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Abstract: Based on the kinematics-based upper bound theorem and reliability theory, the stability
of deep tunnel roofs in nonlinear Hoek-Brown media is investigated. The performance functions
of rectangular and circular tunnels are proposed according to the roof collapse mode, respectively,
with support pressure and pore water pressure being considered. With the proposed performance
function of the rectangular tunnels, the first-order reliability method is utilized to perform reliability
analysis. The rock strength parameters are regarded as random variables following the normal or
lognormal distribution. To assess the validity of the obtained results, reliability indexes for different
support pressure values are calculated and compared with solutions using the response surface
method and Monte-Carlo simulation. The agreement shows that the first-order reliability method
effectively evaluates the reliability index with the proposed performance function. Sensitivity analysis
is performed to throw light on the significance of different random variables, and the impact of the
variation coefficient on reliability indexes is discussed. For circular tunnels, MCS is utilized to evaluate
the roof stability with the proposed performance function. The influences of the support pressure
on the reliability index and the corresponding design points are investigated. The parametric study
shows that the normal distribution of random variables has more influence on the failure probability
than that of the lognormal distribution. However, the difference between the two distributions is
small. σt is the major factor that influences the reliability index compared to the B and ru. The
supporting pressure for circular tunnels is smaller than that of rectangular tunnels when a target
reliability index of 2.5 (failure probability equals 0.62%) is given.

Keywords: collapse mode; upper bound theorem; support pressure; failure probability

MSC: 62N05

1. Introduction

In traditional stability analyses of deep tunnels, the average values of parameters
are often utilized to characterize the material properties. Hou et al. [1] assessed the three-
dimensional (3D) stability of a non-circular tunnel. A reinforcement effect of bolts on the
tunnel face is considered. Then, Zhong et al. [2] extended the 3D face stability problem to
the rock tunnel and proposed a new multi-cone mechanism to portray the failure of tunnel
faces. Chen et al. [3] constructed a series of 3D heterogeneous failure models with different
joint dip angles to analyze the fracture characteristic of zonal disintegration and figure
out the failure mechanism of circle tunnels constructed in heavily jointed rock. The result
gives us a significant understanding of the zonal disintegration in deep rock engineering.
To modify the isotropic stress field assumption of the classic convergence–confinement
method in tunnel engineering, Lee et al. [4] studied the effect of the overburden depth and
stress anisotropy on tunnel safety.

Adopting the numerical simulation method (PFC2D), Qiu and Feng [5] investigated
the influence of different tunnel distributions on the dynamic response characteristics of a
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remote tunnel. The dynamic stress and strain evolution, and damage feature of the tunnel
were studied in detail.

However, the uncertainty of soil parameters is a common existence in practical en-
gineering, the traditional deterministic analysis for accessing the stability of geotechni-
cal engineering gradually cannot meet the requirements of the design. This uncertainty
usually poses great challenges in the design and construction of geotechnical engineer-
ing. Unlike traditional deterministic algorithms mentioned above, reliability analysis
is widely regarded as a rational approach since it can provide explicit consideration of
engineering uncertainties.

Plenty of contributions concerning the probabilistic analysis of tunnel engineering
have been made by several scholars. Berisavljević et al. [6] proposed a method to determine
overbreaks in rock tunnel construction using the drill-and-blast technique. Considering
the stochastic and statistical nature of the problem, a probabilistic analysis was used to
determine the failure probability of an unsupported part.

Su et al. adopted the first-order reliability method (FORM) to assess the stability of a
working highway tunnel [7]. The limit state function formulated for the primary support
is implicit, and the probabilistic analysis is relatively easy. Lü and Low [8] conducted a
probabilistic analysis of rock cavities by the response surface method (RSM) and second-
order reliability method (SORM). The response surface is built by an iterative algorithm
and the probability of failure is evaluated using the FORM and SORM. The correlated
non-normal variables are chosen as basic random variables. This method is applied to a
circular tunnel with analytical solutions considering Mohr–Coulomb and Hoek–Brown
yield criteria, respectively.

