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Abstract: This paper examines the movement of waves that occur in a fuel tank—both with and
without a wave breaker—when a car is travelling at a constant speed and then suddenly brakes. This
phenomenon is known as slosh noise, and the paper presents an analysis of the movement of free
surfaces in relation to the level of noise generated. The paper focuses on mathematical models of the
fluid flow for both tanks—one without any technical solutions for breaking waves, and the other with
a solution for breaking waves. The model is constructed based on a set of initial hypotheses about
the fluid flow within the tank, by developing the speed potential in a series of fundamental solutions
and considering the main variables that affect the phenomenon of sloshing, such as the depth of the
liquid, the tank’s geometry, and the frequency and amplitude of the initial external force acting on the
tank. The analysis of free surface movement is used to find the correlation with the sound generated
in the tank. Nonlinearities that arise from the sudden braking are also modelled and numerically
studied using MATLAB software. Following the mathematical model, a technical wave-breaking
solution was implemented and tested, and it was shown that the amplitude of the movement of the
free surface is reduced by half. Further research on the correspondence between the free surface
movement based on the behaviour of potential energies in the two cases may be developed.

Keywords: slosh noise; rectangular tank; mathematical modelling; potential flow; spectral methods;
fundamental solutions

MSC: 76-10; 76B07; 76M22; 35A08

1. Introduction

Many researchers have investigated the phenomenon of sloshing using various meth-
ods: analytical [1,2], numerical or experimental. They have observed that different types
of baffles, inserted in tanks [3], can reduce the natural sloshing frequencies. For example,
analytical studies, numerical experiments and moving particle semi-implicit computation
have been carried out using porous baffles for sloshing reduction in a swaying rectangular
tank by Cho and Kim [4], and Poguluri Sunny Kumar [5], using the Galerkin method
and Chebyshev polynomials for modelling and simulating the sloshing phenomenon in a
porous screen-equipped tank.

It is assumed that the fuel in the tank is an incompressible fluid, and the potential
formulation can be used to describe its free surface. The determination of the free surface
inside the tank is closely related to the correct approximation of the sound generated by
the ripple. However, the potential formulation may not always accurately express the
reality [6], and numerical modelling might be necessary to produce more realistic results.
The nonlinearities generated by sudden braking can also be numerically studied.

The main methods used in numerical analysis include: MAC (Marker and Cell)
approximation, VOF (Volume of Fluid Method) approximation, LSM method (Level Set
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Method) or a combination of these methods. More recently, the SPH (Smoothed Particle
Hydrodynamics) approximation [7] has been used in 2D numerical modelling to simulate
sound propagation [8]. The slosh noise that occurs in a fuel tank can be a hit noise due to a
wave hitting the walls of the tank, or a splash noise due to turbulence and the agglomeration
of small waves inside the fuel tank. These can be studied through the oscillatory movement
of the free surface of the liquid inside the fuel tank. A vertical baffle is more effective in
reducing the sloshing amplitude than a horizontal one.

An improved MPS method and numerical simulation under an initial rotational exci-
tation are made in [9], and it is proved that when the baffle is flush with the surface, the
damping effect is optimal. An improved ALE technique (Arbitrary Langrangian Eulerian
finite element method) was used in [10] to improve the tank design to reduce noise levels.
With the same optimization goal, Frosina et al. in [11] use a CFD (Computational Fluid Dy-
namics) modelling approach to study the correct fuel suction under all driving conditions.

In this paper, the main variables that affect the ripple phenomenon are considered:
liquid depth, tank geometry, and the frequency and amplitude of the initial external force
acting on the tank. To reduce the wave nonlinearities and noise, various types of breakers
can be installed in the tank. These breakers aim to reduce the pressure on the ceiling or
walls, as well as to reduce extreme fluid phenomena, including ripples.

This paper is organized as follows: the problem description, general principles and
hypotheses are considered in the next section. Section 3 is dedicated to the mathematical
model of the fluid flow in the tank without a slosh noise reduction baffle. The fluid flow
is determined by the potential of the velocity, using the method of fundamental solutions
and describing the amplitude evolution of the free surface. In Section 4, the noise reduction
baffle is introduced into the model. The solution of the potential function in the two
areas delimited by the baffle is obtained, and the evolution of the free surface is graphically
represented. The effects of using a suitable baffle are investigated. Finally, some conclusions
are made.

