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Abstract: This paper discusses new approaches to parameter estimation of gamma distribution based
on representative points. In the first part, the existence and uniqueness of gamma mean squared
error representative points (MSE-RPs) are discussed theoretically. In the second part, by comparing
three types of representative points, we show that gamma MSE-RPs perform well in parameter
estimation and simulation. The last part proposes a new Harrel–Davis sample standardization
technique. Simulation studies reveal that the standardized samples can be used to improve estimation
performance or generate MSE-RPs. In addition, a real data analysis illustrates that the proposed
technique yields efficient estimates for gamma parameters.
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1. Introduction

The term representative points (RPs) indicates a set of supporting points with corre-
sponding probabilities, which can be used as the best approximation of a d-dimensional
probability distribution. Representative points can be regarded as a discretization of a
continuous distribution, and are expected to retain as much information as possible. In
the univariate case, X is considered to be a population random variable with cumulative
distribution function (cdf) F(x), a discrete random variable Z is defined to approximate
X with probability mass function (pmf) by a set of supporting points z = {z1, z2, · · · , zk}
(−∞ < z1 < z2 < · · · < zk < ∞) with probabilities {p1, p2, · · · , pk}, where P(Z = zi) = pi
and ∑k

i=1 pi = 1. In the literature, there are several approaches to choosing the supporting
point set z. For example, a set of random samples from F(x) can be viewed as a representa-
tive of the distribution; Fang and Wang [1] suggest generating representative points based
on the number theoretic method. In 1957, Cox [2] proposes the idea of using mean squared
error (MSE) to measure the loss of information from F(x), where

MSE(z) = MSE(z1, z2, · · · , zk) = E( min
i=1,··· ,k

(zi − X)2) =
∫ ∞

−∞
min

i=1,··· ,k
(zi − X)2dF(x). (1)

The point set zMSE = {zMSE
1 , · · · , zMSE

k } such that MSE(z) arrives its minimum is called the
mean squared error representative points (MSE-RPs) of F(x). MSE-RPs are found to have
many good properties and have been applied in study fields such as signal compression
(Gersho and Gray [3]), numerical integration computation (Pagès [4,5]), simulating stochastic
differential equation (Gobet et al. [6]; El Amri et al. [7]), statistical simulation (Fang et al. [8],
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Fang et al. [9]) and clothing standard settings (Fang and He [10]; Flury [11]). To compute MSE-
RPs for different distributions, effective numerical methods are proposed. Fang-He algorithm
(Fang and He [10]) calculates MSE-RPs by solving a system of non-linear equations; Lloyd I
algorithm (Lloyd [12]), LBG algorithm (Linde et al. [13]) and Competitive Learning Vector
Quantization algorithm (Pagès [5]) obtain MSE-RPs by iterating a long training sequence of
data; Tarpey’s self-consistency algorithm (Tarpey [14]) brings the idea of k-means algorithm
for generating MSE-RPs; Chakraborty et al. [15] provides an accelerate algorithm using
Newton’s method. When the number of MSE-RPs (k) is large, obtaining MSE-RPs becomes
computationally intensive. Fang and He [10] presents some discussion on the optimum choice
of k.

Recently, the use MSE-RPs properties for some distributions have been studied
in detail, including normal distribution (Fang et al. [8]), mixed normal distribution
(Fang et al. [9] and Li et al. [16]), arcsine distribution (Jiang et al. [17]) and exponen-
tial distribution (Xu et al. [18]). A general relationship between MSE-RPs and population
distribution can be found in the work of Fei [19] and Fang et al. [9]. The study of the
gamma distribution’s MSE-RPs (gamma MSE-RPs) can be traced back to Fu [20], which
discusses the existence of gamma MSE-RPs and establishes an algorithm for computing
these points. The gamma distribution is one of the most important distributions in statistics
and probability theory, it is worth taking a closer look at gamma MSE-RPs and discovering
their merits. The innovations of this paper are listed as follows:

1. New theoretical results prove the uniqueness of gamma MSE-RPs;
2. Gamma MSE-RPs are found to outperform other types of representative points in

parameter estimation;
3. A new standardization technique is proposed to improve the estimation performance

of random samples from the gamma distribution.

Our discussion will focus on these three perspectives. Section 2 provides some prelimi-
nary knowledge of the gamma distribution and different types of representative points
for readers to access our content easily. Section 3 gives some theoretical discussion on
the existence and uniqueness of gamma MSE-RPs. An algorithm for generating gamma
MSE-RPs is recommended. Section 4 compares the performance of three typical gamma
representative points in parameter estimation and simulation. The results demonstrate
that gamma MSE-RPs take advantage of other representative points in many scenarios.
Section 5 introduces a new Harrel–Davis standardization technique. Simulation studies
show that the standardized samples have better performances than random samples in
estimation and can be used to generate gamma MSE-RPs. Section 6 provides a real clinical
data analysis and illustrates that the standardization technique yields efficient estimates for
gamma parameters.

