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Abstract: In this work, we propose a reliable and stable procedure to characterize anisotropic
hyperelastic materials. For this purpose, a metaheuristic optimization method known as evolutionary
strategies is used. The advantage of this technique with respect to traditional methods used for non-
linear optimization, such as the Levenberg–Marquardt Method, is that this metaheuristic algorithm
is oriented to the global optimization of a problem, is independent of gradients and allows to solve
problems with constraints. These features are essential when characterizing hyperelastic materials
that have non-linearities and are conditioned to regions of stability. To characterize the mechanical
behavior of the arteries analyzed in this work, the anisotropic hyperelastic models of Holzapfel–
Gasser–Ogden and Gasser–Holzapfel–Ogden are used. An important point of the analysis is that
these models may present a non-physical behavior: this drawback is overcome by defining a new
criterion of stabilization in conjunction with the evolutionary strategies. Finally, the finite element
simulations are used in conjunction with the evolutionary strategies to characterize experimental data
of the artery pressurization test, ensuring that the parameters obtained are stable and representative
of the material response.

Keywords: evolutionary strategies; anisotropic hyperelasticity; characterization; mechanical tests;
parameter fitting

MSC: 74-10

1. Introduction

Hyperelastic materials are used in multiple areas of interest, such as industrial appli-
cations [1–3], soft robotics [4,5], or soft tissue modeling [6]. They describe the behavior
of materials that exhibit large deformations and usually a non-linear stress–strain rela-
tionship. It is possible to classify these materials into two main groups: isotropic and
anisotropic. The latter is generally composed of an isotropic matrix reinforced with fibers
that induce anisotropy [7]. Soft tissues are an excellent example of this type of material,
such as arteries [8,9], veins [10], corneas [11], vaginal tissue [12], muscles [13] or skin among
others [14]. Among soft tissues, arteries are one of the best-documented materials and also
present multiple constitutive models such as Holzapfel–Gasser–Ogden (HGO) [15] and
Gasser–Holzapfel–Ogden Model (GHO) [16].

There is significant research interest in adequately characterizing these materials to
increase the accuracy of computational models. The characterization problem can be seen
as an optimization one, which determines the constitutive model’s parameters that min-
imize the discrepancy concerning the experimental data. A wide range of experimental
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techniques are available to characterize hyperelastic materials, such as uniaxial tests in
different directions [17], biaxial [18], bulge [19], pressurization [20,21], and AFM nanoin-
dentation [22]. In each of these cases, the stress is modeled as a function of the material
parameters. There are different alternatives for this, such as describing the deformation
gradient as homogeneous [23], identifying the displacement field by optical means [24],
or numerical simulations of the mechanical tests [25]. Describing the deformation gradient
as homogeneous allows for analytical equations, but it is insufficient to describe the tests
adequately in many cases. With optical methods, the strain gradient can be obtained with
experimental measurements, but the experimental setup becomes complex and requires
preprocessing and postprocessing the obtained displacement fields. The numerical sim-
ulations describe the mathematical model in detail but require extensive computational
resources and therefore time-consuming. Regardless of the method used to model the
mechanical tests, it is necessary to define an objective function to quantify the discrepancy
between the mathematical model and the experimental values. The material parameters
that minimize the objective function will be those that characterize the mechanical behavior
of the material. In addition, it is necessary that these parameters correctly model different
modes of deformation (e.g., uniaxial, equiaxial, pressurization), capture anisotropy if it
exists, and meet certain (specific) stability criteria (e.g., Drucker [26] in isotropic materials).

Several authors have defined the objective function as the sum of the quadratic er-
rors of the discrepancy between the mathematical model and the experimental data [27].
In order to minimize this function, gradient-dependent algorithms such as non-linear
least-squares [28], Levenberg Marquardt [29] have been used to minimize the function.
However, these algorithms only guarantee finding local optima, and the function must be
smooth. Furthermore, minimizing the objective function suffers from several difficulties,
such as the impossibility of obtaining an analytical derivative (e.g., numerical simulations),
the presence of valley regions (derivatives are almost zero), stability constraints, and the
existence of multiple local optima. To deal with these problems, some authors have used
metaheuristic optimization algorithms to characterize hyperelastic materials to deal with
these problems. Fernández et al. [30] have used genetic algorithms to characterize the three-
parameter Mooney Rivlin model considering only a uniaxial test and assuming that the
strain gradient is homogeneous. Another recent publication of López-Campos [31], uses a
genetic algorithm to characterize tendons as a hyperelastic material with damage. Ramzan-
pour et al. [32] have proposed a constrained particle swarm optimization algorithm (C-PSO)
adapted to consider the elastic compatibility equations and the Drucker stability criterion.
This method characterizes isotropic hyperelastic materials with a viscoelastic model.

In the case of anisotropic materials, it is necessary to consider multiple mechanical
tests to reveal the mechanical behavior. Due to the simplicity of uniaxial testing, it is
possible to model the deformation gradient as homogeneous [33]. In this model type,
one generally has a highly non-linear objective function. However, in the case of other
tests, analytical models are restricted to ideal conditions assumptions such as the thin wall
condition [20]. In addition to the difficulties of mathematical modeling, a study revealed a
nonphysical response when the energy density function is defined as a sum of a deviatoric
and a volumetric component [34]. Furthermore, the relevance of transverse deformations
has been studied, where under a uniaxial tensile condition, the HGO and GHO models can
present work increasing or decreasing transverse elongations. Some hyperelastic models
allow prescribing the behavior of transverse elongations as What You Prescribe Is What
You Get (WYPIWYG) [35]. However, it is possible to prescribe the behavior of transverse
stretches in formulating the objective function.

