Introduction to Completely Geometrically Integrable Maps in High Dimensions
Abstract
:1. Introduction
2. Skew Products and Preliminary Properties of Completely Geometrically Integrable Maps in High Dimensions
3. The Geometric Criterion for the Complete Geometric Integrability in High Dimensions
4. The Analytic Criterion for the Complete Geometric Integrability in High Dimensions: Concluding Remarks
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afrimovich, V.S.; Bykov, V.V.; Shil’nikov, L.P. Attractive nonrough limit sets of Lorenz attractor type. Tr. Moscovskogo Mat. Obsh. 1982, 44, 150–212. (In Russian) [Google Scholar]
- Frassu, S.; Li, T.; Viglialoro, G.V. Improvements and generalizations of results concerning attraction-repulsion chemotaxis models. Math. Methods Appl. Sci. 2022, 45, 11067–11078. [Google Scholar] [CrossRef]
- Frassu, S.; Galvan, J.R.R.; Viglialoro, G.V. Uniform in time L∞-estimates for an attraction-repulsion chemotaxis model with double saturation. Discret. Contin. Dyn. Syst. B 2023, 28, 1886–1904. [Google Scholar] [CrossRef]
- Birkhoff, G.D. Dynamical Systems; American Mathematical Society Colloquium Publications; American Mathematical Society: New York, NY, USA, 1927; Volume 9. [Google Scholar]
- Bolotin, S.V.; Kozlov, V.V. Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom. Izv. Math. 2017, 81, 671–687. [Google Scholar] [CrossRef]
- Kozlov, V.V. Quadratic conservation laws for equations of mathematical physics. Russ. Math. Surv. 2020, 75, 445–494. [Google Scholar] [CrossRef]
- Kozlov, V.V. On the integrability of equations of dynamics in a nonpotential force field. Russ. Math. Surv. 2022, 77, 137–158. [Google Scholar]
- Kozlov, V.V.; Treschev, D.V. Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics. Sb. Math. 2016, 207, 1435–1449. [Google Scholar] [CrossRef]
- Maltsev, A.Y.; Novikov, S.P. Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter. Russ. Math. Surv. 2019, 74, 141–173. [Google Scholar] [CrossRef]
- Volovich, I.V. On integrability of dynamical systems. Selected questions of mathematics and mechanics. To the 70-th anniversary of the birth of Academician Kozlov. Tr. MIAN 2020, 310, 78–85. [Google Scholar]
- Adler, V.E. Discretizations of the Landau-Lifshits equation. TMPh 2000, 124, 897–908. [Google Scholar] [CrossRef]
- Adler, V.E.; Bobenko, A.I.; Suris Yu, B. Discrete Nonlinear Hyperbolic Equations Classification of Integrable Cases. Funct. Anal. Appl. 2009, 43, 3–17. [Google Scholar] [CrossRef]
- Dang, N.-B.; Grigorchuk, R.I.; Lyubich, M. Self-similar groups and holomorphic dynamics: Renormalization, integrability, and spectrum. arXiv 2021, arXiv:2010.00675v2. [Google Scholar] [CrossRef]
- Grigorchuk, R.I.; Zuk, A. The lamplighter group as a group generated by a 2-state automaton and its spectrum. Geom. Dedicata 2001, 87, 209–244. [Google Scholar] [CrossRef]
- Grigorchuk, R.I.; Samarakoon, S. Integrable and Chaotic Systems Associated with Fractal Groups. Entropy 2021, 23, 237. [Google Scholar] [CrossRef] [PubMed]
- Suris Yu, B. Integrable mappings of the standard type. Funct. Anal. Appl. 1989, 23, 74–76. [Google Scholar] [CrossRef]
- Veselov, A.P. Integrable maps. Russ. Math. Surv. 1991, 48, 3–42. [Google Scholar] [CrossRef]
- Belmesova, S.S.; Efremova, L.S. Nonlinear Maps and Their Applications; (PROMS vol. 112); Lopez-Ruiz, R., Fournier-Prunaret, D., Nishio, Y., Gracio, C., Eds.; Springer: Cham, Switzerland, 2015; pp. 127–158. [Google Scholar]
- Efremova, L.S. Dynamics of skew products of maps of an interval. Russ. Math. Surv. 2017, 72, 101–178. [Google Scholar] [CrossRef]
- Efremova, L.S. Small C1-smooth perturbations of skew products and the partial integrability property. Appl. Math. Nonlinear Sci. 2020, 5, 317–328. [Google Scholar] [CrossRef]
- Efremova, L.S. Geometrically integrable maps in the plane and their periodic orbits. Lobachevskii J. Math. 2021, 42, 2315–2324. [Google Scholar] [CrossRef]
- Efremova, L.S. Ramified continua as global attractors of C1-smooth self-maps of a cylinder close to skew products. J. Differ. Eq. Appl. 2023, 29. to appear. [Google Scholar]
- Efremova, L.S. The trace map and integrability of the multifunctions. JPCS 2018, 990, 012003. [Google Scholar] [CrossRef]
- Anosov, D.V.; Zhuzhoma, E.V. Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings. Tr. Mat. Inst. Steklova 2005, 2, 1–219. [Google Scholar]
- Efremova, L.S. Simplest skew products on n-dimensional (n ≥ 2) cells, cylinders and tori. Lobachevskii J. Math. 2022, 43, 1598–1618. [Google Scholar] [CrossRef]
- Kuratowski, K. Topology; Academic Press: New York, NY, USA; London, UK, 1966; Volume 1. [Google Scholar]
- Efremova, L.S. Differential properties and attracting sets of a simplest skew product of interval maps. Sb. Math. 2010, 201, 873–907. [Google Scholar] [CrossRef]
- Efremova, L.S. Small perturbations of smooth skew products and Sharkovsky’s theorem. J. Differ. Equ. Appl. 2020, 26, 1192–1211. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis; Graylock Press: Rochester, NY, USA, 1957; Volume 1. [Google Scholar]
- Efremova, L.S. Periodic behavior of maps obtained by small perturbations of smooth skew products. Discontinuity Nonlinearity Complex. 2020, 9, 519–523. [Google Scholar] [CrossRef]
- Kloeden, P.E. On Sharkovsky’s cycle coexistence ordering. Bull. Aust. Math. Soc. 1979, 20, 171–177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremova, L.S. Introduction to Completely Geometrically Integrable Maps in High Dimensions. Mathematics 2023, 11, 926. https://doi.org/10.3390/math11040926
Efremova LS. Introduction to Completely Geometrically Integrable Maps in High Dimensions. Mathematics. 2023; 11(4):926. https://doi.org/10.3390/math11040926
Chicago/Turabian StyleEfremova, Lyudmila S. 2023. "Introduction to Completely Geometrically Integrable Maps in High Dimensions" Mathematics 11, no. 4: 926. https://doi.org/10.3390/math11040926
APA StyleEfremova, L. S. (2023). Introduction to Completely Geometrically Integrable Maps in High Dimensions. Mathematics, 11(4), 926. https://doi.org/10.3390/math11040926