2. Preliminaries
2.1. The Gamma Distribution and Gamma MSE-RPs

A gamma-distributed random variable with shape parameter a and rate parameter b
is denoted X ∼ Gamma(a, b) ≡ Ga(a, b). The corresponding probability density function
(pdf) in the shape-rate parametrization is

f (x; a, b) =
ba

Γ(a)
xa−1e−bx, for x > 0, a, b > 0, (2)

where Γ(·) is the gamma function. The mean, variance, skewness and kurtosis of X are

µ =
a
b

, σ2 =
a
b2 , Sk(X) =

2√
a

and Ku(X) =
6
a

(3)
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accordingly. Let zMSE = {zMSE
1 , zMSE

2 , · · · , zMSE
k } be a set of MSE-RPs for Ga(a, b), derive

the following intervals

I1 =

(
0,

zMSE
1 + zMSE

2
2

)
, I2 =

[
zMSE

1 + zMSE
2

2
,

zMSE
2 + zMSE

3
2

)
, · · · ,

Ik−1 =

[
zMSE

k−2 + zMSE
k−1

2
,

zMSE
k−1 + zMSE

k
2

)
, Ik =

[
zMSE

k−1 + zMSE
k

2
,+∞

) (4)

with the corresponding probabilities in these intervals as

pi =
∫

Ii

f (x; a, b) dx, i = 1, · · · , k. (5)

Here f (x; a, b) is the pdf in (2).

2.2. Other Types of Representative Points

In addition to MSE-RPs, two other types of representative points are frequently dis-
cussed in the literature: Monte Carlo representative points and number theoretic represen-
tative points.

(A) Monte Carlo representative points (MC-RPs)
MC-RPs are generated by the Monte Carlo method. Consider a random sample

{x1, x2, · · · , xk} from the distribution function F(x); this can be treated as a set of MC-RPs,
written as zMC = {zMC

1 , zMC
2 , · · · , zMC

k }, where zMC
i = xi and p(zMC

i ) = 1/k, i = 1, · · · , k.

(B) Number theoretic representative points (NT-RPs)
NT-RPs are determined from the number theoretic method (Fang and Wang [1]).

Given an one dimensional interval (0, 1), it is known that point set
{

2i−1
2k

}
( i = 1, · · · , k) is

uniformly scattered on this interval. Based on the inverse transformation method, points

zNT
i = F−1

(
2i− 1

2k

)
, i = 1, · · · , k

are k NT-RPs of F(x). The supporting point set is zNT = {zNT
1 , zNT

2 · · · zNT
k }with probability

p(zNT
i ) = 1/k, i = 1, · · · , k.

2.3. Harrel-Davis Quantile Estimator

In Harrel and Davis [21], a distribution-free quantile estimator is proposed, which
consists of a linear combination of the order statistics admitting a jackknife variance.
Let X1, X2, · · · , Xn denote a random sample of size n from Ga(a, b); the pth quantile
estimator is

Qp =
1

β{(n + 1)p, (n + 1)(1− p)}

∫ 1

0
F−1

n (y)y(n+1)p−1(1− y)(n+1)(1−p)−1dy, (6)

where Fn(x) is the empirical distribution function. That is, Fn(x) = n−1 ∑ I(Xi ≤ x),
and I(·) is the indicator function of the set A. This method can be used for sample
standardization. More details are discussed in Section 5.

3. The Existence and Uniqueness of Gamma MSE-RPs

Let a random variable X ∼ Ga(a, b) with E(X) = µ and z = {z1, z2, · · · zk} (0 < z1 <
z2 < · · · < zk < ∞) is the supporting points set of X, to minimize MSE(z), by taking
partial derivative of (1), we have
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∫ 1
2 (z1+z2)

0 (z1 − x) f (x)dx = 0∫ 1
2 (z2+z3)

1
2 (z1+z2)

(z2 − x) f (x)dx = 0

· · · · · · · · · · · ·∫ ∞
1
2 (zk−1+zk)

(zk − x) f (x)dx = 0.

(7)

where f (x) is the pdf of the gamma distribution (2). When k = 1, system of Equation (7)
has only one equation ∫ ∞

0
(z1 − x) f (x)dx = 0.

Obviously, it has one solution z1 = a
b = µ, which is the only representative point. When

k ≥ 2, the existence of MSE-RPs is true if the system of Equation (7) has a solution. After
several transformations, (7) becomes

(z1 − µ)[F( z1+z2
2 )− F(0)] = − 1

2b (z1 + z2) f ( z1+z2
2 )

(z2 − µ)[F( z2+z3
2 )− F( z1+z2

2 )] = 1
2b (z1 + z2) f ( z1+z2

2 )− 1
2b (z2 + z3) f ( z2+z3

2 )
· · · · · · · · · · · ·
(zk − µ)[1− F( zk−1+zk

2 )] = 1
2b (zk−1 + zk) f ( zk−1+zk

2 ),

(8)

where F(x) is the cdf. Theorem 1 shows that the system of Equation (8) has a solution:

Theorem 1.

1. For given z1 > 0, equation

(z1 − µ)F
(

z1 + z2

2

)
= − 1

2b
(z1 + z2) f

(
z1 + z2

2

)
(9)

a solution z2 exists if and only if z1 < µ.
2. For given zi > zi−1 > 0, i = 2, · · · , k− 1, Equation

(zi − µ)

[
F
(

zi + zi+1

2

)
− F

(
zi−1 + zi

2

)]
=

1
2b

(zi−1 + zi) f
(

zi−1 + zi
2

)
− 1

2b
(zi + zi+1) f

(
zi + zi+1

2

)
, (10)

exists a solution zi+1 when zi−1 < zi,i−1, where zi,i−1 is the i− 1th representative point in
the set of gamma MSE-RPs, which has k = i.

3. For a given zk−1 > 0, Equation

(zk − µ)

[
1− F

(
zk−1 + zk

2

)]
=

1
2b

(zk−1 + zk) f
(

zk−1 + zk
2

)
(11)

a solution zk exists.

Theorem 1 guarantees the existence of gamma MSE-RPs. Its proof is provided in Appendix A.
For the special case k = 2, the existence can be provided by statements 1 and 3 in Theorem 1.
Next, we show the uniqueness of gamma MSE-RPs in Theorem 2.

