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Abstract: We propose a new extension of the exponential distribution for right censored Bayesian
and non-Bayesian distributional validation. The parameter of the new distribution is estimated using
several conventional methods, including the Bayesian method. The likelihood estimates and the
Bayesian estimates are compared using Pitman’s closeness criteria. The Bayesian estimators are
derived using three loss functions: the extended quadratic, the Linex, and the entropy functions.
Through simulated experiments, all the estimating approaches offered have been assessed. The
censored maximum likelihood method and the Bayesian approach are compared using the BB
algorithm. The development of the Nikulin–Rao–Robson statistic for the new model in the uncensored
situation is thoroughly discussed with the aid of two applications and a simulation exercise. For the
novel model under the censored condition, two applications and the derivation of the Bagdonavičius
and Nikulin statistic are also described.

Keywords: Bagdonavičius and Nikulin statistic; Bayesian estimation; BB method; censored applica-
tions; lomax model; Nikulin–Rao–Robson; Pitman’s proximity

MSC: 62N01; 62N02; 62E10

1. Introduction

Exponential distribution is one of the often-encountered continuous probability distri-
butions. It is frequently used to simulate the time between events. The mean and expected
value of the exponential probability distribution, as well as its theoretical interpretation,
will now be given. The exponential probability distribution, or Poisson point process,
is the probability distribution of the interval between events in a process where events
happen continuously and independently at a set average rate. In statistics and probability
theory, this probability distribution is exploited. It is a unique instance of the gamma
distribution. It is the continuous counterpart of the geometric distribution and possesses
the key quality of being memoryless. In addition to the analysis of Poisson point processes,
it is used in numerous other contexts. Exponential distribution is not the same as the class
of exponential families of distributions, a major class of probability distributions that also
includes the normal distribution, binomial distribution, gamma distribution, Poisson distri-
bution, and many more probability distributions. One of the most often utilized continuous
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distributions is exponential probability distribution. It helps in figuring out how long
there will be between events. It is used in many disciplines, such as physics, dependability
theory, queuing theory, and others. Finding the height of different molecules in a gas at
a stable temperature and pressure in a uniform gravitational field, as well as computing
the monthly and annual highest values of consistent rainfall and river outflow volumes,
are all tasks that can be accomplished using the exponential probability distribution. In
statistical inference and dependability, selecting a suitable core model for new data analysis
is becoming increasingly crucial. The results could be significantly affected by even a little
departure from the core model. The difficulty of this work is increased by censorship.
The chi-square test type is the one used most frequently to determine the goodness-of-fit.
Numerous modifications to chi-square tests have been proposed by various researchers.

One of the aims of this study is to present a goodness-of-fit test for our parametric
model, which is often used in survival analysis, social sciences, engineering, and de-
pendability, in complete data scenarios, and in the presence of right censoring. For the
one parameter Poisson-exponential (OPPE) model, we present the explicit forms of the
quadratic test statistics (Nikulin–Rao–Robson test, Bagdonavičius and Nikulin test statistic,
see Bagdonavičius et al. [1], Bagdonavičius and Nikulin [2], Bagdonavičius and Nikulin [3],
Nikulin [4], Nikulin [5], Nikulin [6], and Rao and Robson [7]). Then, we use actual data
to apply both tests. This study demonstrates how the Bayesian technique may enhance
both the mean time between failure of the OPPE distribution and the maximum likelihood
estimate of the parameter. By using a suitable loss function, we will also illustrate the utility
of this adjustment. The OPPE distribution is distinguished by its ease of mathematical
and scientific handling in statistical and mathematical modeling. As is common for many
probability distribution researchers, we do not approach this new distribution in the normal
method in this work. For instance, we do not focus as much on the conventional study
of the new distribution, not because it is unimportant, but rather because we are more
concerned with the practical applications of the mathematical and statistical modeling,
as well as a significant portion of the distribution’s verification using censored data. To
demonstrate the significance and flexibility of the new distribution and its wide range of
applications in statistical and mathematical modeling, as well as the handling of controlled
data, we omit several theoretical mathematical features, many algebraic derivations, and re-
lated theories. To be helpful to scholars in the field and assist them in providing additional
similar and possibly more flexible distributions, we must briefly discuss the emergence of
the new distribution in this context as well as how it was created and formed. The OPPE
distribution’s cumulative distribution function (CDF) can be written as

Pr(Xδ ≤ x) = Fδ(x) =
1

1− exp(−1)
{

1− exp
[
−∆δ(x)

]}
,

where x > 0 and δ > 0, ∆δ(x) = 1− ∆δ(x) and

∆δ(x) = [exp(−δx)][1−exp(−δx)].

The corresponding probability density function (PDF) can then be expressed as

fδ(x) =
δ

1− exp(−1)
∆δ(x)

exp
{[

x + ∆δ(x)
]} [δx + exp(δx)− 1],

for all x > 0 and δ > 0. Many scholars have been interested in the exponential distribution
and in providing new flexible extensions of it, and they have also been interested in the
applications of these new extensions in various fields of science, such as engineering,
insurance, medicine, reliability, actuarial science, and others. In this work, we propose
to develop a modified chi-square type fit test for the OPPE model in the scenario when
the parameter is unknown, and the data are complete. This test is based on the Nikulin–
Rao–Robson (NKRR) statistic, which Nikulin [3], Nikulin [4], Nikulin [5], Nikulin [6], and
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Rao and Robson [7] separately proposed. This Y2
n statistic is a logical refinement of the

conventional chi-square test based on the maximum likelihood estimator on the original
data. The original data were used in full for this statistic, which is a straightforward enough
statistic to estimate the null hypothesis’s parameter. Second, this statistic entirely employed
the Fisher data, which was to assess the information relative to a parameter contained
in a model selection, based on the MLE. This provides a more unbiased evaluation of
the chosen model of fit. Next, in the scenario when the parameters are unknown and
the data are right-censored, we create a new goodness-of-fit test for this model. This
modified chi-square Y2

n test adjusts the NKRR statistic to account for both censoring and the
unknown parameter. This study is a very significant numerical simulation study that we are
conducting to demonstrate the invariance of the test statistic distribution on the one hand,
and to test the null hypothesis H0 that a sample originates from an OPPE model on the
other. We compute Y2

n the NKRR statistic as well as the Bagdonavičius and Nikulin statistics
of various simulated samples, respectively. As a result, we can state that the suggested
tests can, respectively, fit complete and censored data from the OPPE distribution. We
conclude our contribution in this work with applications using real data, with the aim of
demonstrating the applicability of the OPPE model across many scientific disciplines.