Recently, with the development of artificial intelligence and big data, machine learning
has a wide application in geotechnical engineering. Hussaine and Mu [9] used an auto-
mated machine learning technology to predict surface subsidence during the advancement
of a shield-driven tunnel. Goh and Zhang [10] utilized the artificial neural network ap-
proach (ANN) to determine the limit state surface following which a simplified reliability
method was developed to access the probability of failure. This procedure evaluates the
probability of instability induced by stress for deep-buried rock tunnels. The factor of safety
of the tunnel was derived by using a finite difference program. Subsequently, Zhang and
Goh [11] studied the ultimate and serviceability limit states with the aid of FLAC3D. The
First-Order Reliability Method (FORM) was utilized to calculate the failure probability at
the limit state. According to the different target performance levels, the required critical
FOS is captured.

Mollon et al. [12] also used the FORM and response surface method (RSM) to analyze
the reliability of tunnel faces. Then, Mollon et al. [13] used the collection-based random
RSM to analyze the probability of tunnel face stability. More input parameters were
taken as random variables, including material shear strength, weight, overburden, and
supporting pressure, the efficiency has been further improved. Zeng et al. [14] applied the
reliability analysis to the rock tunnel excavation face by FORM, RSM, and the importance
sampling method. The aforementioned works mainly focused on the stability of tunnel
faces and were merely involved in the tunnel roof. During the underground excavation
in rock masses, the variability of rock parameters due to different complicated geological
environments is very significant. The values of geotechnical parameters vary with position
and cannot be represented by the simple value measured by engineers. The variability of
the parameters is of necessity to be considered. Therefore, this work extends the reliability
analysis to the tunnel roof stability.

With the improvements in probabilistic methods [15], reliability analysis has been
extensively applied to analyze tunnel stability. In this research, an efficient algorithm
for FORM is utilized to compute the reliability index and the design point, based on
the linear failure criterion. However, its accuracy may be impaired when it is used in
complex engineering problems with nonlinear materials. To tackle the problem, the failure
probability is obtained with the help of RSM and Monte Carlo simulation.
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Considering the Hoek–Brown criterion and variational method, Fraldi and Guarra-
cino [16,17] presented an exact solution to describe the failure shape of deep tunnel roofs.
Yang and Huang [18] incorporated the effect of pore water pressure into the tunnel roof
problem where the kinematics-based limit analysis theorem was applied [19]. However,
the influences of support pressure and uncertainties of the rock strength parameters are
not involved in those published works.

In this paper, the deterministic models of roof collapse are obtained based on the
kinematic analysis theorem and associated flow rule. The performance functions are
established for rectangular and circular tunnels, respectively. The effect of underground
water on the support pressure is considered. For the reliability analysis of the tunnel
roof stability, rock strength parameters and pore water pressure coefficient are regarded
as random variables. The other parameters such as the geometry of the tunnel due to
its low variability are taken as constant. Two common distribution forms of the random
variables, normal and lognormal distributions, are discussed in the reliability analysis.
Taking support pressure and pore water pressure into account, the collapse mechanism of
the tunnel roof is first considered, as it underlies the performance function of subsequent
reliability analysis. For rectangular tunnels, the performance function is proposed. FORM
analysis is carried out to evaluate the stability of excavated tunnel and to analyze the
sensitivity of related parameters. RSM and MCS are applied to verify the effectiveness of
these results. For circular tunnels, the performance function cannot be expressed in explicit
form, and the MCS is utilized to calculate the failure probability. The sensitivity analysis of
random variables is performed. The influence of the coefficient of variation (COV) on the
reliability index is discussed. On top of that, the influences of the support pressure on the
reliability indexes for rectangular and circular tunnels are discussed.