2. Problem Description and Assumptions

We investigate the movement of waves created within a fuel tank, with and without
a wave breaker, when a car is travelling at a constant speed and suddenly brakes. The
aim of this study is to evaluate the effectiveness of incorporating a slosh noise buffer in
a tank, both analytically and experimentally. A simplified tank shape is considered, in
line with the patented technical solution for baffles proposed by the author (EP3296136A1
Dispositif Anti Clapot d’un Reservoir de Carburant d’un Vehicule Automobile, Applied By
RENAULT SAS [FR], Inventor BALAS OANA MARIA [RO]).

We apply the general principles to our specific problem, taking into account boundary
and initial conditions, to arrive at a well-posed problem:

Mass conservation:
∫

D
ρ(x, t)d V = 0, ∀D ∈ M (1)

Impulse variation:
d

d t

∫
D

ρa d V =
∫

∂D
td σ +

∫
D

ρf d V (2)

Kinetic moment variation:
d

d t

∫
D

ρx× v d V =
∫

∂D
x× td σ +

∫
D

x× ρf d V (3)

In addition to the general assumptions related to fluid motion, we add the follow-
ing hypotheses:

◦ The effects of liquid compressibility, viscosity and surface tension could be neglected.
According with the the first principle, we can write

divv = 0. (4)
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◦ The flow is potential, meaning that the velocity potential φ(x, y, t) exists such that

u =
∂φ

∂x
, v =

∂φ

∂y
(5)

◦ The movement of the fluid is laminar in the z direction, and the movement is flat [12].
◦ Boundary conditions are imposed such that

dφ

dn
= vt · n on the tank walls. (6)

3. Mathematical Model of the Fluid Flow in the Tank without a Slosh Noise
Reduction Baffle

The fluid flow is determined by the potential φ of the fluid velocity that verifies the
Laplace equation

∆φ = 0 (7)

and boundary conditions:

∂φ

∂x
(−l, y, t) =

∂φ

∂x
(l, y, t) = 0 (8)

on the side walls, and on the floor

∂φ

∂y
(x, 0, t) = 0 (9)

according with the geometry of the tank as in Figure 1.

(a) (b)
Figure 1. Tank geometry. (a) Geometry of a non-stop tank used for the analytical model. (b) Geometry
of a non-stop tank for the experimental study.

The width of the tank is considered in the x direction (520 mm), the length in the z
direction (1000 mm) and the height in the y direction (160 mm). The origin is considered
in the middle of the bottom of the surface of the tank. Additionally, H is the height of the
liquid in the tank.

The boundary condition (6) expressed for passing from the inertial coordinate system
to the tank fixed coordinate system leads to the conditions imposed upon the free surface
y = η(x, t), see [13], that are the cinematic condition:

∂η

∂t
− v · ∇η − ∂η

∂y
+

∂η

∂x
· ∂φ

∂x
= 0 (10)
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and dynamic condition

∂φ

∂t
− v · ∇φ +

1
2
(∇φ)2 + g η = 0. (11)

As the liquid is incompressible, the potential energy of a liquid element is given only
by the potential gravitational energy [3,14–16]:

Ue =
1
2

ρgb
∫ L

0
η2(x, t)d x (12)

and the kinetic energy of the liquid element is given by [3,16]:

Te =
1
2

ρg
∫

V
(∇φ)2d V. (13)

When the tank is subjected to a horizontal acceleration, Ẍ0(t) lateral sounds of the
contained fluid will appear, where:

Ẋ0(t) =
{

U0 − a t, t ∈ [0, t1]
−a t1, t ∈ [t1, ts]

(14)

ts is the total stop time of the tank (ts = 5 s), t1 = 0.4 s, a = U0/t1, and constant a represents
the average value of the acceleration (of braking, in this case). Based on the state of the
art of the topic developed by the authors, the optimal timing for the braking event that
generates the slosh noise phenomena is 5 s. This duration it is used for the analytical model
and experimental tests [17–22].