The novel aspects of this work focus on exploring the use of evolution strategies to
characterize anisotropic hyperelastic materials. In addition, a stabilization criterion is estab-
lished to deal with unexpected physical responses, such as transverse elongations growing
under a uniaxial tensile condition. This instability is studied analytically, and it is shown
that it originates when the anisotropic stiffness grows disproportionately with respect to
the isotropic stiffness. The instability equations show that the HGO model will always
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be unstable for large deformations and the GHO model will present stable parameters
belonging to a domain defined by the stability constraint. Finally, it is presented how arter-
ies can be characterized using multiple mechanical tests to capture anisotropy, numerical
simulations to describe inhomogeneous deformation gradients, evolutionary strategies as
a global optimization algorithm, and the stability criterion proposed in this work. This
procedure can be extended to any anisotropic material. This study formulates the stability
criterion and studies in depth the use of evolutionary strategies in the characterization of
hyperelastic materials, previously used in an experimental study by Rivera et al. [21].

2. Materials and Methods
2.1. Anisotropic Hyperelastic Modeling

Multiple types of materials such as elastomers or soft tissue can be modeled as hyper-
elastic because they exhibit elastic behavior and large deformations [36]. The deformation
of these materials can be represented locally by the deformation gradient, denoted by F,
and the energy density function can describe the elastic response of the material W, which
generally, depends on the deformation gradient F. For W to comply with the principle
of objectivity, the dependence of F is through the right Cauchy–Green tensor C = FTF.
Therefore, W = W(C) and Cauchy’s stress tensor σ for an incompressible material is
given by [37]:

σ = −pI + F
∂W
∂C

FT (1)

where p is a Lagrange multiplier associated with the constraint of incompressibility. In order
to describe the mechanical behavior of fiber-reinforced materials, it is necessary to define
the orientation of the fibers, and generally, one or two families of fibers are used. The unit
vectors M and M′ are used to describe the orientation of the fiber families in the initial
configuration. The vectors of the fibers in the deformed configuration are represented by the
vectors m and m′, where m = FM and m′ = FM′ which are not a unitary vector. According
to the work of Spencer [38], a strain energy function of a compressible elastic material
with two preferred unit directions M and M′ can be expressed as W(C, M⊗M, M′ ⊗M′).
As stated by Shariff [39], this strain energy function W can be expressed in terms of a set of
invariants {Ii | i = 1, ..., 10}. However, multiple authors of hyperelastic models such as Lin
and Yin [40] or Gasser et al. [16] neglect most of the invariants to reduce the dependency of
W and to facilitate the correlation of the experimental data [41].

In this work, the GHO model is used to characterize anisotropic hyperelastic material
(arteries), and it is defined by:

W(I1, I4, I6) =
µ

2
(I1 − 3) +

k1

2k2
∑

i=4,6
(exp(k2(I1κ + (1− 3κ)Ii − 1)2)− 1] (2)

This model has three material parameters (µ, k1, k2) and a parameter that defines how
dispersed the fibers are in the space, which is κ and belongs between [0, 1/3]. It is possible
to observe that only the invariants I1 = tr(C), I4 = M · CM and I6 = M′ · CM′ are consid-
ered. It is important to emphasize that the material will be considered as incompressible
I3 = det(C) = 1. If the value of κ = 0 then the GHO model is equivalent to the well-known
Holzapfel—Gasser–Ogden model (HGO) [42].

2.2. Material Characterization via the Tensile Test

This section presents the analytical equations of the uniaxial tensile test for a den-
sity energy function W that depends on I1, I4, I6 [43]. Furthermore, an objective func-
tion is provided that minimizes the differences between the analytical model and the
experimental data.
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In order to model the uniaxial tensile test, it is assumed that the anisotropic material is
incompressible and has a homogeneous deformation gradient:

F =

λ1 0 0
0 λ2 0
0 0 λ3

 (3)

where λi (i = 1, 2, 3) are the principal stretches of the test sample. Figure 1 schematizes
the uniaxial test. It is important to remember that as the material is incompressible and
λ3 = (λ1λ2)

−1. For this kind of constitutive models, it is not possible to obtain an explicit
expression of σ11 (stress associated with the main direction of a tensile test). According
to the procedure described by [20], the equations that model the uniaxial tensile test
analytically are:

σ11 = 2(λ2
1 − λ−2

1 λ−2
2 )(W1) + 2m2

1W4 + 2m
′2
1 W6 (4)

σ22 = 2(λ2
2 − λ−2

1 λ−2
2 )(W1) + 2m2

2W4 + 2m
′2
2 W6 (5)

where Wi = ∂W
∂Ii

(i = 1, 4, 6) and the values of mi and m′i (i = 1, 2, 3) are the components
of the two fiber vectors in the deformed configuration. It is possible to observe that σ11
depends on λ1 and λ2 so it is necessary to use Equation (5) to find the value of λ2, which is
done by solving this nonlinear equation through the Newton–Raphson method.

Figure 1. Uniaxial tension test of anisotropic two fibers family in spatial configuration. No symmetry
is implied.

Arteries are modeled recurrently as an anisotropic hyperelastic material, and they
are used in this work to exemplify the characterization methodology. However, all the
described procedures can be extended to characterize any anisotropic hyperelastic material
with one or two preferential directions. For example, arteries generally possess two families
of collagen fibers that extend in a helical shape, so locally the arterial wall has a plane of
anisotropy normal to the radial direction, which is conformed by the fibers. Families of
collagen fibers share mechanical properties, and they are symmetrical with the longitudinal
axis, which forms an angle Θ, in the material configuration. The symmetry is shown in
Figure 2.
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Lon. Axis

Circ. Axis.

Figure 2. Longitudinal symmetry of the fiber family in the material configuration.