2. Methodology
2.1. Reliability Analysis Methods
2.1.1. FORM

The reliability index is used to evaluate the safety of engineering structure that takes
into account the inherent uncertainties of the input variables. Hasofer and Lind [20]
proposed the reliability index β for the correlated normal random variables as

β = min
x∈F

√
(x− µ)TC−1(x− µ) (1)

where x denotes the random variable vector, µ denotes the mean value vector, C is the
covariance matrix. In reliability analysis, the performance function g(x) is also called the
limit state function. The limit state surface is defined as g(x) = 0, which separates the
n-dimensional domain of random variables into two regions: a failure region F represented
by g(x) ≤ 0 and a safe region is given by g(x) > 0.

According to the FORM, the probability of failure Pf can be calculated by

Pf
∼= 1−Φ(β) (2)

where Φ(·) represents the cumulative distribution function (CDF) of the standard
normal distribution.

In practice, the lognormal distribution is normally suggested in reliability analysis for
random variables to avoid negative values when the coefficient of variation (COV) is no
less than 0.25 [21]. For non-normal random variables, Rackwitz and Flessler [22] utilized a
method to calculate the equivalent normal mean value µX′i

and equivalent normal standard
deviation σX′i

. The equivalent normalized parameters are written as

µX′i
= x∗i −Φ−1[FXi (x∗i )]σX′i

(3)

σ′X′i
=

φ[Φ−1[FXi (x∗i )]]
fXi (x∗i )

(4)
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where x∗i is the coordinate of the design point, fXi (x∗i ) is the initial probability density
function ordinate at x∗i , FXi (x∗i ) is the original non-normal CDF evaluated at x∗i .

2.1.2. RSM

In general, explicit performance functions should be obtained to carry out reliability
analysis. However, the performance function may be unlikely to be determined in complex
engineering problems. RSM was proposed to approximate the real limit state function
at the vicinity of the design point. According to the algorithm of RSM proposed by
Tandjiria et al. [23], the reliability index and relevant design point are calculated by using a
quadratic polynomial function. In his research, a second-order polynomial with squared
terms is used. The formula can be expressed as

g(x) ≈ g̃(x) = a0 +
n

∑
i=1

aixi +
n

∑
i=1

bix2
i (5)

where xi are the basic random variables, n is the total number of random variables, and a0,
ai and bi are coefficients to be determined. The procedure of this algorithm is as follows:

(a) Sampling points are chosen around the mean value µi. Usually, mean value points u
with ui = µi ± f σXi are selected to evaluate the performance function g(x), in which
f is the sampling range factor.

(b) Altogether 2n + 1 coefficients of Equation (5) can be obtained by solving the set of
linear equations. Thus, a tentative response surface g̃i(x) is generated.

(c) Calculating the reliability index β and corresponding design points x∗i by FORM and
Equation (1). In this computation, β is subject to the constraint that g̃i(x) = 0.

(d) Repeating steps (a)–(c) until β or x∗i converges. Besides the first trial, new sam-
pling points may be selected around the tentative design points concerning the
interpolation method.

2.1.3. MCS

MCS is regarded as a robust method where samples can be generated concerning
the specific probability density of random variables [24]. According to the law of large
numbers, the accuracy of MCS depends on the large number of samples and trials. The
failure probability can be captured by

Pf =
1
N

n

∑
i=1

I(xi) (6)

where N is the number of samples, and I(x) = 1 if x ≤ 0 and 0 elsewhere. The convergence
of the failure probability is represented by its variation coefficient, namely

COV =

√
1− P f

Pf N
(7)

2.2. Kinematic Analysis of Tunnels Roofs with Hoek-Brown Criterion

The upper-bound limit analysis, as an efficient and rational theoretical method, has
been utilized to address several kinds of geotechnical engineering problems, such as
stability assessment of tunnel faces [25,26], roof collapse [27,28], earth pressure on retaining
structures [29,30], and slope stability problems [31,32]. Based upon the upper-bound limit
analysis method, the generalized Hoek–Brown failure criterion has been widely used to
estimate the nonlinear characteristics of the rock mass. Since the potential failure of a deep
tunnel is a complex nonlinear process, the Hoek-Brown failure criterion is employed to
investigate the upper-bound solution of potential collapse. Aiming to compute the energy
dissipation on the velocity discontinuity surface, the Hoek-Brown criterion is expressed as