It is worth noting that the NKRR basic test, which is supported by complete data, is
the most popular test in the last ten years. This is because it fits the complete truth data, and
this is the case in most practical and applied cases in various fields. What distinguishes this
statistical test also is the availability of ready-made statistical packages on the R program,
whether for simulation or applications on actual data. However, the practical and experi-
mental reality in many fields (such as the medical, chemical, engineering, etc.) necessitates
that researchers deal with practical experiments that produce controlled censored data.
This type of data, of course, needs certain tests dedicated to statistical dealing with it in the
problem of distributional validation. The NKRR basic test is not the optimal choice in these
cases. Hence, and based on this dilemma, was the primary and most important motive that
prompted many researchers to think about introducing a new statistical test that fits the
censored data. This new NKRR test, of course, is a modified test from the NKRR original
test. According to the nature of the procedures of the two tests, both tests are not suitable
for working with a type of data. One weakness of the original test, for instance, is that it is
only applicable to entire data and cannot be used to deal with censored data. Therefore,
this test may be a strong contender for doing statistical hypothesis tests if we are working
with complete data. The modified test also has the drawback of only being appropriate
for use with censored data; it is not designed for complete data and can only be used for
censored data. Because it is designed for this type of data, this test will surely be a strong
contender for statistical hypothesis tests if we are working with censored data.

2. Construction of NKRR Statistic for the OPPE Model

The NKRR statistic is a well-known variant of the traditional chi-squared tests in the
situation of complete data (for more information, see Nikulin [3], Nikulin [4], Nikulin [5],
Nikulin [6], and Rao and Robson [7]). The most common test to check whether a mathemat-
ical model is suitable for the data from observations is the chi-square statistic of Pearson.
When the model’s parameters are unknown or data are censored, these tests, however,
cannot be used. Natural adaptations of the Pearson statistic for the entire set of data were
reported by Nikulin [3], Nikulin [4], Nikulin [5], Nikulin [6], and Rao and Robson [7] and
are known as NKRRs. The chi-square distribution is used in this statistical test, which is
a logical extension of the Pearson statistic. When the censoring is included in addition
to the unknown parameter, the classical test is insufficient to support the null hypothesis.
Bagdonavičius et al. [1], Bagdonavičius and Nikulin [2], Bagdonavičius and Nikulin [3],
Nikulin [4], Nikulin [5], Nikulin [6], and Rao and Robson [7] suggested changing the NKRR
statistic to take into account random right censoring. For the OPPE model in the current
study, we recommend creating a modified chi-square test. The following NKRR statistic Y2
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was developed by Nikulin [3], Nikulin [4], Nikulin [5], Nikulin [6], and Rao and Robson [7]
to test the hypothesis.

H0 : Pr{Xδ ≤ x} = Fδ(x)
∣∣∣x∈R,

where in our case Fδ(x) = Fδ(x)|x>0, x1, x2, · · · , xn, is a sample belong to a parametric
family Fδ(x), and where

Y2(δ̂n
)
= Z2

n
(
δ̂n
)
+ n−1LT(δ̂n

)
(I
(
δ̂n
)
− J
(
δ̂n
)
)
−1L

(
δ̂n
)
,

where

X2
n
(
δ̂n
)
=

 ς1 − np1
(
δ̂n
)√

np1
(
δ̂n
) ,

ς2 − np2
(
δ̂n
)√

np2
(
δ̂n
) , · · · ,

ςn − npb
(
δ̂n
)√

npb
(
δ̂n
)
T

and J
(
δ̂n
)

is the information (Inf-Mx) for the grouped data

J
(
δ̂n
)
= B

(
δ̂n
)TB

(
δ̂n
)
,

with

B
(
δ̂n
)
=

[
1
√

pi

∂pi
(
δ̂n
)

∂δ

]
r×s

|(i=1,2,··· ,b and k=1,2,··· ,s),

and then

L(δ) = (L1(δ), . . . , Ls(δ))
T with Lk(δ) =

r

∑
i=1

ςi
pi

∂

∂(δ)
pi(δ),

where δ̂ is the estimated Fisher Inf-Mx and I(δ̂) stands for the maximum likelihood esti-
mator of the parameter vector. The Y2 statistic has (b− 1) degrees of freedom and follows
the χ2

b−1 distribution. Consider a set of observations x1, x2, · · · , xn that are collected in
I1, I2, · · · , Ib (these b subintervals are mutually disjoint:

Ij = (aj,b(x)− 1; xj,b(x))

The intervals Ij’s limits for aj,b(x) are determined as follows

pj(δ) =
∫ aj,b(x)

aj,b(x)−1
fδ(x)dx|(j=1,2,··· ,b),

and

aj,b(x) = F−1
(

j
b

)
|(j=1,··· ,b−1).

The vector of frequencies is generated by grouping the data into Ij intervals, ς j =

(ς1, ς2, · · · , ςb)
T , where

ς j =
n

∑
i=1

1{xx∈Ij} |(j=1,...,b).

In order to determine if the utilized data are distributed in accordance with the OPPE
model, in the situation of an unknown parameter δ, we design an NKRR test statistic in this
study as a modified goodness-of-fit test. We use the estimated Fisher Inf-Mx to provide all
the components of the Y2 statistic of our model after computing the maximum likelihood
estimator δ̂ of the unknown OPPE distribution’s parameter on the data set. For more
applications under other different data sets, see Ibrahim et al. [8] and Yadav et al. [9].

3. Estimation and Inference

This section, via two subsections, discusses Bayesian and non-Bayesian estimating
methods. Six non-Bayesian estimation methods are considered, including the maximum
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likelihood estimation (MLE), the Cramér–von Mises estimation (CVME), the ordinary
least square estimation (OLSQE), the weighted-least square estimation (WLSQE), moment
method, and the Kolmogorov estimation (KE).

3.1. Classical Estimation Methods
3.1.1. Maximum Likelihood Method

Using some observable data, maximum likelihood estimation (MLE), a statistical
approach, can estimate the unknown parameter of a probability distribution. Consider the n-
sample (x1, x2, . . . , xn) and a fixed constant m, we assume that the m-sample (x1, x2, . . . , xm)
is generated from the OPPE distribution. The likelihood function of this sample is

Lδ(x) =
m

∏
i=1

fδ(xi)[1− Fδ(xm)]
n−m

where N = n!
(n−m)! in both (1) and (2) we have

Lδ(x) = Nδmδm(1− exp(−1))−nCδ(xm)
n−m

m

∏
i=1
Aδ(xi)Bδ(xi)

in which
Aδ(xi) = ∆δi (xi)[δxi − 1 + exp(δxi)],

Bδ(xi) = exp(−δxi − (1− ∆δ(xi))),

and
Cδ(xm) = 1− exp(−(1− ∆δ(xm))).