Theorem 2. Suppose X ∼ Ga(a, b). For any k ∈ N+, the set of gamma MSE-RPs is unique if
a ≥ 1.

The proof of Theorem 2 is provided in Appendix A. As a result, these two theorems
guarantee the existence and uniqueness of gamma MSE-RPs. Furthermore, throughout this
paper, gamma MSE-RPs are generated based on the self-consistency algorithm [22]. The
details of this algorithm are provided in Appendix B.
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4. Gamma MSE-RPs in Parameter Estimation and Simulation

This section compares the performances of gamma MSE-RPs with other types of
representative points, i.e., NT-RPs and MC-RPs, in terms of parameter estimation and
simulation. Recall that random variable X ∼ Ga(a, b) and Z is a discrete approximation of
X. The mean, variance, skewness and kurtosis of Z are

E(Z) =
k

∑
i=1

zi pi ≡ µz, Var(Z) =
k

∑
i=1

(zi − µz)
2 pi ≡ σ2

z ,

Sk(Z) =
1
σ3

z

k

∑
i=1

(zi − µz)
3 pi, Ku(Z) =

1
σ4

z

k

∑
i=1

(zi − σz)
4 pi − 3.

By the method of moments, we have

âm2 =
µ2

z
σ2

z
and b̂m2 =

µz

σ2
z

, (12)

which are the point estimators of a and b in Ga(a, b). As Z is a discrete approximation of
X, it is expected that the moments of Z and estimates in (12) are close to the moments of
X, a and b accordingly. The following theorem shows some connections between gamma
MSE-RPs and the corresponding Ga(a, b).

Theorem 3. Let X ∼ Ga(a, b) with Var(X) = σ2 < ∞, z = {z1, z2, · · · , zk} is a set of gamma
MSE-RPs of Ga(a, b) with corresponding probabilities in (4); then,

E(Z) = E(X) and lim
k→∞

Var(Z) = Var(X).

The proof of Theorem 3 is provided in Appendix A. Note that Theorem 3 is established
not only for the gamma distribution but also for all continuous population distribution.
Next, moments and estimates in (12) are calculated from MSE-RPs, NT-RPs, and MC-RPs
of different Ga(a, b). Three typical shapes of gamma distributions (Ga(1, 0.5)—monotone
decreasing; Ga(2, 0.5)—right skewed and Ga(7.5, 1)—bell-shaped; their pdfs are plotted in
Figure 1). These are chosen and the representative points are set to three sizes (k = 5, 20, 100).
The first part of Tables 1–3 summarizes the results in different scenarios. The last line of
each table presents the moments and parameters of Ga(a, b). It is clear that if k is fixed, the
moments and estimates of MSE-RPs are closer to the true values than other representative
points. Moreover, we can observe that the means of MSE-RPs are almost equal to the means
of Ga(a, b) in all scenarios; when k becomes large, the moments and estimates of MSE-RPs
converge to the true values much faster than other representative points. These results are
consistent with the description in Theorem 3.

Table 1. Summary of results from RPs of Ga(1, 0.5) in parameter estimation.

k µ σ2 Skewness Kurtosis âm2 b̂m2 PDâm2
PDb̂m2

PDâmle PDb̂mle

5 2.001 3.708 1.850 3.971 1.080 0.540 0.086 0.088 0.380 0.381
MSE-RPs 20 2.001 3.978 1.989 5.767 1.007 0.503 0.050 0.056 0.088 0.089

100 2.001 3.998 2.003 5.996 1.002 0.501 0.050 0.056 0.036 0.043

5 1.866 2.419 0.775 −0.752 1.440 0.772 0.441 0.545 0.244 0.334
NT-RPs 20 1.967 3.419 1.394 1.470 1.132 0.576 0.134 0.153 0.060 0.078

100 1.995 3.839 1.759 3.662 1.036 0.520 0.054 0.059 0.034 0.043

5 2.069 3.516 0.576 −0.839 2.720 1.586 1.818 2.312 1.569 1.939
MC-RPs 1 20 1.945 3.629 1.329 1.571 1.269 0.684 0.348 0.401 0.244 0.327

100 1.991 3.987 1.751 3.797 1.051 0.536 0.168 0.181 0.108 0.127

Ga(1, 0.5) 2 4 2 6 1 0.5 - - - -
1 MC-RPs are randomly generated 100 times for each Ga(a, b). All values are the average values of the repeats.
This practice is also carried out in Tables 3–6, A1, and A2.
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Figure 1. Probability density function for Ga(1, 0.5), Ga(2, 0.5) and Ga(7.5, 1).

Table 2. Summary of results from RPs of Ga(2, 0.5) in parameter estimation.

k µ σ2 Skewness Kurtosis âm2 b̂m2 PDâm2
PDb̂m2

PDâmle PDb̂mle

5 3.999 7.396 1.304 1.685 2.163 0.541 0.085 0.086 0.222 0.223
MSE-RPs 20 3.999 7.954 1.403 2.842 2.011 0.503 0.044 0.048 0.042 0.046

100 3.999 7.997 1.412 2.976 2.001 0.500 0.044 0.047 0.033 0.037

5 3.855 5.449 0.552 −0.934 2.727 0.707 0.365 0.416 0.269 0.317
NT-RPs 20 3.963 7.149 1.010 0.532 2.196 0.554 0.101 0.112 0.061 0.071