Since the families of fibers are symmetrical, it is possible to deduce for the uniaxial
traction case that the invariant I4 = I6. Therefore, the energy density function can be
written as W(I1, I4). The Cauchy stress Equations (4) and (5) are expressed as:

σ11 = 2(λ2
1 − λ−2

1 λ−2
2 )(W1) + 4m2

1W4 (6)

σ22(λ1, λ2, x) = 0 = 2(λ2
2 − λ−2

1 λ−2
2 )(W1) + 4m2

2W4 (7)

With these equations, it is possible to characterize the material employing an implicit
model of the uniaxial test. Thus, the tensile test samples of an artery are obtained from the
anisotropic plane and are loaded as illustrated in Figure 3. The objective function is defined
from the standardized quadratic errors of the mechanical tests.

J(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2

|max(y)−min(y)| (8)

where n is the number of experimental points, y are the experimental values, and ŷ are
the values predicted by the model. With this metric, it is possible to define the following
objective function:

min
x∈A

f (x) = J(σcir, σ̂cir) + J(σlon, σ̂lon) (9)

where σcir and σlon are the uniaxial stresses from the circumferential and longitudinal
tensile test, respectively. The analytical equation of the uniaxial tensile test is Equation( 4)
and is important to remember that this equation is conditioned to the direction of traction.
The objective function carries out the key task of linking the mathematical model with the
mechanical response of the material.

Figure 3. Graphical representation of the test tubes obtained in an artery.
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2.3. Transversal Isotropy Stabilization Criterion

Most anisotropic hyperelastic materials are proposed based on a decomposition of
the density energy function between the isotropy and the anisotropy [6]. One of the main
challenges for the characterization of anisotropic materials is to correctly determine the
proportion of the strain energy from the matrix (isotropy) or the fibers (anisotropy). If the
energy of the preferential directions is unbalanced concerning the isotropic energy, then
a nonphysical behavior may occur. Furthermore, it is possible to obtain a similar strain
energy function with different proportions of anisotropy in some conditions, leading to a
similar stress behavior but with different deformation modes.

To illustrate the non-physical behavior we present two sets of parameters x = (µ, κ, k1, k2, θ)
of the GHO constitutive model. The first set of parameters is x1 = (10.4 [kPa], 0.27, 30.6 [kPa],
3.94, 61.3) and the second one is x2 = (0.73 [kPa], 0, 13.9 [kPa], 2.13, 48.1). If we plot the
longitudinal and the circumferential behavior of these parameters, we can see in Figure 4a
that they have similar stress responses. However, if we see the transversal stretch λ3 in
Figure 4, it is possible to observe that the second set of parameters has a non-physical
behavior because it tends to grow under traction.
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Figure 4. Material responses obtained with unstable and stable model parameters. (a) Tensile test;
(b) Transversal Stretch λ3.

2.3.1. Uniaxial Transversal Stretch

The vast majority of the anisotropic hyperelastic models propose an additive decompo-
sition between the isotropic and anisotropic energy strain functions. When the experimental
data are fitted with the analytical Equations (4) and (5), it is only possible to fit the stress
response, but it is not verified whether the balance between the isotropic and anisotropic
energy density functions are right.

One way to quantify the anisotropy of the material is through the uniaxial tensile test
(see Figure 1). The main stretch λ1 and the force exerted on the specimen F are measured;
however, the transversal stretches λ2, or λ3 are not. If one of these stretches is quantified,
then the balance between the isotropy and anisotropy of the strain energy function could
be determined. We will explain next how to quantify the anisotropy with the transverse
stretches. First, the fibers will be oriented according:

M = cos(Θ1)Ê1 + sin(Θ1)Ê2; M′ = cos(Θ2)Ê1 + sin(Θ2)Ê2 (10)

The variables Θ1 and Θ2 are the direction of the fibers in the anisotropy plane in the
material configuration. Employing the deformation Gradient (3) the deformed fiber vectors
are obtained.

FM = m = λ1cos(θ1)ê1 + λ2sin(θ1)ê2; FM′ = m′ = λ1cos(θ2)ê1 + λ2sin(θ2)ê2 (11)
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The variables θ1 and θ2 stand for the fiber orientations in the spatial configuration
and are illustrated in Figure 1. If we consider that the strain energy function depends on
W(I1, I4, I6) and we replace Equation (11) in (7), we can obtain that:

0 = (λ2
2 − λ−2

1 λ−2
2 )W1 + [λ2sin(θ1)]

2W4 + [λ2sin(θ2)]
2W6 (12)

Grouping λ2 from the previous equation, the following equation is obtained:

λ2 = [
W1 + sin2(θ1)W4 + sin2(θ2)W6

W1
]−1/4λ−1/2

1 = Ψ−1/4λ−1/2
1 (13)

In order to simplify the expression of Equation (13) the variable Ψ was introduced.
Nonetheless, Ψ hides a significant physical meaning which reveals the anisotropy balance
through the rigidity ratio between the anisotropic plane and the transversal isotropy.
In other words, Ψ allows quantifying the degree of anisotropy of the material. The value of
Ψ is always ≥ 1, and if Ψ = 1, it means that the material remains isotropic.

Because the material is considered incompressible, it must be fulfilled that λ3 = 1
λ1λ2

.
Therefore, Equation (13) can be written in terms of λ3 as:

λ3 = Ψ1/4λ−1/2
1 (14)

Thus, characterizing a material based on the transverse stretches makes it possible to
know the balance between the isotropic and anisotropic energies, as long as the angle of
the fibers is known.

2.3.2. Stability Criterion

We will call an incompressible and transversely isotropic material stable under uni-
axial stress if the stretch aligned with the transversal isotropy direction decrease. If we
consider that the deformation gradient is homogeneous for the case of uniaxial traction as
in Equation (3), it is conceivable the definition of a transverse stability criterion:

dλ3

dλ1
≤ 0 Transversal stability criterion (15)

The strain energy function W(I1, I4, I6) can be expressed with the principal stretches.