To obtain the maximum likelihood estimate (MLE) of δ, we have the log-likelihood
(`(δ)) function

`(δ) = log

[
n

∏
i=1

fδ(xi,n)

]
,

lδ(x) = lnN + mlnδ− nln(1− exp(−1)) + (n−m)lnCδ(xm) +
m

∑
i=1

lnAδ(xi) +
m

∑
i=1

lnBδ(xi).

The maximum likelihood estimator δMLE of the parameter δ is the solution of the
following non-linear eduation

∂lδ(x)
∂δ

=
m
δ
+ (n−m)

1
Cδ(xm)

∂Cδ(xm)

∂δ
+

m

∑
i=1

1
Aδ(xi)

∂Aδ(xi)

∂δ
+

m

∑
i=1

1
Bδ(xi)

∂Bδ(xx)

∂δ
= 0

where
∂

∂δ
∆δ(xi) = −[xi − xiexp(−δxi)(1− δxi)]exp(−δxi(1− exp(−δxi)),

∂

∂δ
Aδ(xi) =

(
∂

∂δ
∆δ(xi)

)
(δxi − 1 + exp(δxi)) + ∆δ(xi)(xi + xiexp(δxi)),

∂

∂δ
Bδ(xi) =

[(
∂

∂δ
∆δ(xi)

)
− xi

]
exp(−δxi − (1− ∆δ(xi)),

and
∂

∂δ
Cδ(xm) = −

(
∂

∂δ
∆δ(xm)

)
exp(−(1− ∆δ(xm)).
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3.1.2. The CVME Method

The CVME of the parameter δ is obtained via minimizing the following expression
with respect to δ, where

CVME(δ) =
1

12
n−1 +

n

∑
i=1

[
Fδ(xi,n)− l[1]

(i,n)

]2
|(xi,n∈N(0))

,

and where l[1]
(i,n) =

1
2n (2i− 1), and where

CVME(δ) =
n

∑
i=1

[
1− exp

[
−∆δ(xi,n)

]
1− exp(−1)

− l[1]
(i,n)

]2

.

Then, CVME of the parameter δ is obtained by solving the following non-linear equation

0 =
n

∑
i=1

(
1− exp

[
−∆δ(xi,n)

]
1− exp(−1)

− l[1]
(i,n)

)
ς(δ)(xi,n, δ),

where ς(δ)(xi,n, δ) = ∂Fδ(xi,n)/∂δ is the first derivatives of the CDF of OPPE distribution
with respect to δ.

3.1.3. The OLSQ Method

Let Fδ(xi,n) denote the CDF of the OPPE model and let x1 < x2 < · · · < xn be the n
ordered RS. The OLSQE (O(δ)) is obtained upon minimizing

OLS(δ) =
n

∑
i=1

[
Fδ(xi,n)− l[2]

(i,n)

]2
,

where l[2]
(i,n) =

i
n+1 . Then, we have

OLS(δ) =
n

∑
i=1

[
1− exp

[
−∆δ(xi,n)

]
1− exp(−1)

− l[2]
(i,n)

]2

.

The LSE is obtained via solving the following non-linear equation

0 =
n

∑
i=1

[
1− exp

[
−∆δ(xi,n)

]
1− exp(−1)

− l[2]
(i,n)

]
ς(δ)(xi,n, δ),

where ς(δ)(xi,n, δ) is defined above.

3.1.4. The WLSQE Method

The WLSQE is obtained by minimizing the function W(δ) with respect to δ

WLS(δ) =
n

∑
i=1

d[3]
(i,n)

[
Fδ(xi,n)− l[2]

(i,n)

]2
,

where l[3]
(i,n) = [(1 + n)2(2 + n)]/[i(1 + n− i)]. The WLSQEs are obtained by solving

0 =
n

∑
i=1

l[3]
(i,n)

[
1− exp

[
−∆δ(xi,n)

]
1− exp(−1)

− l[2]
(i,n)

]
ς(δ)(xi,n, δ),

where ς(δ)(xi,n, δ) is defined above.
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3.1.5. Method of Moments

The method of moments is a technique used in statistics to estimate population
parameters. To derive higher moments like skewness and kurtosis, the same method is
applied. It begins by describing the population moments as functions of the important
parameters (i.e., the anticipated powers of the random variable under discussion). The
sample moments are then set to be equal to those. There are exactly as many of these
equations as there are parameters that need to be estimated. Then, the equations are
solved for the relevant parameters. Estimates of those parameters are used in the solutions.
The moment estimation of the one-parameter of the OPPE distribution can be obtained
by equating the first theoretical moment of (2) with the corresponding sample moments
as follows

µ′1 = E(Xi,n) =
1
n

n

∑
i=1

xi,n

where µ′1 can be evaluated from (2).

3.1.6. KE Method

The Kolmogorov estimate (KE) δ̂ of δ is obtained by minimizing the function

KE = KE(δ) =
1≤i≤n

max
{

1
n

i− Fδ(xi,n), Fδ(xi,n)−
1
n
(i− 1)

}
.

The KE δ̂ of δ is obtained by comparing
[

1
n i− Fδ(xi,n)

]
|1≤i≤n and [Fδ(xi,n)−

1
n (i− 1)]|1≤i≤n and selecting the max one. However, for 1 ≤ i ≤ n, we are minimizing the
whole function K(δ). For more detail about the KE method.

3.2. Simulations and Assessment

For comparing the classical methods, some MCMC simulation studies are performed.
The results are presented in: Table 1 (δ = 0.5|n = 50, 100, 200, 300, and 500); Table 2
(δ = 0.9|n = 50, 100, 200, 300, and 500) and Table 3 (δ = 1.5|n = 50, 100, 200, 300, and 500).
The numerical assessments are performed depending on the mean squared errors (MSEs).
First, we generate N = 1000 samples of the OPPE model. Based on Tables 1–3, it is noted
that the performance of all estimation methods improves when n→ +∞ . Despite the
variety and abundance of the other classic methods, as demonstrated in Tables 1–3, the
MLE approach is still the most efficient and reliable of the surviving classic methods. The
MLE approach is generally mentioned as being advised for statistical modeling and appli-
cations. This evaluation is mostly based on a thorough simulation research, as displayed in
Tables 1–3. Since the MSE for the MLE is the smallest for all n = 50, 100, 200, 300, and 500,
this section uses simulation studies to evaluate rather than compare various estimating
procedures. However, this does not exclude the use of simulation to compare various
estimating approaches. Nevertheless, actual data are commonly used to assess different
estimating approaches; for this reason, we will discuss a few examples specifically for this
role. There are two more applications to compare the competing models.