100 3.993 7.780 1.266 1.825 2.049 0.513 0.044 0.048 0.034 0.038

5 4.089 6.912 0.416 −0.904 5.261 1.382 1.769 1.925 1.672 1.800
MC-RPs 20 3.917 7.269 0.969 0.755 2.425 0.633 0.310 0.339 0.260 0.304

100 3.981 7.982 1.266 1.930 2.074 0.525 0.146 0.153 0.112 0.120

Ga(2, 0.5) 4 8 1.414 3 2 0.5 - - - -

Table 3. Summary of results from RPs of Ga(7.5, 1) in parameter estimation.

k µ σ2 Skewness Kurtosis âm2 b̂m2 PDâm2
PDb̂m2

PDâmle PDb̂mle

5 7.499 6.911 0.672 0.024 8.139 1.085 0.088 0.088 0.121 0.121
MSE-RPs 20 7.499 7.455 0.724 0.711 7.545 1.006 0.038 0.039 0.036 0.037

100 7.499 7.498 0.730 0.795 7.502 1.000 0.038 0.040 0.035 0.036

5 7.424 5.575 0.284 −1.067 9.885 1.332 0.319 0.333 0.296 0.309
NT-RPs 20 7.480 6.946 0.530 −0.213 8.056 1.077 0.076 0.079 0.067 0.070

100 7.496 7.374 0.662 0.381 7.620 1.017 0.038 0.039 0.036 0.037

5 7.575 6.394 0.225 −0.950 19.282 2.561 1.480 1.431 1.480 1.422
MC-RPs 20 7.416 6.901 0.494 0.076 8.754 1.187 0.286 0.296 0.277 0.290

100 7.478 7.490 0.670 0.443 7.714 1.034 0.127 0.127 0.116 0.116

Ga(7.5, 1) 7.5 7.5 0.730 0.8 7.5 1 - - - -

Next, the comparison focuses on the estimating performance of samples from repre-
sentative points. We take samples from different shapes of gamma distributions (Ga(1, 0.5),
Ga(2, 0.5) and Ga(7.5, 1)), as well as their representative points with different sizes
(k = 5, 20, 100). Setting sample size N = 1000 and repeat sampling M = 10,000 times
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for each scenario, the method of moment estimates (âm2 and b̂m2 ) and maximum likelihood
estimates (âmle and b̂mle) are calculated. Define

PDâ =
M

∑
i=1

|âi − a|
a

/M and PDb̂ =
M

∑
i=1

|b̂i − b|
b

/M

as the average proportional deviation between estimations and parameters. The second
part of Tables 1–3 show that MSE-RPs samples have the smallest average proportional
deviation in most of the selected scenarios. Tables A1 and A2 in Appendix C give medians
and 95% empirical confidence intervals of âm2 , b̂m2 , âmle and b̂mle. In this simulation study,
we observe that the point estimates of a and b from MSE-RPs samples generally have good
estimation accuracy with both the moment and maximum likelihood methods. Meanwhile,
when k is large, the estimation performances of MSE-RPs samples are similar to those
samples from the corresponding Ga(a, b). It is also worth mentioning that when k = 5, the
proportional deviation PDâm2

and PDb̂m2
are much smaller than PDâmle and PDb̂mle

. That is,
when the size of gamma MSE-RPs is small, it is better to estimate parameters using the
method of moments.

5. Generating MSE-RPs from Harrel–Davis Standardized Samples

This section discusses how to generate MSE-RPs from a gamma-distributed sample. A
commonly used approach has two steps as follows:

1. Calculate the maximum likelihood estimates (MLEs) for a and b, namely â and b̂,
based on the sample dataset;

2. Generate MSE-RPs from the gamma distribution with the estimated parameters, i.e.,
Ga(â, b̂).

As we know, the representativeness of MSE-RPs depends on the estimate of gamma
parameters. More accurate estimates will produce better representativeness. However, if
a random sample does not represent the population well, the estimates may show large
deviations from the true parameters. Hence, the MSE-RPs that are generated are not
good representatives of the population distribution. This usually occurs when the sample
size is small or medium. Next, we introduce a new Harrel–Davis (HD) standardization
technique that can reduce the effect of randomness from samples. This technique transfers
a random sample to a set of HD quantile estimators and then treats these estimators as a
new “sample”. Recall that a set of quantiles with equal probability is a set of NT-RPs for
population; a similar idea is utilized for sample standardization.

Definition 1 (HD standardized sample). Let x = {x1, x2, · · · , xn} be a set of sample data from
a gamma distribution; set x′ = {Qp1 , Qp2 , · · · , Qpn}, which is called the HD standardized sample
of x, where Qpi is the pith HD quantile estimator defined in (6), pi =

2i−1
2n and P(Qpi ) = 1/n

(i = 1, 2, · · · , n).

Note here that x′ is not a random sample because Qp1 , Qp2 , · · · , Qpn are not indepen-
dent. However, since quantile estimators are equiprobable (P(Qpi ) = 1/n), set x′ is treated
as an arbitrarily selected sample, which can be used to calculate MLEs for a and b. A new
approach to generate MSE-RPs is proposed as follows:

1. Obtain the HD standardized sample;
2. Calculate the MLEs for a and b, namely â and b̂, based on the HD standardized sample;
3. Generate MSE-RPs from Ga(â, b̂).