W(I1, I4, I6) = W(λ1, λ2, λ3) (16)

Since the material is incompressible and λ3 = 1/(λ1λ2), then the energy density
function can be written as:

W(I1, I4, I6) = W(λ1, λ2) (17)

The variables θ1 and θ2 determine the direction of the fibers in the anisotropy plane.
The deformed fiber vector comes from Equation (11) and the invariants (I1, I4, I6)
are calculated:

I1 = λ2
1 + λ2

2 + (λ1λ2)
−2

I4 = λ2
1cos2(θ1) + λ2

2sin2(θ1)

I6 = λ2
1cos2(θ2) + λ2

2sin2(θ2)

(18)

With these equations proposed, it is possible to correlate the constitutive model with
the principal stretches. From Equation (14), the transverse elongation λ3 can be written as:

λ3 = Ψ1/4λ−1/2
1 = [

W1 + sin2(θ1)W4 + sin2(θ2)W6

W1
]λ−1/2

1 (19)
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Accordingly, if we replace Equation (19) in Equation (20), we get that:

dλ3

dλ1
=

1
4

Ψ−3/4λ−1/2
1

dΨ
dλ1
− 1

2
Ψ1/4λ−3/2

1 ≤ 0 (20)

From the policonvexivity conditions of Walton and Wilber [44], we know that Wk > 0
for k = (1, 2, 4) and hence Ψ ≥ 1. We also know that λ1 > 0 and the inequity (15) can be
expressed as:

dΨ
dλ1
≤ 2Ψ

λ1
(21)

It is noteworthy to mention that if Ψ is constant for λ1 > 1, then the stability criterion
is satisfied (remember that Ψ ≥ 1). It is relevant to note that Equation (21) states that
transverse stability can be controlled through the growth rate of the material’s anisotropic
energy. An alternative way to present Equation (21) is to express the derivative of Ψ in
terms of λ1 and λ2:

Ψ1[λ
2
1 − λ2

2] + Ψ4[λ
2
1cos2(θ1)− λ2

2sin2(θ1)] + Ψ6[λ
2
1cos2(θ2)− λ2

2sin2(θ2)] ≤ Ψ . (22)

Finally, an inequity is obtained that makes it possible to determine whether the material
is transversally stable as a function of the invariants.

2.3.3. Transverse Stability of HGO and GHO Constitutive Models

This section shows that the GHO model [16] is transversely stable for an elongation
λ1 that tends to infinity and that the HGO model is not. GHO model is given by:

W(I1, I4, I6) =
µ

2
(I1 − 3) +

k1

2k2
∑

i=4,6
(exp(k2(I1κ + (1− 3κ)Ii − 1)2)− 1] (23)

In order to proof the stability of the model, we assume that there is a critical angle θ,
which coincides with both preferred directions. Therefore, it is only necessary to consider
the invariant I4. Moreover, it is possible to observe that Ψ depends on I1 and I4:

Ψ(I1, I4) =
W1(I1, I4) + sin2(θ)W4(I1, I4)

W1(I1, I4)
(24)

By evaluating the partial derivatives of the energy function in Equation (24), then Ψ is:

Ψ(I1, I4) = 1 +
k1E4(1− 3κ)sin2(θ)

µ/2 + e−k2E2
4 + k1κE4

(25)

and the value of E4 is defined by:

E4 = I1κ + (1− 3κ)I4 − 1 (26)

If λ1 → ∞, then I1 → ∞, I4 → ∞ and E4 → ∞. Therefore, the value of Ψ when λ1
tends to infinity is:

lim
λ1→∞

Ψ = 1 +
(1− 3κ)sin2(θ)

κ
; κ 6= 0 (27)

The value of κ must be between (0, 1/3]. It is possible to observe that when κ = 0,
GHO model is identical to HGO model and exhibits transversal instability. However, if κ
belongs to the interval of (0.1/3], then Ψ converges to a positive real value when λ1 → ∞.
As the value of Ψ converges to a positive constant, then it is obtained that:

lim
λ1→∞

dΨ
dλ1

= 0 ⇔ κ ∈ (0, 1/3] (28)
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Consequently, with the results of (27) and (28), the inequity is evaluated:

lim
λ1→∞

dΨ
dλ1
≤ lim

λ1→∞

2Ψ
λ1

⇒ 0 ≤ 0 (29)

As the inequity (29) is fulfilled, then the GHO model is transversally stable. In other
words, there is a large enough λx, that for all λ1 > λx the GHO model will be stable.

Remember that when the value of κ = 0, then the model of GHO is equivalent to the
model of HGO [42]. In this case, it is shown that the model of Holzapfel–Gasser–Ogden is
transversally unstable.

2.3.4. Penalty and Objective Function for Transverse Stability

One of the easiest ways to obtain a set of transversely stable parameters is to con-
sider in the fitting procedure the transverse stretches (λ2 or λ3). However, measuring
experimentally transverse stretches can be complex due to the experimental setup.

A numerical alternative is presented to define the feasible decision space, which is
transversal stable in the range of the experimental data. Based on the inequity (21), a
modified stability criterion is defined:

dΨ
dλ1
≤ 2Ψ

λ1
h(λ1) (30)

where h(λ1) is a function ∈ [0,1] and controls the degree of anisotropy of the material in
the domain of the stable parameters, with this stability Criterion (30) a penalty term can be
defined, and the following objective function can be set:

min
x∈An

f (x) = J(σcir, σ̂cir) + J(σlon, σ̂lon) + g(x, λlon
i , λcir

i ) (31)

where g represents the penalty function and is defined as:

g(x, λlon
i , λcir

i ) =

{
C, Si dΨ

dλ1
> 2Ψ

λ1
h(λ1) ∀ λ1 ∈

{
λcir

i , λlon
i

}
0, Otherwise

(32)

The penalty constant C is an immense value, penalizing the objective function when
the transversal stability is not met. With the objective Function (31) it is possible to find a
set of parameters that adjust the uniaxial traction data and satisfy the transversal stabil-
ity condition.