Table 1. Simulation results for δ = 0.5.

n MLE OLSQ WLSQ CVM Moment KE

50 0.00305 0.00334 0.00314 0.00355 0.00329 0.00366
100 0.00148 0.00163 0.00163 0.00161 0.00163 0.00179
200 0.00073 0.00081 0.00081 0.00080 0.00082 0.00088
300 0.00047 0.00054 0.00051 0.00054 0.00049 0.00055
500 0.00027 0.00031 0.00031 0.00031 0.00030 0.00032
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Table 2. Simulation results for δ = 0.9.

n MLE OLSQ WLSQ CVM Moment KE

50 0.00981 0.01073 0.01035 0.00939 0.01195 0.01187
100 0.00489 0.00533 0.00511 0.00556 0.00539 0.00616
200 0.00248 0.00286 0.00278 0.00282 0.00239 0.00285
300 0.00155 0.00177 0.00177 0.00178 0.00174 0.00180
500 0.00092 0.00098 0.000987 0.00099 0.00095 0.00108

Table 3. Simulation results for δ = 1.5.

n MLE OLSQ WLSQ CVM Moment KE

50 0.02580 0.03189 0.02847 0.02888 0.03039 0.03448
100 0.01296 0.01591 0.01414 0.01509 0.01408 0.01582
200 0.00633 0.00749 0.00732 0.00744 0.00740 0.00785
300 0.00460 0.00466 0.00498 0.00480 0.00494 0.00504
500 0.00271 0.00299 0.00291 0.00298 0.00302 0.00301

3.3. Applications for Comparing Methods

Here, we will be very interested in comparing the different estimation methods, but
this time through real data. The first data set called the failure time data or relief times (in
minutes) of patients receiving an analgesic (see Gross and Clark [10]). The second data set
is called the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli,
see Bjerkedal [11].

We discuss the skewness–kurtosis plot (or the Cullen and Frey plot) in these ap-
plications for examining initial fits of theoretical distributions such as normal, uniform,
exponential, logistic, beta, lognormal, and Weibull. Plotting and bootstrapping are both
applied for greater accuracy. The scattergram plots, the “nonparametric Kernel density
estimation (NKDE)” method for examining the initial shape of the insurance claims density,
the “Quantile-Quantile (Q-Q)” plot for examining the “normality” of the current data, the
“total time in test (TTT)” plot for examining the initial shape of the empirical hazard rate
function (HRF), and the “box plot” for identifying the extreme data were also presented.

Figure 1 gives the box plot for the failure time data (first row, the left panel), Q-Q plot
for the failure time data (first row, the right panel), TTT plot for the failure time data (second
row, the left panel), nonparametric Kernel density estimation plot for the failure time data
(second row, the right panel), the Cullen and Frey plot for the failure time data (third row,
the left panel), and scattergrams (third row, the right panel) for the failure time data.

Based on Figure 1 (first row), the relief data have only one extreme observation, based
on Figure 1 (second row, the left panel), the HRF of the relief times is “monotonically
increasing HRF”, based on Figure 1 (second row, the right panel), nonparametric Kernel
density estimation is bimodal and right skewed with asymmetric shape, based on Figure 1
(third row, the left panel), the relief times data do not follow any of the theoretical distri-
butions such as the normal, uniform, exponential, logistic, beta, lognormal, and Weibull.
Figure 2 gives the box plot for the survival times (first row, the left panel), Q-Q plot for
the survival times (first row, the right panel), TTT plot for the survival times (second
row, the left panel), nonparametric Kernel density estimation plot (second row, the right
panel), the Cullen and Frey plot (third row, the left panel), and scattergrams (third row, the
right panel) for the survival times data. The survival data in Figure 2 (first row) has four
extreme observations, the HRF of the survival times is “monotonically increasing HRF,” the
nonparametric Kernel density estimation is bimodal and right skewed with an asymmetric
shape, and the survival times data in Figure 2 (third row, left panel) do not follow any of
the theoretical distributions, such as the normal or gamma distributions.
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A statistical test called the Anderson–Darling test (ADT) is used to determine if a
sample of data is taken from a particular probability distribution. The test is based on
the assumption that the distribution under the test has no parameters that need to be
estimated, in which case the test and its set of critical values are distribution-free. The test
is most frequently applied when a family of distributions is being examined, in which case
it is necessary to estimate the family’s parameters and take this into consideration when
modifying the test statistic or its critical values. It is one of the most effective statistical
strategies for detecting most deviations from normal distribution when used to determine
whether a normal distribution adequately describes a collection of data.

The Cramér–von Mises criterion (CVMC) in statistics is a criterion used to compare
two empirical distributions or to determine how well a cumulative distribution function
fits an empirical distribution function. In other techniques, such as minimum distance, the
CVMC and ADT tests are used in comparing methods. Table 4 gives the application results
(CVMC and ADT) for comparing methods under the relief data. Table 5 lists the application
CVMC and ADT for comparing methods under the survival data. Based on Table 4, it is
seen that the moment method is the best with CVMC = 0.08439 and ADT = 0.499304, then
the ML method with W CVMC = 0.085876 and ADT = 0.508074. Based on Table 4, it is seen
that the moment method is the best with CVMC = 0.070712 and ADT = 0.463826, then the
ML method with CVMC = 0.071247 and ADT = 0.465521.

Table 4. p-values for comparing methods under the relief data.

Method δ CVMC ADT

ML 0.503284 0.085876 0.508074
LS 0.470917 0.086923 0.514258

WLSQ 0.428757 0.088466 0.523383
CVM 0.470955 0.086921 0.514251

Moment 0.557676 0.08439 0.499304
KE 0.467910 0.087026 0.514869

Table 5. p-values for comparing methods under the survival data.

Method δ CVMC ADT

ML 0.567783 0.071247 0.465521
LS 0.546370 0.071690 0.467139

WLSQ 0.551350 0.071581 0.466728
CVM 0.546576 0.071685 0.467122

Moment 0.599247 0.070712 0.463826
KE 0.527965 0.072124 0.468851

3.4. Bayesian Analysis under Different Loss Functions

In this section, we will review some statistical aspects related to Bayesian estimations.
Three types of Bayesian loss functions have been used. Additionally, I made a lot of useful
comparisons using the new distribution. Many Bayesian statistical algorithms can be
utilized, as per Muñoz-Gil et al. [12], and within their particular context, they can aid re-
searchers in mathematics and statistical modeling tasks, particularly when applying Bayes’
theory. Muñoz-Gil et al. [12] offered the proposed representation of four full algorithms
with their codes and implementations for this specific purpose, allowing the reader to
follow the new algorithms and present more algorithms based on them.