τ = Aσc[(σn − σt)/σc]
B (8)

in which A and B represent material constants, σn and τ represent the normal and shear
stress, respectively; σc is the uniaxial compressive strength, and σt is the tensile strength.
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As stated by Chen [33], the actual failure load is no more than the limit load obtained
from the energy-work equilibrium equation for a randomly given kinematically admissible
velocity field, when the deformation boundary condition is satisfied. Since the pore water
pressure is incorporated, it takes the form by∫

V
σij

.
εijdv ≥

∫
S

Tivids +
∫

V
Xividv−

∫
V

u
.
εijdV −

∫
S

niviuds (9)

where σij and
.
εij are stress and strain rate, respectively, Ti and Xi are the surface load and

body load, respectively, V is the volume of the collapsing block, S is the length of velocity
discontinuity, vi stands for the velocity along the detaching surface, ni is the unit vector,
and u is the pore water pressure.

Based on Equation (9), one can establish an energy equilibrium equation, then, the
velocity discontinuity curve, f (x) which describes the geometry of the failure block, as
illustrated in Figure 1, is derived. The detailed derivation process concerning the velocity
discontinuity curve can be found in Appendix A.
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2.3. Performance Functions of Roof Collapse

According to the aforementioned failure mechanism, the geometry of the failure block
for tunnels is derived for a given supporting pressure and material parameters. Different
shapes of failure blocks might lead to different support pressure. The collapsing block over
the deep tunnel roof forms a ‘collapsing arch’ which bears the whole gravity of the overlying
rock mass. In order to ensure the roof stability of deep tunnels, the supporting pressure
should be greater than the self-weight of the failure block. Therefore, the performance
function of tunnel roof stability is derived.

For rectangular tunnels, the weight of the collapse block is

G1 = −γ
∫ L1

0
f1(x)dx (10)

The supporting pressure in the area of collapse block is

Q1 = σpL1 (11)

By comparing the total support pressure and the weight of the collapse block, the
performance function of tunnel roof stability can be derived.

g′1(x) = [σp −
σt − σp

(1 + ru)B
]L1 (12)

By simplification, the performance function of the rectangular tunnel is proposed by

g1(x) = σp −
σt

(1 + ru)B + 1
(13)

For circular tunnel, the weight of collapse block is expressed as

G2 = [−γ
∫ L1

0
f2(x)− R(x)dx] (14)



Mathematics 2023, 11, 937 6 of 15

The supporting pressure in the area of the collapse block is

Q2 = σpL2 (15)

The performance function of the circular tunnel is given by

g2(x) = σpL2 − [−γ
∫ L2

0 f2(x)− R(x)dx]

= σpL2 + γ
1
B A−

1
B B

B+1 [(1 + ru)/σc]
1−B

B L2
1+B

B − γh2L2 − γ b2

2 [arcsin L2
b −

L2
b

√
1− ( L2

b )
2
]

= σpL2 − γ
1
B A−

1
B 1

B+1 [(1 + ru)/σc]
1−B

B L2
1+B

B − γ b2

2 [arcsin L2
b −

L2
b

√
1− ( L2

b )
2
]

(16)

Because the analytical solution of L2 is not found, the performance function of the
circular tunnel is unable to be derived explicitly. Now that the performance function of
the deep tunnel against roof collapse is obtained, a reliability analysis of roof stability is
presented below.