The function h(λ1) can be simplified as a constant. A recommended value for the
GHO model is h = 0.7. If h = 1, the set of parameters obtained may be critical, and it is
advisable to search with a sub-critical constraint. On the other hand, if h = 0, it will obtain
a set of parameters that exhibit isotropic behavior. To characterize the materials throughout
this work, h = 0.7 is employed.

2.4. Inverse Finite Element Characterization

The analytical model of the uniaxial tensile test, which considers a homogeneous
deformation gradient, gives a response similar to the one obtained with numerical models
(see [24]). However, the analytical model of the pressurization test is too simplistic and is
limited to the thin-walled case [20]. In reality, the strain gradients are not homogeneous,
and there is a non-linear stress distribution. Therefore, finite element simulations of the
pressurization tests are used to calibrate the parameters based on numerical simulations.
To illustrate the inverse finite element characterization procedure, experimental data from
the mechanical behavior of lambs’ arteries will be used in conjunction with the GHO
model. The experimental data comes from the work of Rivera et al. [45] and we will
characterize only the CN group. It is important to remember that this work focuses on the
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characterization process and not on bio-mechanics. Therefore, the numerical simulation is
presented in detail, followed by the definition of the objective function.

2.4.1. Pressurization Test and Numerical Simulation

The pressurization test is used to replicate In vivo blood vessel loading conditions.
In this mechanical test, a sample of an artery is subjected to uniaxial elongation in a traction
machine followed by the application of internal pressure employing a fluid (calcium-free
saline solution) that travels through the interior of the blood vessel and generates a radial
load. The ends of the cylindrical sample of the thoracic aorta are fixed to a metal nozzle.
The experimental set-up is similar to the one described by Guinea et al. [46]. Figure 5
shows the experimental set-up used in the work of Rivera et al.

(a) (b)

Figure 5. Experimental assembly. (a) Unstretched thoracic aorta (b) Pressurized thoracic aorta with a
pre-stretch.

The aorta’s internal pressure and external diameter are recorded during the entire
mechanical test using video; these data are processed to obtain the internal pressure vs. dia-
metrical stretch curves. The circumferential (or diametrical) elongation is defined as D/D0,
where D and D0 denote the deformed diameter and the undeformed diameter, respectively.
Ten loading cycles are performed up to a pressure of 170 [mmHg] to precondition the
samples. The last cycle is used to perform the test analysis.

The numerical simulation to be used consists of an axisymmetric 2D simulation using
finite elements because it idealizes the geometry of the aorta as a perfect cylinder and
simplifies the problem with symmetry. The simulation is done through two steps:

The first step consists of subjecting the aorta to uniaxial traction until a physiological
lengthening is achieved. In Rivera’s work, they determine that the value of λz = 1.2,
this lengthening remains constant during the whole pressurization process. The second
step corresponds to the process of pressurization (inflation), where internal pressure is
applied to the arterial wall that covers the physiological range up to hypertension; that is,
the pressure applied to the arterial wall varies from 0 [mmHg] to 170 [mmHg]. Figure 6a
represents the pressurization test.
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(a) (b)

Figure 6. (a) 2D representation of the boundary conditions for the simulation of the pressurization
test. (b) Structured mesh of the finite element simulation with 2500 quadrilateral elements.

The shape of the artery is simplified as a rectangular surface by making a longitudinal
cut to the cylindrical tube. Each dimension of the artery is obtained through the average
of the measurements of the samples available. The dimensions of the internal radius,
thickness, and length are (CN: R0 = 3.71 mm, t = 2.06 mm, L = 14 mm )

The mesh used has 2626 nodes and 2500 quadrilateral elements (25 × 100). The mesh
presents a refinement at the base of the artery, where it is fixed (see Figure 6b). With this
numerical simulation, the circumferential elongation can be determined as a function of
the parameters of the GHO model x and the internal pressure P as

λθ(x, P) = 1 +
ur(x, P)

D0
, (33)

where ur is the radial displacement of the node located at the outer diameter at the edge of
the longitudinal symmetry (red dot Figure 6a), with this expression, the circumferential
stretch of the objective function to be presented in the following section is evaluated.

2.4.2. Inverse Calibration Procedure

The procedure to characterize the material is straightforward; an objective function is
defined, combining the uniaxial analytical test with the numerical pressurization test. This
objective function is as follows.

min
x∈A

f (x) = J(σcir, σ̂cir) + J(σlon, σ̂lon) + 2J(λpresu
θ , λ̂

presu
θ ) + g1(x, λlon

i , λcir
i ) (34)

It is possible to observe that each curve presents a standardized error, and that the
pressurization test is weighted by a factor of two so that it has the same weight as the two
tensile tests. This objective function is numerically calculated following the block diagram
presented in Figure 7. Initially, the quadratic errors of the longitudinal and circumferential
tensile tests are obtained, and it is determined whether the set of parameters exhibits
transverse stability in the experimental range. If this restriction is not satisfied, the objective
function is penalized and takes a substantial value. If the parameters are not stable,
there is no need to perform the simulation and save computation time. Similarly, if the
pressurization simulation does not converge for a given set of parameters, the value of
the target function is penalized by an immense value. If the set of parameters of the GHO
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model is stable in the experimental range and the pressurization simulation converges,
then the objective function is calculated.

Objective function

Calculation of the quadratic
errors of the longitudinal

uniaxial test 
Optional

FEM simulation of the
pressurization test

Does it meet
stability criteria?

Optional

Does the
simulation
converge?

Calculation of the quadratic
errors of the results obtained

from the FEM simulations

Calculation of the quadratic
errors of the circumferential

uniaxial test 
Optional

Return a large
value (Penalty) 

 

Return a large
value (Penalty) 

 

Return the
weighted sum of

the quadratic
errors of the
mechanical

tests. 

Yes

Yes

No

No

Figure 7. Block diagram illustrating how the objective function is computed.