3.4.1. Prior and Posterior Distributions

As prior distributions, we assume the parameter δ has an informative distribution as a
prior, which is a Gamma distribution:

π(δ) =
ab

Γ(b)
δb−1exp(−aδ) , a, b > 0.
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The posterior distribution of δ is

π(δ|x) = Kδm+b−1[1− exp(−1)]−mexp(−aδ)
m

∏
i=1

Pδ(xi)∆δ(xi)Qδ(xm)
n−m,

where

K =
∫ +∞

0
δm+b−1[1− exp(−1)]−mexp(−aδ)

m

∏
i=1

Pδ(xi)∆δ(xi)Qδ(xm)
n−mdδ,

is the normalizing constant. In the following, we use the three loss functions, namely the
generalized quadratic (GQ), the entropy, and the Linex loss functions to obtain the Bayesian
estimators. In the following formulas, we consider γ, P, and r as integers.

3.4.2. Bayesian Estimators and Their Posterior Risk

The Bayesian estimator under the generalized quadratic loss function (GQ) is

δGQ =
I+∞
0 (m + b− 1 + γ, xm)

I+∞
0 (m + b− 2 + γ, xm)

,

where

I+∞
0 (m + b− 1 + γ, xm) =

∫ +∞

0
δm+b−1+γ[1− exp(−1)]−mexp(−aδ)

m

∏
i=1

∆δ(xi)Pδ(xi)Qδ(xm)
n−mdδ

and

I+∞
0 (m + b− 2 + γ, xm) =

∫ +∞

0
δm+b−2+γ[1− exp(−1)]−mexp(−aδ)

m

∏
i=1

∆δ(xi)Pδ(xi)Qδ(xm)
n−mdδ.

Under the entropy loss function, we obtain the following estimator

δE =

[
K
∫ +∞

0
δm+b−1−p[1− exp(−1)]−mexp(−aδ)

m

∏
i=1

∆δ(xi)Pδ(xi)Qδ(xm)
n−mdδ

]− 1
p

.

The corresponding posterior risk is

PR(δE) = PEπ(ln(δ)− ln(δE)),

finally, under the Linex loss function, the Bayesian estimator

δL =
−K

r
ln

[∫ +∞

0
δm+b−1[1− exp(−1)]−mexp[−δ(a + r)]

m

∏
i=1

Pδ(xi)∆δ(xi)Qδ(xm)
n−mdδ

]
,

and the corresponding posterior risk is

PR(δL) = r(δGQ − δL).

Since it is unlikely possible to obtain all these estimators analytically, we suggest
the use of the MCMC procedures to evaluate them. In this work, several Bayesian algo-
rithms were developed recently for the analysis of tracer-diffusion single-particle tracking
data. Following Muñoz-Gil et al. [12], many Bayesians statistical algorithms can be used,
which within their specific framework, can help researchers in mathematical and statisti-
cal modeling operations, especially when using Bayes’ theory. For this specific purpose,
Muñoz-Gil et al. [12] presented the proposed visualization of four complete algorithms



Mathematics 2023, 11, 897 13 of 21

with their codes and applications, and the reader can track the new algorithms and other
algorithms can be presented based on them.

3.4.3. Comparing the Likelihood Estimation and the Bayesian Estimation Using Pitman’s
Closeness Criterion

We are going to compare the performance of the proposed Bayesian estimators with
the MLEs, for that purpose, we perform a MCMC simulation method with δ = 1.5 and
a = 3, b = 2. We generate N = 1000 type II censored samples following the OPPE model,
we use different sample sizes n = 30, 100, 200 while m = 10, 40, 160, respectively, and we
obtain the following results. Table 6 contains the values of the estimators produced by the
function BB algorithm. Here, we observe that, especially as sample size n is raised, the
estimated values are fairly close to the parameter’s genuine values. Tables 7–9 present the
Bayesian estimators and PR (in brackets) under the generalized quadratic loss function, the
entropy loss function, and the Linex loss function, respectively. Table 10 lists the Bayesian
estimators and PR (in brackets) for each of the three loss functions.

Table 6. The MLE of the parameter with quadratic error (in brackets).

N = 5000 n = 30 n = 100 n = 200

m→ 10 40 160

1.4905 1.46543 1.5104
δ→ (0.0125) (0.0321) (0.0023)

Table 7. Bayesian estimators and PR (in brackets) under GQ loss function.

γ ↓ N = 5000, m→ n = 30, 10 n = 100, 40 n = 200, 160

−2 1.6490 (0.0076) 1.6825 (0.0053) 1.6432 (0.0023)
−1.5 1.7990 (0.0087) 1.0825 (0.0061) 1.2127 (0.0016)
−1 1.6182 (0.0005) 0.9739 (0.0001) 2.0018 (0.0001)
−0.5 1.4994 (0.0071) 1.4888 (0.0060) 1.5138 (0.0011)
0.5 1.9760 (0.0085) 1.7926 (0.0077) 1.3439 (0.0013)
1 1.7516 (0.0087) 1.2972 (0.0058) 1.7208 (0.0035)

1.5 1.6743 (0.0045) 1.5632 (0.0065) 1.3275 (0.0032)
2 1.4768 (0.1241) 1.4191 (0.1181) 1.7158 (0.0033)

Table 8. Bayesian estimators and PR (in brackets) under the entropy loss function.

N = 5000 n = 30 n = 100 n = 200

p ↓ m→ 10 40 160

−2 1.6037 (0.0009) 0.7757 (0.3190) 1.8493 (0.0308)
−1.5 1.3990 (0.1644) 1.2144 (0.0019) 1.0942 (0.0080)
−1 1.0886 (0.0031) 0.7654 (0.1173) 1.7697 (0.0099)
−0.5 1.6001 (0.0065) 1.542 (0.00020) 1.5638 (0.0071)
0.5 1.483 (0.00413) 1.4899 (0.0023) 1.5121 (0.0012)
1 1.4579 (0.0997) 1.4354 (0.0944) 1.4571 (0.0014)

1.5 1.6981 (0.0038) 0.4830 (0.0733) 1.2148 (0.0009)
2 1.356 (0.16440) 1.0942 (0.0080) 1.2144 (0.0019)

In Table 7, the estimation under the generalized quadratic loss function, we remark
that the value γ = −1 gives the best posterior risk. Additionally, we obtain the smallest
suitable posterior risk when n is long. In the estimation under the entropy loss function,
we obtain Table 8 where we can notice that the value p = −0.5 when n = 200 provides
the best posterior risk. We can notice clearly that the value r = −1.5 provides the best
PR. In conclusion, it is evident from a brief comparison of the three loss functions that
the quadratic loss function yields the best outcomes; the results are further illustrated in
Table 10. The best Bayesian estimators and maximum likelihood estimators should be
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compared, as we suggest. We employ the Pitman closeness criterion for this purpose (more
information can be found in Pitman [13], Fuller [14], and Jozani [15]).

Table 9. Bayesian estimators and PR (in brackets) under Linex loss function.