Next, a simulation study is provided to show the good performance of HD stan-
dard samples in parameter estimation. Consider three gamma distributions (Ga(1, 0.5),
Ga(2, 0.5) and Ga(7.5, 1)) and three different sample sizes (n = 50, 200, 500), in each sce-
nario, a number of N = 10, 000 random samples are generated and their HD standardized
samples are obtained. The MLEs are calculated for each sample/standardized sample and
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summarized in Table 4. This shows that the means of estimates from HD standardized
samples are closer to the true value in most scenarios. Moreover, the estimates from HD
standardized samples appear to have smaller standard deviations than those from random
samples. We conclude that HD standardized samples outperform random samples in terms
of estimation accuracy and stability based on these results. Therefore, it is recommended to
use the new three-step approach to generate MSE-RPs. Here, a comparison study between
the MSE-RPs generated by random samples and HD-samples is provided. The estimates (â
and b̂) in Table 4 are used to generate gamma MSE-RPs. Table 5 summarizes the results
when n = 200 with the size of MSE-RPs k = 20. It shows that the moments of gamma
MSE-RPs from HD-samples are close to the moments of the origin Ga(a, b). Meanwhile, the
method of moment estimates in (12) are obtained. The estimates from HD samples have a
better accuracy than those from random samples. This conclusion is generally valid when
n = 50 and 500.

Table 4. Mean (Standard deviation) of MLEs from samples and HD standardized samples.

Ga(1, 0.5) Ga(2, 0.5) Ga(7.5, 1)

n Sample HD-Sample Sample HD-Sample Sample HD-Sample

50 â 1.060(0.195) 1.075(0.192) 2.115(0.415) 2.104(0.405) 7.964(1.645) 7.794(1.604)
b̂ 0.540(0.127) 0.535(0.126) 0.534(0.118) 0.524(0.116) 1.064(0.227) 1.038(0.221)

200 â 1.021(0.090) 1.020(0.090) 2.029(0.192) 2.012(0.189) 7.616(0.759) 7.502(0.746)
b̂ 0.512(0.058) 0.507(0.058) 0.508(0.054) 0.502(0.054) 1.016(0.104) 0.999(0.103)

500 â 1.012(0.056) 1.010(0.056) 2.010(0.120) 2.000(0.119) 7.543(0.472) 7.477(0.468)
b̂ 0.507(0.036) 0.504(0.036) 0.503(0.034) 0.499(0.033) 1.006(0.065) 0.997(0.064)

It is noteworthy that the HD standardization technique can also be applied in resam-
pling. Consider another simulation study with the same settings as Table 4. We resample
from each sample/standardized sample using nr = n and calculate the MLEs. The means
and standard deviations of the resampled MLEs are summarized in Table 6. This shows
that estimates from standardized samples generally have a better accuracy and smaller
standard deviations when resampling.

Table 5. Summary of results for MSE-RPs from the esitmated gamma distributions.

n = 200 k = 20 µ σ2 Skewness Kurtosis âm2 b̂m2

sample 1.995 3.873 1.966 5.641 1.028 0.515
Ga(1, 0.5) HD-sample 2.013 3.946 1.967 5.647 1.027 0.510

origin 2 4 2 6 1 0.5

sample 3.994 7.818 1.393 2.801 2.041 0.511
Ga(2, 0.5) HD-sample 4.008 7.938 1.399 2.825 2.023 0.505

origin 4 8 1.414 3 2 0.5

sample 7.496 7.334 0.719 0.699 7.662 1.022
Ga(7.5, 1) HD-sample 7.509 7.472 0.724 0.711 7.547 1.005

origin 7.5 7.5 0.730 0.8 7.5 1

Table 6. Mean (Standard deviation) of resampled MLEs from samples and HD standardized samples.

Ga(1, 0.5) Ga(2, 0.5) Ga(7.5, 1)

n(nr) Sample HD-Sample Sample HD-Sample Sample HD-Sample

50 â 1.114(0.295) 1.127(0.283) 2.234(0.630) 2.216(0.594) 8.446(2.504) 8.245(2.340)
b̂ 0.577(0.196) 0.572(0.185) 0.569(0.181) 0.558(0.170) 1.131(0.347) 1.101(0.323)

200 â 1.034(0.131) 1.030(0.127) 2.059(0.279) 2.034(0.269) 7.741(1.102) 7.594(1.061)
b̂ 0.522(0.085) 0.515(0.082) 0.518(0.079) 0.509(0.076) 1.034(0.151) 1.013(0.146)

500 â 1.017(0.079) 1.016(0.079) 2.021(0.167) 2.012(0.168) 7.584(0.660) 7.527(0.662)
b̂ 0.510(0.051) 0.508(0.051) 0.506(0.047) 0.503(0.047) 1.012(0.091) 1.004(0.091)
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6. Real Data Illustration

In this section, we consider a real-world dataset and illustrate the HD standardized
technique proposed in the previous section. In this clinical study, 97 Swiss females (n = 97)
aged 70–74 inclusive at the time of diagnosis of dementia (a form of mental disorder)
were studied for survival times (in years) by Elandt–Johnson and Johnson [23]. These
data were analyzed by Ozonur and Paul [24] using the likelihood ratio test and score test
with p-values 0.233 and 0.140, which are greater than 0.05. Both tests suggest that the
two-parameter gamma distribution adequately fits the dementia data.

Point estimates (MLE) and the bootstrap interval estimates [25] based on the origin
sample data and the corresponding HD sample are calculated. The approximate (1− α)
bootstrap percentile interval is defined as

[
θ̂lower, θ̂upper

]
=

[
θ̂
∗( α

2 )
M , θ̂

∗(1− α
2 )

M

]
.