Movement in the tank is described by the potential φ that is decomposed into two functions:

φ = ϕ + ψ, (15)

where ϕ is the solution of the Laplace’s equation with static conditions on the walls:

ϕ = x u + y v, (16)

and ψ also satisfies the Laplace’s equation in D and the following boundary conditions:

on the side walls:
∂ψ

∂x
(− L

2
, y, t) = 0 =

∂ψ

∂x
(

L
2

, y, t) (17)

on the floor of the tank:
∂ψ

∂y
|y=0 = 0 (18)

on the free surface:
∂η

∂t
− ∂ψ

∂y
+

∂η

∂x
· ∂φ

∂x
= 0 (19)

Analytical Model (Ma) for Determining the Potential

The potential will be determined using the superposition method of the liquid’s
own functions in the tank, based on the linearized theory of potentials, compared to the
nonlinear Boussinesq model [12].

We use the method of fundamental solutions (MFS), also described in [12,13], and
consider that the potential has the form

ψ(x, y, t) = ψ0(x, y, t) + ∑
n

ψn(x, y, t) (20)

where
ψn(x, y, t) = fn(x, y) An(t), n ≥ 1 (21)
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are the fundamental solutions that verify the Laplace equation, ∆ψ = 0 with the conditions
(17)–(19). One finds, for the functions fn, the problem

∆ fn = 0,
∂ fn

∂x

(
− L

2
, y
)
= 0 =

∂ fn

∂x
(

L
2

, y),
∂ fn

∂y
|y=0 = 0 (22)

with the boundary conditions (considered linear, in the first approximation)

∂η

∂t
− ∂ψ

∂y
= 0,

∂ψ

∂t
+ gη = 0 (23)

and where the first potential ψ0 is a particular solution that takes into account the movement
of the tank, verifies the Laplace equation and non-homogeneous boundary conditions

∆ψ0 = 0,
∂ψ0

∂x
(− L

2
, y, t) = Ẋ(t) =

∂ψ0

∂x
(

L
2

, y, t),
∂ψ0

∂y
|y=0 = 0. (24)

For the free surface of the fuel, we have

∂η0

∂t
− ∂ψ

∂y
= 0,

∂ψ0

∂t
+ gη0 + εψ0 = 0, for y = η0(x, t). (25)

with ε = 0 in linear theory. Considering the derivative according with t in (23), respectively,
in (25) we obtain

∂2ψ0

∂t2 = −g
∂η0

∂t
=

∂ψ0

∂y
,

∂2ψ

∂t2 = −g
∂η

∂t
=

∂ψ

∂y
. (26)

fn(x, y) and An have separate variables, and one obtains:

− Än(t)
An(t)

=

g
∂ fn

∂y
fn(x, y)

= ω2
n (27)

from where
g

∂ fn

∂y
−ω2

n fn(x, y) = 0, Än(t) + ω2
n An(t) = 0. (28)

Using the solutions for (28), the fundamental solution for the potential is

ψn(x, y, t) = fn(x, y) sin(ωnt), ω2
n = gλn tanh(λn H) (29)

fn(x, y) = −Kn cos(λn(x + l)) cosh(λn y), λn =
nπ

L
(30)

checking the boundary conditions

∂ηn

∂t
− ∂ψn

∂y
(x, ηn(x, t)) = 0,

∂ψn

∂t
(x, ηn(x, t)) + gηn = 0. (31)

From the condition ηn(−l, 0) = H, where H is the height of the fuel in the tank, the

constants Kn =
g H

ωn cosh(λn H)
are determined. For ηn, we have the solution

ηn(x, t) = H cos(λn(x + l)) cos(ωnt) (32)

and the amplitude of the free surface is:

η(x, y, t) = η0(x, y, t) + ∑
n

ηn(x, t). (33)
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To determine the potential ψ0(x, y, t) and amplitude η0(x, t), we solve the problem
(22)–(23), where Ẋ0(t) = U0 − a t, a 6= 0 corresponding to braking.

ψ0 = A0(t) + (U0 − a t) x, η0(l, 0) = H, η0(x, t) = − 1
g

∂ψ0

∂t
. (34)

For calculating the amplitude A0(t), a pendulum equation is used (see [12]).