N = 5000 n = 30 n = 100 n = 200

r↓ m→ 10 40 160

−2 1.3815 (0.0182) 1.5434 (0.0183) 1.3815 (0.0001)
−1.5 1.2080 (0.0014) 1.2609 (0.0199) 1.4011 (0.0004)
−1 1.6234 (0.0108) 0.9900 (0.0103) 1.2819 (0.0065)
−0.5 1.1915 (0.0111) 1.3187 (0.0195) 1.4091 (0.0032)
0.5 1.3909 (0.0231) 1.4560 (0.0183) 1.3324 (0.0032)
1 1.3815 (0.0183) 1.3815 (0.0183) 1.3815 (0.0183)

1.5 0.5155 (0.0519 0.5315 (0.0183) 1.5109 (0,0057)
2 1.4193 (0.0131) 0.9547 (0.1041) 1.4045 (0.0004)

Table 10. Bayesian estimators and PR (in brackets) under the three loss functions.

N = 5000 n1 = 10 n2 = 50 n3 = 200

m→ 10 40 160

GQ|γ=1 1.4994 (0.00710) 1.4888 (0.0060) 1.5138 (0.0011)
Entropy|p=−0.5 1.4830 (0.00413) 1.4899 (0.0023) 1.5121 (0.0012)

Linex|r=−1.5 0.5155 (0.05190) 0.5315 (0.0183) 1.5109 (0.0057)

Definition 1. An estimator ϑ1 of a parameter ϑ dominates another estimator ϑ2 in the sense of
Pitman’s closeness criterion if, for all ϑ ∈ Θ,

Pϑ[|ϑ1 − ϑ| < |ϑ2 − ϑ|] > 0.5.

We show the Pitman probability’ values in Table 11 so that we may contrast the Bayesian estimators
with the MLE estimator when using the three loss functions when γ = −1, p = −0.5, and r = −1.5.
Then, we notice that, according to this criterion, the Bayesian estimators of the parameter is better
than the MLE. Additionally, the Linex loss function has the best values in comparison with the other
two loss functions with the probability 0.734, δ(n=200,m=160).

Table 11. Pitman comparison of the estimators.

N = 5000 n = 10 n = 50 n = 200

m→ 8 40 160

GQ|γ=1 0.678 0.654 0.674
Entropy|p=−0.5 0.534 0.587 0.632

Linex|r=−1.5 0.587 0.5789 0.734

4. Distributional Validation

We utilize the statistic type test based on a version of the NKRR statistic suggested by
Bagdonavičius et al. [1], Bagdonavičius and Nikulin [2], Bagdonavičius and Nikulin [3],
Nikulin [4], Nikulin [5], Nikulin [6], and Rao and Robson [7] to confirm the sufficiency of
the OPPE model when the parameter is unknown, and the data are censored. The failure
rate xi follows an OPPE distribution, hence we modify this test for an OPPE model. Let’=
us think about the null hypothesis:

H0 : F(x) ∈ F0 = F0,δ(x)|x∈R,
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The OPPE distribution’s survival function (SrF) and cumulative hazard function are
as follows:

Sδ(x) = 1− Fδ(x) = 1−
[

1
1− exp(−1)

(1− exp{−[1− ∆δ(x)]})
]

,

where
∆δ(x) = [exp(−δx)][1−exp(−δx)].

and
Vδ(x) = − ln[Sδ(x)],

For all j, we have a constant value of ej,X = Ek/k under this choice of intervals. Since
the inverse hazard function of the OPPE distribution lacks an explicit form, intervals can
be estimated iteratively. Let us divide a finite time period [0, τ] into k > s smaller periods
Ij =

(
aj−1(x), aj,b(x)

]
and

0 =< a0,b < a1,b . . . < ak−1,b < ak,b = +∞.

If x(x) is the ith element in the ordered statistics
(

x(1), . . . , x(n)
)

, and if [Vδ(x)]−1 is the
inverse of the cumulative hazard function Vδ(x), then the estimated value of âj,b(x) where

Ek = Ek(x) = ∑i−1
l=1 Vδ(x),

and aj,b(x) are random data functions, such as the k selected intervals have equal expected
numbers of failures ej,X . The test for hypothesis H0 can be based on the statistic

Y2
n,r−1,ε

(
δ̂
)
= ZTŜ−Z

where Z = (Z1, Z2, . . . , Zk)
T , and

Zj =
1√
n
(
Oj,X − ej,X

)
|(j=1,2,...,k),

and Oj,X reflect the total number of failures that have been noticed throughout these
times. Due to Bagdonavičius et al. [1], Bagdonavičius and Nikulin [2], Bagdonavičius and
Nikulin [3], Nikulin [4], Nikulin [5], Nikulin [6], and Rao and Robson [7], the test statistic
is expressed as:

Y2
n,r−1,ε

(
δ̂
)
=

k

∑
j=1

1
Oj,X

(Oj,X − ej,X)
2 + VW,G,

where VW,G and many other details are given in Bagdonavičius et al. [1], Bagdonavičius
and Nikulin [2], Bagdonavičius and Nikulin [3], Nikulin [4], Nikulin [5], Nikulin [6],
and Rao and Robson [7]. We compute each component of the Y2

n,r−1,ε
(
δ̂
)

statistic for the
OPPE model. The statistic Y2

n,r−1,ε
(
δ̂
)

has a chi-square limit distribution, and its degree
of freedom is d f = rank(S) = trace

(
S−1S

)
where d f = k. The estimated significance

threshold is rejected if Y2
n,r−1,ε

(
δ̂
)
> χ2

ε (d f ) (where χ2
ε (d f ) is the quantile of chi-square with

r = d f = rank(S)), then the approximate significance level ε is rejected Hypothesis, where
P̂l j is the Fisher information.

4.1. Uncensored Simulation Study under the NKRR Statistics Y2(ε; δ̂)

We conducted an extensive study using numerical simulation to confirm the arguments
of this work. Therefore, we generated the N statistics of 15,000 simulated samples with sizes
of n = 25, n = 50, n = 150, n = 350, and n = 600, in order to test the null hypothesis H0 that the
sample belongs to the OPPE model. We determine the average of the non-rejection numbers
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of the null hypothesis Y2(ε; δ̂) ≤ χ2
ε (b− 1) for various theoretical levels (ε = 0.01, 0.02, 0.05,

0.1). The corresponding empirical and theoretical levels are represented in Table 12. It
can be seen that the calculated empirical level value is very close to its corresponding
theoretical level value. Therefore, we conclude that the recommended test is very suitable
for the OPPE distribution.