In practice, we resample the original data M = 1000 times to obtain 1000 replications
of the parameter estimate θ̂

∗ (i.e., â and b̂ for the gamma distribution) with α = 0.05. These
estimates are sorted and the 25th value is used as the lower bound; the 975th value is
the upper bound. The MLEs based on the HD standardized sample are âHD = 1.4602
and b̂HD = 0.2886 with confidence intervals (1.3846, 1.8073) and (0.2637, 0.3839). The
lengths of confidence intervals are shorter than those based on the origin sample data,
where âorigin = 1.4602 and b̂origin = 0.2886 with confidence intervals (1.3777, 1.8632) and
(0.2659, 0.3914).

7. Concluding Remarks

In the first part of this paper, the existence and uniqueness of gamma MSE-RPs are
proved using two different approaches. An effective algorithm is recommended for the
generation of gamma MSE-RPs. The second part of this paper compares gamma MSE-RPs
with other representative points in terms of parameter estimation and simulation. This
shows that the moments and estimates based on gamma MSE-RPs are the closest to the
true values in different scenarios. In addition, samples from gamma MSE-RPs show a
good general estimation accuracy. The last part of this paper introduces the new HD
standardization technique. When a gamma-distributed sample is at hand, we recommend
first transferring it to the HD standardized sample and then using it to estimate gamma
parameters or generate MSE-RPs.

In future work, we would like to study whether the MSE-RPs of other distributions
can also perform well in parameter estimation. It would also be interesting to explain
how HD standardization technique reduces the randomness from samples through a
theoretical demonstration.
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Appendix A. Proofs of Theorems

Proof of Theorem 1. The proof of three points in this theorem are provided as follows.
Without loss of generality, consider a gamma distribution with b = 1 (i.e., µ = a) in
all proofs.

Proof of point 1. Let

G(z1, z2) = (z1 − a)F(
z1 + z2

2
) +

1
2
(z1 + z2) f (

z1 + z2

2
),

there is
G(z1, z1) = (z1 − a)F(z1) + z1 f (z1).

Because limz1→0 G(z1, z1) = 0 and

dG(z1, z1)

dz1
≡ G′z1

(z1, z1) = F(z1) + (z1 − a) f (z1) + f (z1) + (a− 1) f (z1)− z1 f (z1)

= F(z1) > 0,

Hence G(z1, z1) > 0. In addition,

G(z1, ∞) = lim
z2→∞

G(z1, z2) = z1 − a,

we have

G(z1, ∞) < 0⇔ z1 < a. (A1)

Combine (A1) with the condition G(z1, z2) is continuous for z2 ∈ [z1, ∞) and G(z1, z1) > 0;
point 1 of Theorem 1 is proved.

Proof of point 3.
Let

G(zk−1, zk) = (zk − a)[1− F(
zk−1 + zk

2
)]− 1

2
(zk−1 + zk) f (

zk−1 + zk
2

), (A2)

therefore
G(zk−1, zk−1) = (zk−1 − a)(1− F(zk−1))− zk−1 f (zk−1).

Since G(0, 0) = −a < 0, limzk−1→∞ G(zk−1, zk−1) = 0 and

G′zk−1
(zk−1, zk−1) = 1− F(zk−1)− (zk−1 − a) f (zk−1)− f (zk−1)

−(a− 1) f (zk−1) + zk−1 f (zk−1)

= 1− F(zk−1) > 0,

we have

G(zk−1, zk−1) < 0 (zk−1 > 0). (A3)

Next, we show that for zk ∈ [zk−1, ∞), G(zk−1, zk) is firstly monotone-increasing and then
monotone-decreasing. Derive G(zk−1, zk) by zk to obtain

G′zk
(zk−1, zk) = (1− F(

zk−1 + zk
2

))− 1
2
(zk − a) f (

zk−1 + zk
2

)

−1
2

f (
zk−1 + zk

2
)− 1

2
(a− 1) f (

zk−1 + zk
2

) +
1
4
(zk−1 + zk) f (

zk−1 + zk
2

)

= 1− F(
zk−1 + zk

2
)− 1

4
(zk − zk−1) f (

zk−1 + zk
2

).
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Let

H(zk−1, zk) = G′zk
(zk−1, zk), z =

1
2
(zk−1 + zk),

we have

H′zk
(zk−1, zk) = −1

2
f (

zk−1 + zk
2

)− 1
4

f (
zk−1 + zk

2
)

−1
4
(zk − zk−1)[

2
zk−1 + zk

· a− 1
2
− 1

2
] f (

zk−1 + zk
2

)

= [−3
4
+

1
8
(zk − zk−1)−

(a− 1)(zk − zk−1)

4(zk−1 + zk)
] f (

zk−1 + zk
2

)

= [z2 − (a + 2 + zk−1)z + (a− 1)zk−1] f (z)/z. (A4)

Note that in Equation (A4), z2 > 0, as long as

H(zk−1, zk−1) = 1− F(zk−1) > 0, and lim
zk→∞

H(zk−1, zk) = 0,

C0 > zk−1 must exist that satisfies

when zk < C0, H′zk
(zk−1, zk) < 0;

when zk > C0, H′zk
(zk−1, zk) > 0.