The objective function determines the optimization problem; it can be calculated
following the block diagram in Figure 7 and it is essential to recognize that the simulation
is evaluated at the end of the block to save computation time. The objective function is
subject to stability regions, multiple parameters, and discontinuities associated with the
convergence of the simulation and, therefore, it is necessary to use some optimizer capable
of solving such a problem. This is where the evolutionary strategies come in.

2.5. Evolutionary Strategies

Evolution Strategies (ES) belong to the class meta-heuristic optimization methods and
have proven successful for the solution optimization problems in continuous spaces. Fur-
thermore, ES allows to solve problems in which, for example, there is not explicit functional
expression or derivatives that can be calculated. ES imitates the biological principle of
evolution and serves as an approach to machine learning and global optimization methods.
These strategies are based on three mechanisms of the Darwinian evolutionary process:
selection, recombination, and mutation.

The optimization problem presented in Equation (34) is non-linear and is subject to
multiple constraints and a discontinuous space. ES has proven to be a successful solution
to this type of inverse problem [47,48], in which it is not necessary to satisfy continuity and
calculate derivatives. For these reasons, they are used in this work. For a more detailed
depiction of how this algorithm works, we refer to the interested reader to references [49,50].
Nevertheless, a detailed block diagram illustrating the link between the physics, the model,
and the optimizer is presented in Figure 8.

As shown in Figure 8, the optimization process begins with the creation of a set of
potential solutions to the problem studied. Since ES mimics the evolution of a population
through time, each element of the initial set is modified, in the variation stage, through the
application of the recombination and mutation operators. The former serves to exchange
the genetic information between the elements of the initial set. The latter, on the other
hand, introduces some random variation that helps the ES to explore the search space.
The throughput of the variation stage is a secondary set of modified solutions that will be
evaluated, through some predefined metric that relates the optimization algorithm with
the physical problem, and only those elements whose fitness values may lead the ES to the
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optimal solution will be retained to constitute the initial population for the next iteration of
the optimization loop which, as shown in Figure 8, will end once the termination criterion
has been satisfied. In the present work, we denote x for each element of the initial set.
Furthermore, we make use of the so-called Elitist Evolution Strategy, which selects from
both the initial and the modified sets only those elements with the best fitness values.
It is noteworthy to mention that there is another selection scheme known as Non-Elitist
Evolution Strategy. On the contrary to the Elitist Evolution Strategy, it only selects the best
elements from the modified set. The results of extensive numerical experiments showed
that the Non-Elitist Strategy was not the most suitable option for the present problem.

Optimization 
Loop 

Continue?Yes No
End

Initialization

Evaluation

Analytical 
and Numerical 

Computed Predictions

- Uniaxial tensile longitudinal
- Uniaxial tensile circumferential

- Pressurization

Experimental Data

Variation

Evaluation

Selection

Mechanical Test

- Analytical Model of the tensile test
- Numerical Simulation of 

the pressurization test

Inverse Problem

Figure 8. Evolutionary strategy block diagram.

3. Results
3.1. Assessment of Evolution Strategies

The characterization of an anisotropic material is often more complex than that of an
isotropic material. The main difference between these two problems is that the anisotropy
of the material must be captured, and achieved with more complex hyperelastic models and
more mechanical tests. Although ES has been applied for several optimization problems, it
is unknown how efficient and robust they are when used to characterize the constitutive
models of hyperelastic anisotropic materials.

A benchmark test is performed to assess the suitability of ES to characterize an
anisotropic material. This test consists of finding the characteristic parameters of the
material through the simulation of experimental data of an artery under traction. In other
words, the GHO model is used with a set of known parameters to generate synthetic exper-
imental data curves. Generally, when the experimental tests are carried out, longitudinal
and circumferential tensile tests are performed.

The equations that model the mechanical behavior of the material are given by
Equations (4) and (5). The constitutive model of GHO [16] is used to generate the simulated
experimental curves, consisting of the parameters x = (µ, κ, k1, k2, θ). The objective is to
generate the curves with a set of known parameters and verify the possibility of retrieving
the parameters by making use of the ES and the objective function. Therefore, the solution
to the optimization problem (Equation (9)) has to match the set of known parameters.

The set of known parameters is presented in Table 1. The search domain and the
parameters of the evolutionary strategies are also detailed. The solution obtained from the
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evolutionary algorithm involves stochastic processes, and it is possible that in some runs of
the optimization algorithm convergence is achieved to the global optimum and in others
runs not. Therefore, 100 realizations of the optimization problem are made, and a statistical
analysis of 100 solutions are obtained.

Table 1. Search parameters of ES and known solution.

Parameters Known Solution Lower Limit Upper Limit

µ [kPa] 22.589 0.00 1.00× 105

k1 [kPa] 224.217 0.00 1.00× 106

k2 2.464 0.00 1.00× 101

κ 0.285 0.00 0.3333

θ° 39.624 0.00 90

Generations 150 Population 1140

The curves generated with the known parameters and the adjustment obtained with
the evolutionary strategies are illustrated in Figure 9. It can be seen that the set of parame-
ters obtained correctly adjusts the two curves. In this case, the average of the 100 realiza-
tions coincides with the problem’s solution and presents a minimal standard deviation (see
Table 2). Therefore, in this case, all the solutions obtained are consistent with the global
optimum, showing the resolution capabilities of the ES.

Table 2. Results of the adjustment of a known solution using the GHO model.

Parameters
ES Elitist ES Non-Elitist

Average 95% IC Average 95% IC

µ [kPa] 2.2260× 101 8.3100× 10−2 2.1930× 101 8.9184× 10−2

k1 [kPa] 2.1303× 102 2.3413× 100 1.9990× 102 1.2902× 100

k2 2.3705× 100 1.9879× 10−2 2.2650× 100 1.4794× 10−2

κ 2.7391× 10−1 2.3596× 10−3 2.6000× 10−1 1.8826× 10−3

θ° 4.0400× 101 1.7648× 10−1 4.8742× 101 7.5583× 10−3

Objective
Function 5.06× 10−5 7.06× 10−5

From Table 2, the elitist strategy exhibits better results than the non-elitist strategy.
In this case, both variants find the global optimum, but the elitist strategy converges
more consistently.