3. Results and Discussion
3.1. Reliability Analysis of Rectangular Tunnels

To perform reliability analysis, parameters involved in the performance function
Equation (24) are defined as random variables. In this subsection, σt, ru, B and σp are
regarded as random variables. Both normal and lognormal distribution of random variables
is considered. Table 1 lists the mean values and the standard deviations of random variables.
Figure 2 illustrates the probability distribution function curves of normal and lognormal
distribution for different variables. It is observed from Figure 2 that the average value of
PDF of the lognormal distribution is always smaller than those of the normal distribution in
different parameters, and the peak value of the PDF of the lognormal distribution is always
higher than those of normal distribution, which means that the assumption of normal
distribution of random variables is conservative around the average value compared with
the lognormal distribution.

Table 1. Statistical values of random variables used in analysis with COV = 0.15.

Random Variable Mean Value Distribution Type

Case 1

σt(kPa) 100 normal
B 0.7 normal
ru 0.2 normal

σp(kPa) − normal

Case 2
σt(kPa) 100 lognormal

B 0.7 lognormal
ru 0.2 lognormal

σp(kPa) − lognormal

Based on the performance function in Equation (24), FORM is employed to calculate
the reliability index and the corresponding failure probability of rectangular tunnels. For
examination, the results obtained by FORM are compared with the results calculated by
RSM and MCS. The reliability indexes computed by FORM, RSM, and MCS are listed
in Table 2. It is found that there is little difference among reliability indexes obtained
by FORM, RSM, and MCS, and the size relationship between different methods is not
fixed and shows a certain randomness. Therefore, the results obtained by these methods
are reliable.

3.1.1. Reliability Index and Failure Probability

Based on the performance function Equation (24), the support pressure varies from
60 to 140 kPa to calculate the corresponding reliability index and failure probability. In
reliability analysis, the surface corresponding to the minimum reliability index can be
regarded as the critical probabilistic surface. According to the presented failure mechanism,
the collapse pressure can be obtained when the reliability index is equal to zero. Thus, the
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collapse pressure is found to be 54.35 kPa for the normal variables, and it is 54.67 kPa for
the lognormal variables.
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Figure 3 illustrates the reliability index and corresponding failure probability versus
the support pressure, using the FORM. It is found that the reliability index increases
significantly with the increase of the support pressure and that the failure probability
gradually decreases with the increase of support pressure. The failure probability is smaller
than 1× 10−4 when the support pressure increased to 140 kPa. For a target reliability index
of 3.8 as proposed by Eurocode 7, the required support pressure obtained by lognormal
variables is smaller than that of normal variables.
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MCS is commonly regarded as an accurate method in reliability analysis and its
accuracy is based on the number of Monte-Carlo sample size. Generally, the COV of the
failure probability is used to estimate the required sample. Equation (7) shows that the
COV of failure probability depends on the number of samples and the failure probability.

From Figure 4, it is found that the COV of failure probability comes to be lower
than 1% when the sample size increased to 5 × 105. Thus, it can be concluded that a
failure probability obtained by MCS with a sample size of 1× 106 may be regarded as
credible. Besides, the lognormal variable requires a bigger sample size to obtain a steady
failure probability.
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FORM is employed to calculate the design point (σt
∗; ru

∗; B∗). As Table 2 shows, the
design point σ∗t is greater than its mean values and increases with the increase in support
pressure. Conversely, the design point B∗ and r∗u are slightly smaller than their mean value
and decreases with the increase of support pressure.

3.1.2. Sensitivity Analysis

Sensitivity factors reflect the order of importance of the random variables in calculating
the reliability index. To compute the sensitivity of the random variables, sensitivity analysis
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plays an increasingly vital role in reliability-based design. Based on FORM, cos θXi is
selected as the sensitivity factor of variable Xi

cos θXi =
− ∂g

∂Xi

∣∣∣
P
· σXi√

n
∑

i=1
( ∂g

∂Xi

∣∣∣
P
· σXi )

2
(17)

where σXi is the standard deviation of a random variable Xi.
Table 3 presents the sensitivity factors of different normal variables with the change

of support pressure, where γσt , γB and γru represent the sensitivity factor of σt, B and ru
respectively. The sensitivity factor indicates the ‘load’ and ‘resistance’ of variables. The
positive γ means a ‘load’ variable, and vice versa. These results, γσt is positive while γB and
γru are negative. Besides, the absolute value of γσt is greater than γB or γru , which means
σt is the major factor that influences the reliability index. In these results, γσt experiences a
downward trend with the increase of supporting pressure. The value of γσt decreases by
34.7%, when the supporting pressure increases from 60 to 120 kPa. The absolute difference
between γσt and γB decreases with the increase of supporting pressure. Thus, B should be
taken seriously when high supporting pressure is applied.