Table 12. Empirical levels and corresponding theoretical levels (ε = 0.01, 0.02, 0.05, 0.1) and
N = 15,000.

n↓ & ε→ ε1 = 0.01 ε2 = 0.02 ε3 = 0.05 ε4 = 0.1

n1 = 25 0.9941 0.9829 0.9522 0.9031
n2 = 50 0.9936 0.9820 0.9513 0.9024

n3 = 150 0.9922 0.9812 0.9510 0.9012
n5 = 300 0.9909 0.9807 0.9507 0.9008
n6 = 600 0.9905 0.9804 0.9503 0.9004

4.2. Uncensored Applications under the NKRR Statistics Y2(ε; δ̂)

4.2.1. Strengths of Glass Fibers

In this example, 100 carbon fiber fracture stresses (in Gba) are included in this data
set given by Nicholase and Padgett [16]. Using the BB algorithm, we can get the MLE
value of the parameter δ, assuming that our OPPE model can fit the strength data of 1.5 cm
glass fiber: δ̂ = 2.14068. We can compute and provide the Fisher Inf-Mx as follows using
the value:

I
(
δ̂
)
= 1.648771.

The critical values for the NKRR statistical test were: Y2(ε; δ̂) = 11.855642 and
χ2

0.05(6) = 12.59159, so the OPPE distribution can effectively simulate and model the
1.5 cm glass fiber data.

4.2.2. Heat Exchanger Tube Crack

The crack data, which includes examinations carried out at eight chosen intervals until
fractures emerged in 167 similar turbine parts, was acquired from the book by Meeker and
Escobar [17].

Time of inspection 186 606 902 1077 1209 1377 1592 1932
Number of fans found to have cracks 5 16 12 18 18 2 6 17

We test the null hypothesis that these data are modified by our OPPE distribution
using previously acquired NKRR statistics. We calculate the MLE δ̂ = 2.475019 using R
programming and the BB method (see Ravi (2009)). The estimated Fisher Inf-Mx at that
time is:

I
(
δ̂
)
= 1.592466

So, we arrive with Y2(ε; δ̂) = 19.84927 as the answer. The crucial value for significance
level ε = 0.05 and χ2

0.01(12) = 21.02607. This model’s NKRR statistic (Y2(ε; δ̂)) is less than
the essential value, allowing us to conclude that the data correctly fit the OPPE model.

4.3. Censored Simulation Study under the NKRR Statistics Y2
n,r−1,ε(δ̂)

In the censored simulation study under the NKRR statistics Y2, it is expected that
the produced sample (N = 14000) is censored at 25% with d f = 5. We determine the
average value of the non-rejection numbers of the null hypothesis for various theoretical
levels (ε = 0.01, 0.02, 0.05, 0.1), where Y2

n,r−1,ε(δ̂) ≤ χ2
ε (r− 1). The matching theoretical

and empirical levels are presented in Table 13, demonstrating how closely the determined
empirical level value resembles the associated theoretical level value. Therefore, we draw
the conclusion that the custom test is ideally suited to the OPPE model. These findings
lead us to the conclusion that the theoretical level of the chi-square distribution on degrees
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of freedom corresponds to the empirical significance level of the Y2
n,r−1,ε(δ̂) statistics at

which it is statistically significant. It may be inferred from this that the suggested test can
accurately fit the censored data from the OPPE distribution. Returning to the defects of the
NKRR basic test, the statistical literature contains many statistical hypothesis tests that fit
the complete data, and for this reason, the original test has many competing tests in this
field, and the fact is that the NKRR basic test actually has many alternatives. As for the
modified NKRR test, it is considered an individual statistical test of its kind in the field of
statistical tests due to its importance and the nature of the data that it can deal with, which
are the data subject to censorship.

Table 13. Empirical levels and corresponding theoretical levels (ε = 0.01, 0.02, 0.05, 0.1) and
N = 14,000.

n ↓&ε→ ε1 = 0.01 ε2 = 0.02 ε3 = 0.05 ε4 = 0.1

n1 = 25 0.9930 0.9829 0.9533 0.9025
n2 = 50 0.9925 0.9818 0.9524 0.9014
n3 = 150 0.9912 0.9812 0.9516 0.9009
n5 = 300 0.9906 0.9807 0.9508 0.9004
n6 = 600 0.9904 0.9803 0.9502 0.9001

4.4. Censored Applications under the NKRR Statistics Y2
n,x−1,ε(δ̂)

4.4.1. Censored Lung Cancer Data Set

The lung cancer data provided by Loprinzi et al. [18] from the North Central Cancer
Treatment Group investigated the survival in patients with advanced lung cancer (n = 228
and censored items = 63), and their performance scores rate how well the patient can do
typical daily activities. If we assume that the data are distributed according to the OPPE
distribution, we can estimate the vector parameter δ̂ by applying the maximum likelihood
estimation approach as: δ̂ = 3.004756. As a number of classes, we employ d f = 8. The
following is how the test statistic Y2

n,r−1,ε(δ̂) items are presented:

ˆaj,b(X) 92.138 171.694 216.037 283.012 355.086 456.277 685.261 1022.3174

ˆOj,X 29 30 35 31 32 25 28 18

ej,X 6.55438 6.55438 6.55438 6.55438 6.55438 6.55438 6.55438 6.55438

The estimated matrix P̂l j(X) and the estimated information (E-Inf) I
(
δ̂
)

via Fisher are
as follows:

P̂l j(X) −0.6827 −0.4368 0.7015 0.7684 0.5094 0.3007 0.8769 −0.2884

and
I
(
δ̂
)
= 3.0134022.

The chi-squared test has a critical value of χ2
0.05(d f = 8) = 15.50731. We find that

the estimated statistic for the suggested test is Y2
n,r−1,ε

(
δ̂
)
= 14.616535 using the earlier

findings. We may state that our hypothesis H0 is accepted because the tabulated value of
the Y2

n,r−1,ε
(
δ̂
)

statistic is higher than the computed value. This leads us to the conclusion
that there is a 5% chance that the lung cancer data will deviate from the OPPE distribution.

4.4.2. Censored Capacitor Data Reliability Data Set

A set of data for basic reliability assessments data on glass capacitor longevity as a
function of voltage and operating temperature from a factorial experiment (see Meeker
and Escobar [17]). Each combination of temperature and voltage has eight capacitors.
Testing was stopped after the fourth failure at each combination, n = 64 and censored
items = 32. The parameter vector’s maximum likelihood estimator δ̂, assuming that the
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data are distributed according to the OPPE distribution, is: δ̂ = 1.680225. We pick a few
classes with d f = 8. The components of the statistical test Y2

n,r−1,ε
(
δ̂
)

are as follows:

ˆaj,b(X) 346.1573 469.502 587.113 679.017 1078.834 1089.109 1102.167 1106.444

ˆOj,X 11 15 6 10 6 5 6 5

ej,X 6.91042 6.91042 6.91042 6.91042 6.91042 6.91042 6.91042 6.91042

The estimated matrix P̂l j(X) and Fisher’s E-Inf I(δ̂) are:

P̂l j(X) 0.48965 −0.73465 −0.40012 0.29784 −0.29467 −0.95113 0.60378 0.28564

and
I
(
δ̂
)
= 4.1675894

The value of the statistical test Y2
n,r−1,ε

(
δ̂
)
= 13.84577 is then assessed. χ2

0.05(8) =

15.50731 > Y2
n,r−1,ε

(
δ̂
)

is the crucial value. We may conclude that the OPPE model is used
to update the life statistics for glass capacitors.