Therefore, C∗ (zk−1 < C∗ < C0) satisfies

when zk < C∗, G′zk
(zk−1, zk) = H(zk−1, zk) < 0;

when zk > C∗, G′zk
(zk−1, zk) = H(zk−1, zk) > 0,

which means that G(zk−1, zk) is firstly monotone-increasing and then monotone-decreasing.
In addition, we have

lim
zk→∞

G(zk−1, zk) = 0 (A5)

and G(zk−1, zk−1) < 0. Thus, the function G(zk−1, zk) must cross the x-axis and the solution
zk exists. One more step:

dzk
dzk−1

= −G′zk−1
(zk−1, zk)/G′zk

(zk−1, zk)

and G′zk
(zk−1, zk) > 0 in the neighborhood domain; furthermore,

G′zk−1
(zk−1, zi) = −

1
4
(zk − zk−1) f (

zk−1 + zk
2

) < 0,

We find that zk is a monotone-increasing function of zk−1.
Proof of point 2. Proving point 2 is complicated. Here, we provide the prove of a

special case when X ∼ Ga(1, 1). Let

G(zi−1, zi, zi+1) = (zi − a)[F(
zi + zi+1

2
)− F(

zi−1 + zi
2

)]

+
1
2
(zi + zi+1) f (

zi + zi+1

2
)− 1

2
(zi−1 + zi) f (

zi−1 + zi
2

),
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thus:

G(zi−1, zi, zi) = (zi − a)[F(zi)− F(
zi−1 + zi

2
)]

+zi f (zi)−
zi−1 + zi

2
f (

zi−1 + zi
2

).

Deriving G(zi−1, zi, zi) by zi, we have

G′zi
(zi−1, zi, zi) = F(zi)− F(

zi−1 + zi
2

)− zi − zi−1

4
f (

zi−1 + zi
2

). (A6)

Let

H(zi−1, zi) = G′zi
(zi−1, zi, zi),

we have

H′zi
(zi−1, zi) = f (zi) + [−3

4
+

1
8
(zi − zi−1)− (a− 1)

zi − zi−1

4(zi−1 + zi)
] f (

zi−1 + zi
2

). (A7)

For X ∼ Ga(1, 1), (A7) can be simplified to

H′zi
(zi−1, zi) = f (zi) + [−3

4
+

1
8
(zi − zi−1)] f (

zi−1 + zi
2

), (A8)

set x =
zi−zi−1

2 , we have

f (zi) + [− 3
4 + 1

8 (zi − zi−1)] f ( zi−1+zi
2 ) = 0

⇒ e−zi

e−
zi−1+zi

2

= 3
4 −

1
8 (zi − zi−1)

⇒ e−
zi−1−zi

2 = 3
4 −

1
4

zi−1−zi
2

⇒ e−x = 3
4 −

1
4 x.

Therefore, H′zi
(zi−1, zi) crosses the x-axis twice for zi > zi−1.

As H′zi
(zi−1, zi−1) = 1

4 f (zi−1) > 0 and limzi→∞
∂H(zi−1,zi)

∂zi
= 0, combined with the

facts H(zi−1, zi−1) = 0 and limzi→∞(H(zi−1, zi)) = 0, we know that, for zi ∈ [zi−1, ∞),
G(zi−1, zi, zi) is first monotone-increasing and then monotone-decreasing. In addition,
G(zi−1, zi−1, zi−1) = 0 and limzi→∞ G(zi−1, zi, zi) = 0; we conclude G(zi−1, zi, zi) > 0 when
zi−1 > 0. Next, consider

G′zi+1
(zi−1, zi, zi+1) =

zi − a
2

f (
zi + zi+1

2
) +

1
2

f (
zi + zi+1

2
)

+
a− 1

2
f (

zi + zi+1

2
)− 1

4
(zi + zi+1) f (

zi + zi+1

2
)

=
zi − zi+1

4
f (

zi + zi+1

2
) < 0,

therefore, the solution zi+1 exists if

G(zi−1, zi, ∞) < 0.

We find that

G(zi−1, zi, ∞) = (zi − a)[1− F(
zi−1 + zi

2
)]− zi−1 + zi

2
f (

zi−1 + zi
2

)

is exactly (A2). From the analysis in the proof of point 3, we conclude that the solution zi+1
exists when zi−1 < zi,i−1.
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Proof of Theorem 2. Let a random variable X ∼ Ga(a, b) with the pdf

g(x; a, b) =
ba

Γ(a)
xa−1e−bx, for x > 0, and a, b > 0. (A9)

If X has a log-concave density function, there exists a unique set of MSE-RPs (Trushkin [26]).
Function g(x; a, b) is log-concave if

(− ln g(x; a, b))′′ ≥ 0. (A10)

Based on (A9), we have

ln g(x; a, b) = (a− 1) ln x + a ln b− bx− ln Γ(a),

(− ln g(x; a, b))′ = (1− a)x−1 + b,

(− ln g(x; a, b))′′ = (a− 1)x−2.

The inequality (A10) holds when a ≥ 1.

Proof of Theorem 3. By taking partial diffrenciation of (7), we have
z1
∫ 1

2 (z1+z2)
0 f (x)dx =

∫ 1
2 (z1+z2)

0 x f (x)dx

z2
∫ 1

2 (z2+z3)
1
2 (z1+z2)

f (x)dx =
∫ 1

2 (z2+z3)
1
2 (z1+z2)

x f (x)dx

· · · · · · · · · · · ·
zk
∫ ∞

1
2 (zk−1+zk)

f (x)dx =
∫ ∞

1
2 (zk−1+zk)

x f (x)dx.

(A11)

Summing up the LHS and RHS of (A11), E(X) = E(Z) is obtained. The first part of this
theorem is proved. Next, from Theorem 3 in Fei [19], we have

lim
k→∞

MSE(z1, z2, · · · , zk) = 0. (A12)

Theorem 5 of Fei [19] shows that

Var(Z) = (1−MSE(z1, z2, · · · , zk))Var(X). (A13)

Combining (A12) and (A13), the second part of this theorem is proved.