Table 3. Sensitivities for different support pressures.

µσp (kPa) γσt γB γru

60 0.641 −0.308 −0.050
70 0.592 −0.304 −0.048
80 0.549 −0.296 −0.046

90 0.511 −0.284 −0.043
100 0.477 −0.271 −0.041
110 0.447 −0.257 −0.038
120 0.419 −0.243 −0.036

Mean value 0.520 −0.280 −0.043

3.1.3. Influence of Coefficient of Variation

The COV is usually used to reflect the uncertainties of random variables. In this
section, different COVs of random variables are employed to evaluate their influences on
the reliability index.

Figure 5 illustrates the variation trend of reliability with the increase in the COVs of
both normal and lognormal variables. In both cases, the increase in COV will lead to a
decrease in reliability index. The COV of σt has a greater influence than that of B on the
reliability index. The reliability index of normal variables decreases by 37.9% when the COV
of σt increases from 0.05 to 0.30. However, it is worth mentioning that the reliability index
of lognormal variables is more sensitive to the change in COV. The change in COV will lead
to a faster decrease in the reliability index as the plots show. Concerning the sensitivity
analysis presented above, only the COV of tensile strength was taken into consideration in
the reliability-based design (RBD).

Figure 6 illustrates the CDF of the required supporting pressure for normal and
lognormal variables when the COV of σt varies from 0.05 to 0.25. It is found that the CDF
curve is significantly affected by a small change in the coefficients of σt, and a bigger COV
of σt will lead to a bigger failure probability. Thus, the accurate determination of COV of
tensile strength σt is significant in obtaining a credible reliability index. It is found that the
probabilistic tunnel pressure increases with the greater variation in random parameters.
For example, the required supporting pressure increases from 90.37 kPa to 97.93 kPa with
an increase of 0.1 in the COV of tensile strength σt. Based on that, the random variables
should be seriously determined to perform reliable RBD.
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3.2. Reliability Analysis of Circular Tunnels

In practice, there are many robust optimization methods [34,35] to optimize power
system applications. However, as mentioned above, the performance function of a circular
tunnel is implicit. Thus, FORM is no longer suitable to tackle this problem. MCS has
been coded to implement the reliability analysis of the roof stability of circular tunnels of
radius 4 m with implicit performance function Equation (26). In this section, σc, σt, A, B,
γ, ru and supporting pressure σp are considered as random variables, and two kinds of
distribution of these variables are taken into account. The mean values and distribution
types are provided in Table 4.

Table 4. Statistical values of random variables used in the analysis.

Random Variables
Normal/Lognormal Distribution

Mean Value Coefficient of Variation

σt (MPa) 0.1 0.15
σc (MPa) 10 0.15

A 0.5 0.15
B 0.7 0.15

γ (kN/m3) 25 0.15
ru 0.2 0.15

σp(kPa) − 0.15

The number of simulations varies from 1 × 104 to 1 × 106 in order to ensure the
credibility of results. In MCS, a relatively small sample size is used with low supporting
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pressure, and relatively large number of trials is used with high supporting pressure. Hence,
the COV of failure probability may stay in an acceptable range (smaller than 3.5% in this
section). The number of trials used in MCS and the corresponding supporting pressure are
listed in Table 5.

Table 5. The number of trials based on MCS.