5. Conclusions

The one parameter Poisson-exponential (OPPE) model, a new adaptable variation of
the exponentiated exponential model, is introduced and studied in this article. Six well-
known estimation techniques are investigated, discussed, and used: Cramer–von Mises,
ordinary least square, L-moments, maximum likelihood, Kolmogorov, and weighted-
least square. The Bayesian estimation under the squared error loss function was also
devised and investigated. The use of two real data and two simulated data allows for a
complete evaluation of all available techniques. The utility and adaptability of the OPPE
distribution are illustrated using two real data sets. The new model outperforms many
other competing models in modeling relief times and survival times, according to the
Akaike Information Criterion, Consistent Akaike Information Criterion, Hannan–Quinn
Information Criterion, Bayesian Information Criterion, Cramér–von Mises, and Anderson–
Darling statistics. However, there are more results the reader can read by examining the
paper and the applications, the following results can be specifically highlighted:

• The maximum likelihood method is still the most effective and trustworthy of the
remaining classic approaches. Both the Bayesian technique and the Maximum Likeli-
hood method are recommended for statistical modeling and applications.

• Under different loss functions, the Bayesian estimation is provided. Three loss func-
tions, the generalized quadratic, the Linex, and the entropy, are used to produce the
Bayesian estimators, and many useful details are provided.

• All of the provided estimation methods have been evaluated through simulation tests
with particular parameter and controls (these simulation studies are all stated in the
paper at the appropriate places).

• The BB algorithm for process estimation under censored samples is used to compare
the Bayesian technique and the censored maximum likelihood method.

• It is shown in detail how the NKRR statistic is created for the OPPE model in the
unfiltered instance. The results of a simulation research show that the OPPE model
and the NKRR test are a good fit.

• A simulation study for evaluating statistics is described, along with the construction
of the Bagdonavičius and Nikulin statistic for the novel model under the censored
situation. Two real data applications are examined in a censored scenario; the first data
are reliability information on capacitors, and the second data are information about
lung cancer (medical data). We deduce from these applications that the suggested
technique can successfully fit censored data from the OPPE distribution.
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• For the uncensored strengths of glass fibers data, the critical values for the NKRR
statistical test were: Y2(ε; δ̂) = 11.855642 and χ2

0.05(6) = 12.59159, so the OPPE
distribution can effectively simulate and model the uncensored 1.5 cm glass fiber data.

• For the uncensored heat exchanger tube crack data, the critical values for the NKRR
statistical test were: Y2(ε; δ̂) = 19.84927 and χ2

0.05(6) = 12.59159, so the OPPE dis-
tribution can effectively simulate and model the uncensored heat exchanger tube
crack data.

• For the censored lung cancer data set: the value of the statistical test Y2
n,r−1,ε

(
δ̂
)
=

13.84577, where χ2
0.05(8) = 15.50731 > Y2

n,r−1,ε
(
δ̂
)
= 14.616535. Then, we conclude

that the OPPE model can be used for modeling the censored lung cancer data set.
• For censored capacitor data reliability data set: the value of the statistical test

Y2
n,r−1,ε

(
δ̂
)
= 13.84577, where χ2

0.05(8) = 15.50731 > Y2
n,r−1,ε

(
δ̂
)
= 13.84577. Then, we

conclude that the OPPE model can be used for modeling the censored capacitor data
reliability data set.

• It is worth noting that NKRR basic test, which is supported by complete data, is the
most popular test in the last ten years. This is because it fits the complete truth data,
and this is the case in most practical and applied cases in various fields. What distin-
guishes this statistical test also is the availability of ready-made statistical packages on
the R program, whether for simulation or applications on actual data.

• However, the practical and experimental reality in many fields (such as the medical,
chemical, engineering, etc.) necessitates that researchers deal with practical exper-
iments that produce controlled censored data. This type of data, of course, needs
certain tests dedicated to statistical dealing with it in the problem of distributional
validation. The NKRR basic test is not the optimal choice in these cases. Hence, and
based on this dilemma, was the primary and most important motive that prompted
many researchers to think about introducing a new statistical test that fits the censored
data. This new NKRR test, of course, is a modified test from the NKRR original test.

• According to the nature of the procedures of the two tests, both tests are not suitable
for working with a type of data. For example, one of the drawbacks of the original test
is that it is not suitable for dealing with censored data, it is only for complete data and
cannot be applied to censored data. Therefore, if we are dealing with complete data,
then this test may be a strong candidate for performing statistical hypothesis tests.

• Moreover, a disadvantage of the modified test is that it is only suitable for dealing with
censored data, it is not intended for complete data and can only be applied to censored
data. Therefore, if we are dealing with censored data, this test will undoubtedly be
a strong candidate for statistical hypothesis tests, because it is intended for this type
of data.

• Returning to the defects of the NKRR basic test, the statistical literature contains many
statistical hypothesis tests that fit the complete data, and for this reason, the original
test has many competing tests in this field, and the fact is that the NKRR basic test
actually has many alternatives.

• As for the modified NKRR test, it is considered an individual statistical test of its kind
in the field of statistical tests due to its importance and the nature of the data that it
can deal with, which are the data subject to censorship.
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Abbreviations

CDF Cumulative distribution function
OPPE One parameter Poisson-exponential
SrF Survival function
ADT Anderson-Darling test
CVME Cramér–von Mises estimation
MLEs Maximum likelihood estimations
HRF Hazard rate function
Inf-Mx Information matrix
E- Inf Estimated information
OLSQE Ordinary least squares estimation
KE Kolmogorov estimation
WLSQE Weighted least squares estimation
MSE Mean square error
`(δ) Log-likelihood
CVMC Cramér–von Mises criterion
df Degrees of freedom
P–P Probability-probability
TTT Total time in test
Q-Q Quantile-quantile
NKRR Nikulin–Rao–Robson
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1. Bagdonavičius, V.B.; Levuliene, R.J.; Nikulin, M.S. Chi-Squared Goodness-of-Fit Tests for Parametric Accelerated Failure Time

Models. Commun. Stat.-Theory Methods 2013, 42, 2768–2785.
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