One way to illustrate that the set of parameters obtained is the right one is to compare
the isocontours of the energy density function W(λ1, λ2, λ3) of the exact solution and
the solution obtained through the adjustment. Since the material is incompressible, one
principal stretch could be determined by the others, and the energy density function can be
expressed as W(λ1, λ2). In Figure 10, it can be seen that the isocontours are superimposed
and that the energy density function is practically the same.
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Figure 9. Adjustment of a known solution of an anisotropic material with evolutionary strategies.

It is important to notice that the green curve and the cyan curve illustrate how the
stretches behave in the uniaxial tensile test. The path of this curve is not constant as in the
isotropic case, and it is subject to the solution of a non-linear equation. Another equivalent
way to determine the second stretch is with the following equation:

∂W
∂λ2

= 0 (35)

This equation can be obtained through the constitutive Model (23), and it can be seen
that it is satisfied in Figure 10. In other words, it is verified that the gradient is zero at the
intersection of the energy isocontours. In the circumferential curve, it is also satisfied that
the gradient ∂W

∂λ1
= 0, the only difference is that the principal stretch is λ2 and the second

principal stretch is λ1.
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Figure 10. Exact solution and the solution obtained with ES elitist.
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This section has shown that ES can consistently characterize an anisotropic hyperelastic
material using the GHO model [16]. It is noteworthy to mention that the success of the
ES depends on the search parameters and the complexity of the problem to be solved.
Nevertheless, it is essential to recall that adjusting uniaxial stress data does not guarantee a
coherent physical response.

3.2. Characterization of Experimental Data with Stabilization Criterion

In this section, evolutionary strategies are used with the stabilization criterion to
obtain the constitutive parameters of the GHO model with the experimental data pub-
lished in the work of García et al. [51]. In García’s work, experiments and modeling of
the passive mechanical response of the descending thoracic aorta of humans are carried
out. For this purpose, uniaxial traction tests were performed on healthy samples of the
arteries of newborns, young people, and adults. Subsequently, data from the uniaxial
tensile test were used by García to calibrate HGO model (2000) with Levenberg Marquardt
optimization algorithm.

There are three groups of experimental data; Group A comes from newborns, Group B
is conformed by young people, Group C is adult arteries. Each of these groups represents a
set of parameters. Each group tensile test represents the average behavior of that group of
several individuals. However, we only characterize Group C which is the most unstable
and will not detail the individuals or the dispersion of the data, and will only use the
average curve.

Therefore, with the data published by Garcia of the uniaxial traction test, we proceed to
calibrate the parameters of GHO model x1 = (µ, κ, k1, k2, θ) with the evolutionary strategies
and the stabilization criterion with the objective Function (34).

The reported parameters of Garcia were obtained using the Levenberg Marquardt
method and the HGO model. In Table 3, these parameters are written in terms of the GHO
model, considering that κ = 0. Furthermore, the parameters obtained are presented with the
evolutionary strategies, stabilization term and the GHO model. The value of the objective
function determines the degree of fitness of the set of parameters obtained. With the
proposed methodology the objective function is 32.7 times lower than the parameters
retrieved by García and these parameters satisfy the stability condition. The confidence
interval of the evolutionary strategies is reasonably narrow and therefore the solution
obtained is consistent.

Table 3. Parameters of the fittings obtained from the experimental data of García et al. with evolu-
tionary strategies, stabilization criterion and GHO model.

Parameters µ [kPa] κ k1 [kPa] k2 θ° Objective
Function

García et al. 24.655 0 45.055 5.3279 42.19 48.29

Es
Elitist

Av. 5.996 0.2985 307.27 1.258 72.07
1.473

IC 95% 8.20× 10−2 5.94× 10−2 1.37× 100 5.80× 10−3 3.32× 10−1

The experimental fit of the uniaxial traction and the traversal stretches are presented
in Figure 11. It is clear that the set of parameters obtained adjusts better the data and satisfy
the stability condition. In contrast, the results presented by Garcia are inherently unstable
for large stretches since it was shown that the Holzapfel–Gasser–Ogden model will always
be unstable for elongations tending to infinity.

Finally, using the ES, with the GHO model and the proposed penalty function, it
is possible to obtain parameters that are transversally stable and an excellent fit of the
experimental data.
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Figure 11. Adjustments of the experimental data of unixial traction with the GHO model and the
transverse stretch λ3 corresponding to each of the adjustments. (a) Tensile test; (b) Transversal
Stretch λ3.

3.3. Inverse Finite Element Characterization

In this procedure, arterial tissue is characterized using experimental data from three
mechanical tests: two uniaxial tension and one of pressurization. The experimental data
is fitted in two different ways, with and without the penalty function for transverse sta-
bility. This procedures characterize the material considering the FEM simulation of the
pressurization test and the analytical equation for the tensile test. This task is achieved by
minimizing Equation (34) with the evolutionary strategies.

Some of the difficulties of calculating the objective function with finite element simu-
lations is the associated computational cost. In this case, the aim is to reduce as much as
possible the number of evaluations of the objective function. The search parameters of the
evolutionary strategy are presented in Table 4.
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Table 4. ES parameters to characterize a GHO model with finite elements.

Parameters Lower Boundary Upper Boundary

µ [kPa] 10.0 1.0× 103

k1 [kPa] 0.00 1.0× 104

k2 0.00 6.00

κ 0.00 1/3

θ° 0.00 90.0

Generations 100

Population 200

The numerical implementation of ES is compiled with GNU FORTRAN and is par-
allelized with the OPENMP library. In order for the simulations to reduce the possibility
of having problems related to the convexity of the energy density function, the minimum
value of µ is 10 [kPa]. This value guarantees an isotropic base component, which helps to
stabilize the pressurization finite element simulations.