Support Pressure
(kPa) Sample Size

COV of Failure Probability

Normal Distribution Lognormal Distribution

45 1× 104 0.0098 0.0097
55 5× 104 0.0087 0.0090
65 15× 104 0.0113 0.0122
75 40× 104 0.0117 0.0140
85 100× 104 0.0214 0.0340

As illustrated in Figure 7, the supporting pressure still has a significant effect on
the failure probability. The collapse pressure of a circular tunnel is greater than that of
rectangular tunnel. With the increase of supporting pressure, the failure probability of
circular tunnel experiences a faster decline than that of a rectangular tunnel. Compared
with rectangular tunnels, there is also less difference between the failure probabilities
obtained by normally and log-normally distributed random variables. As expected, the
supporting pressure for circular tunnels is smaller than that of rectangular tunnels when a
target reliability index of 2.5 (failure probability equals 0.62%) is given.
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4. Conclusions

Based upon the kinematics-based upper-bound theorem and nonlinear failure criterion,
reliability analysis is presented to evaluate the roof stability of deep tunnels. Considering
the influences of support pressure and pore water pressure, the performance functions of
both circular and rectangular tunnels are derived and proposed, respectively. The FORM,
RSM, and MCS are employed in reliability analyses to evaluate the stability of tunnel roofs
under different materials and support pressure. The main conclusions are summarized
as follows.

For rectangular tunnels, the minimum supporting pressure to maintain stability is
related to the parameters σt, ru and B. These parameters and support pressure are regarded
as random variables, and two kinds of distributions of random variables are taken into
account. The reliability index and failure probability calculated by FORM show good
agreement with those of MCS and RSM. When the reliability index is zero, the collapse
pressure of tunnel roofs corresponding to normally distributed variables is 54.35 kPa, and
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the collapse pressure is 54.67 kPa for the lognormal distribution. Therefore, the distribution
type of variables does not significantly influence on the collapse pressure. It is found that
the reliability index increases significantly with the increase of the supporting pressure, and
the reliability index of the normal distribution is slightly smaller than that of the lognormal
distribution. The uncertainty of σt shows that the greater the variation in σt, the smaller the
reliability index. The sensitivity analyses indicate that σt has a more significant influence
on the reliability index than other parameters. Therefore, the COV of tensile strength σt
should be accurately determined in tunnel engineering.

For circular tunnels, σc, σt, A, B, γ, ru and supporting pressure σp are considered as
random variables to evaluate the reliability of tunnel roofs. MCS with enough sample size
is used to calculate the failure probability with high confidence. The failure probability
depends on the value of support pressure, and a small increase in support pressure leads to
a significant increase in the reliability index. For a target reliability index of 2.5, the support
pressure for circular tunnels is smaller than that of rectangular tunnels. This work merely
considers the tunnel roof stability in the two-dimensional plane strain condition, however,
the roof collapse, in practice, commonly presents an evident three-dimensional feature.
Furthermore, previous works in processing the nonlinearity of the Hoek-Brown strength
criterion normally adopt a straight line to roughly approximate the nonlinear envelope,
this linear substitution is too simplified to give an accurate solution. The reliability analysis
is based on the deterministic model which can provide an exact solution. Therefore, in the
future, concerning the three-dimensional roof stability problem, the nonlinear characteristic
of the Hoek-Brown strength criterion can be incorporated into the analysis by a piecewise
linear method.
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Appendix A

As Figure 1 shows, the curve of collapse rock mass is symmetrical concerning axis
y. Based on the works of Fraldi and Guarracino [13,14], the energy dissipation at the
impending collapse curve is given as

PD =
∫
s

Ditds =
∫ L

0

{
σci
[
AB f ′(x)

] 1
1−B (1− B−1)− σt

}
vdx (A1)

where f ′(x) is the first derivative of f (x), t represents the thickness of the detaching surface,
and L means the half width of collapsing block.

