent with the results in Figure 4. However, the results
in panel (d) of Figure 7 seem to be different from those in the first three figures, where
the focal player obtains the information of 24 individuals at one time; both curves of
c = 0.08 and c = 0.10 present a phenomenon of first decreasing, then increasing, and finally
decreasing to 0. When the value T is small, the benefits of cooperation and defection
are almost the same. However, for n = 24, c = 0.08 or 0.1, when players update their
strategies through the mechanism of paid acquisition of information, the total cost is large
and only a few players can afford to pay for the total cost of information acquisition, so this
mechanism is almost ineffective. Thus, the cooperation drops sharply due to the influence
of defection temptation, but, with increase in the value T, the payoffs of defectors also
increase, and more and more defectors can bear the cost of information acquisition, which,
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finally, leads to an avalanche of cooperation and, hence, the lower level of cooperation at
the stationary state.
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Figure 7. Fraction of cooperators as a function of the temptation to defect T for different information
costs. Four panels (a–d) present the results for different n, where panel (a): n = 4; panel (b): n = 8;
panel (c): n = 12; and panel (d): n = 24. Other model parameters are fixed as: L = 100, K = 0.1,
q = 0.5 and c = 0.1

Finally, in order to further explore the influence of the information parameters n and c
on the cooperative behaviors in the system, Figure 8 shows the phase diagram with respect
to n (the horizontal axis) and c (the vertical axis). Except for the blue areas on the lower-left
and upper-right corners, the steady state ρ exhibits an obvious stratification phenomenon
and the lines separating the different colored areas seem to satisfy the inverse proportional
function. Therefore, it can be assumed that factors affecting the level of cooperators at the
stationary state are closely related to the product of visiting information related parameters
n and c for a fixed temptation to defect T and probability of obtaining information q.
In the middle of Figure 8, the promotion effect of cooperation is the most obvious, where
the separating line can be approximated as the black dashed line and the corresponding
expression is: n× c = 1.85. Thus, it is obvious that a moderate information cost can foster
the development of prosocial behavior, while the information-related cost should not be
too large or too small.
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Figure 8. Fraction of cooperators at the steady state as a function of the information parameters n and
c. The color bar at the right-hand side indicates the value of proportion of cooperators. Approximating
the red area in the figure yields the black curve shown in the figure; the mathematical expression for
the black curve is: n× c = 1.85. Other parameters are set as: L× L = 100× 100, q = 0.5, and T = 0.3.

4. Conclusions

In summary, we integrate paid access to individual information into the prisoner’s
dilemma model on the regular lattice. Here, the focal player updates their strategy accord-
ing to the Fermi-like function, where the individual fitness needs to be recalculated by
comparing their own payoff with that of their opponent. During each strategy update,
the focal player first decides whether they will pay an amount of cost to access the informa-
tion of other agents with a certain probability q. If they pay the cost, their payoff minus the
cost is considered as their fitness, and the average payoff of all other (n + 1) individuals is
used as the fitness of their opponent; Otherwise, the focal player and their opponent only
regard their own payoffs as their corresponding fitness.

Extensive numerical simulations show that the mechanism of information acquisition
can effectively improve the level of cooperation at the stationary state if the number of
players that a focal player accesses is not too large. As an example, if n ≤ 12 and other
model parameters are kept constant, the stationary level of cooperation will be greatly
increased as n increases. However, information acquisition is not free, but requires the
player to pay a variable cost, which is positively related to the amount of information
acquired by the focal agent. Thus, if the number of players that a player has accessed is
too large (e.g., n = 24), the acquired cost also becomes higher; then, the fitness of the focal
agent will be greatly reduced, which means that most players are not willing to afford
the cost to aid the individual strategy selection. In addition, if the number of players
that a player has accessed is too small (e.g., n = 4), most players are willing to afford
the cost to aid the individual strategy selection, but the amount of information is limited,
which limits the role of the mechanisms of information acquisition with the population.
Therefore, the quantity of information acquired by the player is crucial to the evolution
of cooperation within the population; there exists a moderate value of n, which enables
most players to afford the cost of information acquisition. At this time, the mechanism of
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information acquisition motivates those defectors around the defective clusters to change
their strategies to cooperators and enables those cooperators to form tight clusters. This
promote the spread of pro-social behaviors and, finally, enables cooperators to form a stable
cluster in the population. When deciding on your own strategy, it is vital to be careful in
gathering information about successful strategies, as it is said, if you know your enemy,
you will never lose a battle. However, when the act of gathering information is to be paid
for, you need to consider your own situation and act within your means.

However, there are some limitations to our model. On the one hand, the paid cost
linearly increases with the number of players that can be accessed, which could be non-
linearly augmented under some cases; on the other hand, the underlying topology is the
regular lattice, which is often unrealistic in real-world scenarios. In the future, beyond these
limitations, we will consider the impact of the nonlinear accessing cost on the evolution of
cooperation, and explore how cooperation behaviors emerge when we combine this kind
of paid accessing information with the small-world, scale-free, interdependent, and even
more complex, high-order networks.
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