In order to study the influence of the stabilizing term, the arterial tissue is character-
ized using the inverse methodology with and without the stabilizer. The results of the
adjustments are shown in Figure 12, where it is possible to appreciate that the parameters
obtained adequately adjust each of the mechanical tests and that they belong to the confi-
dence interval. The standardized quadratic errors of the mechanical tests are presented in
Table 5 and in each of the curves presents an error that is less or equal to 1× 10−4. When the
model does not consider the stability constraint, the obtained parameters correctly capture
the mechanical tests but with a transversely unstable set of parameters since the transversal
stretch λ3 increases. However, when considering the stabilization term, the transversal
stretch λ3 decreases and a stable solution is obtained that accurately adjusts each mechani-
cal test. It is essential to notice that a nonlinear constraint defines the decision space of this
function. Therefore evolutionary strategies are an appropriate tool to find the solution in
that space.

There is a fundamental relationship between material stability and the balance between
isotropy and anisotropy. A parameter that controls the degree of anisotropy of the material
in the GHO model is κ, if this is equal to zero, then all fibers are aligned in the preferential
directions, and if κ = 1/3 then the fiber arrangement is uniform and therefore the behavior
of the material is isotropic. From Table 6, it can be seen that the anisotropic component is
more significant in the unstable set of parameters than in the stable case, simply by looking
at the value of κ. Furthermore, the constant µ is proportional to the material’s isotropic
energy, which is higher when the material is stable. However, it is essential to notice that
the angle obtained is insensitive to the stability constraint.

Finally, it is demonstrated that this inverse methodology can characterize soft tissue
that is constrained by multiple mechanical tests and a stability domain with FEM.

Table 5. Standardized Quadratic Errors of the CN Group.

Standarized Quadratic Errors
CN

Without Stabilization With Stabilization

Presurization 1.28× 10−5 8.28× 10−5

Tensile test longitudinal 1.00× 10−4 2.35× 10−5

Tensile test circumferential 2.60× 10−4 1.10× 10−4
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Table 6. GHO model parameters obtained with and without stabilization term.

Parameters µ [kPa] k1 [kPa] k2 κ θ° Computing
Time [h]

Without
Stabilization

10.015 20.315 0.17086 5.1799× 10−3 45.83 12.4

With
Stabilization

18.668 24.905 0.2912 0.1367 46.44 12.0
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Figure 12. Cont.
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Figure 12. CN group adjustments. On the left are the results of the non-stabilized characterization
and on the right the characterization with the stability term. (a) Pressurization; (b) Pressurization;
(c) Tensile Test; (d) Tensile Test; (e) Transversal Stretch; (f) Transversal Stretch.

4. Discussion

This work has focused on the characterization of anisotropic hyperelastic materials and
on stabilizing the mechanical response associated with the constitutive parameters, consid-
ering the HGO and GHO models as examples. The analysis performed can be summarized
in three parts: (i) analysis of the stability problem; (ii) application of ES in anisotropic
hyperelasticity; (iii) inverse FEM characterization procedure. These points are proposed to
find the material constitutive parameters that are stable, model the deformation gradients
as inhomogeneous, and that the optimization algorithm is oriented to global optimization.

From the first point is derived the definition of a new stability criterion that allows
obtaining a physically expected mechanical behavior. This criterion establishes that if the
material is being subjected to uniaxial tension, the elongation normal to the plane of the
fibers must decrease.

The contribution of this criterion is important since the instability of a material occurs
due to the excessive growth of the anisotropic stiffness with respect to the transverse
isotropic stiffness. This imbalance imposes that the transverse elongation has to grow to
satisfy static equilibrium and quasi-incompressibility.

In this study, it shows that the HGO model is unconditionally unstable for large defor-
mations, since, the energy density function grows exponentially for anisotropic invariants
and linearly for isotropic ones. On the other hand, the GHO model presents a stability
domain where it is stable for large deformations because the energy density function grows
exponentially for isotropic and anisotropic invariants, keeping a certain balance.

In the second point, an ES were applied to obtain constitutive parameters of an
anisotropic hyperelastic material. To evaluate the suitability of evolutionary strategies
a benchmark problem with a known solution was defined with synthetic experimental
data of arteries in the circumferential and longitudinal direction. The results show that the
application of an ES successfully found the global optimum in each of the one hundred
realizations of the optimization problem for both elitist and non-elitist selection. Therefore,
the effectiveness of this algorithm to characterize anisotropic hyperelastic materials, where
the nonlinearity is large, with multiple constraints and lack of an analytical expression of
the gradients of the objective function, was verified.

From the third point, robust characterization of anisotropic hyperelastic materials
was obtained. The stability criterion is included in the characterization through a penalty
function that defines the domain of the stable parameters. Evolutionary strategies play
a fundamental role here, because with this algorithm it is only necessary to sum this
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penalty term to the objective function. After characterizing experimental data of arteries
found in the literature, it is demonstrated that this technique provides a superior fit to
the one reported using Levenberg–Marquardt and, in addition, it presents a transversely
stable mechanical response. Due to the nature of this optimization algorithm, it cannot be
guaranteed that the global optimum of the problem will be found, but a stable and good
candidate set of parameters will be found.

Finally, this work shows that the correct characterization of material is conditioned
by the experimental data, the optimization algorithm, the stability of the mathematical
model and simplifications made to the deformation kinematic. The inverse characteri-
zation procedure with finite elements, the stabilization term and the evolutionary strate-
gies; proposes a solution for each of these points, since it has been shown to effectively
characterize the mechanical behavior of complex materials, such as arteries, considering
non-homogeneous deformation gradients, multiple mechanical tests, stability constraints
and an optimization algorithm oriented to the global optimization. The major drawback
of this procedure is the computational cost since it is necessary to evaluate the objective
function several times. However, model order reduction techniques could be a potential
solution to this inconvenience.
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