The work rate of collapse block produced by weight is given as

Pγ =
∫ L

0
γ[ f (x)− R(x)]vdx (A2)
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in which γ is the dry unit weight of the rock mass, R(x) is the equation describing the tunnel
profile. Rectangular tunnel is represented by R(x) = 0, and R(x) =

√
b2 − x2 −

√
b2 − L2

represents the circular tunnel of radius b.
The work of water pressure can be expressed as a sum of pore pressure work on

skeleton and the work of the water pressure on boundary. In order to obtain a credible
upper bound solution of tunnel stability, the influence of pore pressure is taken into account.
The work rate of the pore water pressure along the detaching surface is given as

Pu =
∫

s
niviuds =

∫ L

0
ruγ[ f (x)− R(x)]vdx (A3)

where ru is the pore pressure coefficient.
In the construction of deep tunnel, supporting structure is necessary to guarantee the

safety and stability. The support force is considered as external force and its work rate is

Pp = −σpvL (A4)

where σp is the supporting pressure.
Based on the energy-work balanced equation, the following objective function that

describes the difference of the rate of energy dissipation and the entire rate of work is
expressed as

ζ
[

f (x), f ′(x), x
]
= PD − Pγ − Pu − Pp=

∫ L

0
ψ[ f (x), f ′(x), x]vdx + σpvL (A5)

where ψ[ f (x), f ′(x), x] is written as

ψ[ f (x), f ′(x), x] = −σt + σc(AB)
1

1−B (1− B−1) f ′(x)
1

1−B − (1 + ru)γ[ f (x)− R(x)] (A6)

By turning the expression of ψ(x) into Euler’s equation and integrating the results,
the expression of f (x) is derived as

f (x) = A−
1
B

[
(1 + ru)γ

σc

] 1−B
B
(

x +
c0

γ

) 1
B
− h (A7)

where c0 and h are integration constants. As the detaching curve f (x) is symmetrical with
respect to the y-axis, the integration constant c0 is equal to zero. Thus, the expression of
f (x) is obtained as follows:

f (x) = A−
1
B

[
(1 + ru)γ

σc

] 1−B
B

x
1
B − h (A8)

For rectangular tunnels shown in Figure 1a, substituting f (x = L1) = 0 into Equation
(16) with R(x) = 0 and ζ[ f (x), f ′(x), x] = 0, it is found that

L1 = (σt − σp)
B A(

1 + B
B

)
B

σc
1−B[(1 + ru)γ]

−1 (A9)

h1 =
(1 + B)(σt − σp)

(1 + ru)γB
(A10)

For circular tunnels shown in Figure 1b, based on the conditions of R(x) =
√

b2 − x2−√
b2 − L22 and ζ[ f (x), f ′(x), x] = 0, it is found that

[(1 + ru)γH − σt]L2 +
(1+ru)γb2

2 [arcsin L2
b −

L2
b

√
1− ( L2

b )
2
]

− 1
B+1 A−

1
B σ

B−1
B

c [(1 + ru)γ]
1
B L2

1+B
B + σpL2 = 0

(A11)

Although the analytical solution of L2 is not available, L2 can be easily obtained by
numerical tool. Thus, the detaching curve f2(x) for circular tunnel can be determined after
the calculation of L2.
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Nomenclature

ai coefficients in response surface method
A material constant
bi coefficients in response surface method
B material constant
C covariance matrix
D energy dissipation density of the internal forces
f sampling range factor.
F failure region
f (x) collapsing curve
f ′(x) first derivative of f (x)
fXi (x∗i ) original probability density function ordinate at x∗i
FXi (x∗i ) original non-normal CDF evaluated at x∗i
g(x) performance function
g1(x) performance function of a rectangular tunnel
g2(x) performance function of a circular tunnel
G weight of failure block
h height of the collapsing block
L half width of the collapsing block
ni unit vector
N number of samples
PD total energy dissipation at the impending collapse
Pγ work rate done by weight
Pu work rate of the pore pressure
Pp work rate of supporting force
Pf failure probability
Q support pressure
ru pore water coefficient
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