Appendix B. Self-Consistency Algorithm for Generating Gamma MSE-RPs

The self-consistency algorithm [22] has the following steps:
1. Let the z0 = {zNT

1 , zNT
2 · · · zNT

k } be the initial set.
2. Compute the conditional expectation z1 = E [X | z0] using the system of equation,

zi =

∫
Ii

xdF(x)∫
Ii

dF(x)
, i = 1, 2, · · · , k

and compare the distance between z0 and z1 for each zi. If the minimum distance is not
smaller than the pre-defined error, e.g., ε = 10−10, proceed to check the next step.

3. Repeat steps 1 and 2, obtaining corresponding z2, z3, z4, · · · , until convergence
is reached.
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Appendix C. Median Estimates and Confidence Intervals of a and b

Table A1. Median estimates and confidence intervals of a and b (method of moments).

Ga(1, 0.5) Ga(2, 0.5) Ga(7.5, 1)

k RP âm2 b̂m2 âm2 b̂m2 âm2 b̂m2

MSE 1.081(0.979, 1.198) 0.540(0.484, 0.608) 2.166(1.985, 2.371) 0.541(0.493, 0.598) 8.143(7.548, 8.820) 1.086(1.003, 1.180)

5 NT 1.440(1.336, 1.555) 0.772(0.735, 0.813) 2.728(2.552, 2.922) 0.707(0.670, 0.748) 9.890(9.316, 10.516) 1.332(1.261, 1.413)

MC 2.719(2.533, 2.930) 1.585(1.501, 1.681) 5.260(4.934, 5.632) 1.382(1.307, 1.467) 17.210(16.200, 18.380) 2.240(2.114, 2.387)

MSE 1.011(0.894, 1.139) 0.505(0.440, 0.577) 2.015(1.815, 2.238) 0.504(0.450, 0.565) 7.550(6.896, 8.281) 1.007(0.916, 1.108)

20 NT 1.133(1.045, 1.229) 0.576(0.532, 0.626) 2.197(2.034, 2.377) 0.554(0.513, 0.601) 8.050(7.477, 8.719) 1.076(1.000, 1.167)

MC 1.180(1.090, 1.282) 0.603(0.563, 0.650) 2.253(2.086, 2.440) 0.568(0.529, 0.614) 8.185(7.586, 8.868) 1.093(1.014, 1.184)

MSE 1.007(0.888, 1.135) 0.503(0.436, 0.576) 2.004(1.799, 2.223) 0.501(0.446, 0.561) 7.516(6.844, 8.242) 1.002(0.911, 1.101)

100 NT 1.039(0.941, 1.151) 0.521(0.467, 0.584) 2.050(1.870, 2.251) 0.513(0.466, 0.569) 7.626(7.013, 8.322) 1.017(0.934, 1.111)

MC 1.038(0.942, 1.149) 0.518(0.468, 0.579) 2.043(1.866, 2.246) 0.510(0.464, 0.564) 7.591(6.966, 8.300) 1.011(0.926, 1.108)

Ga(a, b) 1.004(0.885, 1.131) 0.501(0.436, 0.574) 2.004(1.797, 2.230) 0.501(0.446, 0.563) 7.509(6.838, 8.257) 1.001(0.909, 1.104)

Table A2. Median estimates and confidence intervals of a and b (MLEs).

Ga(1, 0.5) Ga(2, 0.5) Ga(7.5, 1)

k RP âmle b̂mle âmle b̂mle âmle b̂mle

MSE 1.379(1.305, 1.459) 0.689(0.627, 0.759) 2.442(2.298, 2.599) 0.610(0.563, 0.662) 8.394(7.844, 9.022) 1.120(1.039, 1.209)

5 NT 1.243(1.175, 1.320) 0.667(0.625, 0.713) 2.535(2.395, 2.689) 0.658(0.619, 0.701) 9.709(9.179, 10.297) 1.308(1.236, 1.389)

MC 2.383(2.258, 2.528) 1.354(1.277, 1.443) 4.947(4.683, 5.253) 1.289(1.217, 1.372) 16.959(16.009, 18.067) 2.203(2.078, 2.349)

MSE 1.087(1.018, 1.161) 0.543(0.494, 0.596) 2.066(1.929, 2.241) 0.516(0.474, 0.566) 7.589(6.982, 8.261) 1.012(0.929, 1.106)

20 NT 1.057(0.988, 1.134) 0.538(0.493, 0.586) 2.116(1.973, 2.278) 0.534(0.494, 0.580) 7.977(7.425, 8.618) 1.067(0.990, 1.155)

MC 1.083(1.011, 1.164) 0.554(0.508, 0.607) 2.168(2.017, 2.339) 0.548(0.505, 0.597) 8.166(7.571, 8.846) 1.091(1.008, 1.186)

MSE 1.022(0.950, 1.101) 0.510(0.463, 0.564) 2.009(1.857, 2.177) 0.501(0.460, 0.550) 7.521(6.901, 8.192) 1.002(0.919, 1.096)

100 NT 1.017(0.945, 1.098) 0.510(0.465, 0.561) 2.025(1.876, 2.190) 0.507(0.466, 0.555) 7.605(7.025, 8.267) 1.015(0.934, 1.105)

MC 1.020(0.948, 1.101) 0.509(0.463, 0.562) 2.028(1.876, 2.199) 0.506(0.463, 0.555) 7.604(7.006, 8.280) 1.013(0.930, 1.106)

Ga(a, b) 1.002(0.928, 1.083) 0.501(0.453, 0.553) 2.003(1.849, 2.176) 0.501(0.456, 0.549) 7.512(6.908, 8.208) 1.001(0.918, 1.097)
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