Ä0(t) + B1 Ȧ0(t) + ω2
1 A0 = Ẍ, (35)

with B1 =
√

2ω1ν
L b

(
b + L + b

λ1(L− 2H)

sinh 2λ1H

)
. Under the given problem, the value ∆ = B2

1 −

4ω2
1 is positive and for δ =

√
∆ and r1,2 = (−B1 ± δ)/2, r1 − r2 = δ, the solution of the

Equation (35) has the form

A0(t) =

 A01(t) = c11 exp(r1t) + c12 exp(r2t)− a
ω2

1
, t ∈ [0, t1]

A02(t) = c21 exp(r1t) + c22 exp(r2t), t ∈ [t1, ts]
(36)

constants c11, c12, c21, c22 being determined from the initial conditions as

c11 =
Ȧ1

0(0)− (A0(0) + a
ω2

1
)r2

δ
, c12 =

(A1
0(0) +

a
ω2

1
)r1 − Ȧ1

0(0)

δ

c21 =
Ȧ2

0(0)− A2
0(0)r2

δ
, c22 =

(A2
0(0))r1 − Ȧ2

0(0)
δ

For the given issue, we consider conditions compatible with relationships (25) and (31).

A01(0) = 0, Ȧ01(0) = al − gH, A02(0) = A01(t1), Ȧ02(0) = Ȧ01(t1). (37)

meaning that

A01(t1) = c11er1t1 + c12er2t1 − a
ω2

1
, Ȧ01(t1) = c11r1er1t1 + c12r2er2t1 . (38)

The amplitude A0(t) analytically obtained in (36) and numerically computed using a
Runge–Kutta method in MatLab was plotted on the same graph in Figure 2a. Because of
the accuracy of the calculus, only one method was used in Figure 2b.

The maximum amplitude is measured a short time after braking ([0, 0.4] to [0, 0.8]
seconds). As seen in Figure 2a, for a time interval of [0, 0.4], the free surface follows a slight
climb and stagnation. Additionally, as seen in Figure 2b, the “quietness” of the waves
inside the tank is observed.

If a fuel tank does not contain wave breakers, a large wave is generated followed by
successive smaller waves that will hit each other (Figure 3). The noise generated in this
case represents the phenomenon of slosh noise, which is unpleasant for the user.

According to relation (36), when the time increases after t1, the amplitude will be

larger then the case t < t1 if the term
a

ω2
1

is bigger then the sum of the first two terms. That

fact leads to the change of wave shape expressed in Figure 3.
As a remark, for Boussinesq’s non-linear model with a slight disturbance of amplitude,

the linear conditions on the free surface will change [23]. Using cinematic condition (25) for

any η,
∂ψ

∂t
+ gη + εψ = 0 and the dynamic condition for the free surface

∂η

∂t
− ∂ψ

∂y
= 0, one

finds the governing equation for the potential:
∂2ψ

∂t2 + ε
∂ψ

∂t
+ g

∂ψ

∂y
= 0.

In [12], the free surface elevation is made precise, the expression of the velocity
potential of the first sloshing mode is given and the coefficient ε was described by an
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approximation. The relative free surface elevations at the left wall with different excitation
frequencies were numerically computed. We have analytically defined the time variation
of the amplitude and the free surface inside the tank. Additionally, in [16], only numerical
results were obtained.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t
0

0.002

0.004

0.006

0.008

0.01

0.012

A
0
(t

)
A

0
(t) numerical solution

A
0
(t) analytical solution

(a) time interval 0.4 s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-4

-3

-2

-1

0

1

2

3

4

A
0
(t

)

10
-3

(b) time interval 5 s
Figure 2. Evolution of amplitude (A0 [m]) (a) time t ∈ [0, 0.4] s, (b) time t ∈ [0, 5] s.

(a) time interval 0.4 s (b) time interval 0.8 s
Figure 3. Evolution of the free surface (a) t ∈ [0, 0.4] s, (b) time t ∈ [0, 0.8] s.

4. Mathematical Model of the Fluid Flow in the Tank with a Slosh Noise
Reduction Baffle

The initial status of a tank that includes a wave breaker is outlined in the Figure 4, where:
h = 30 mm, tank length = 1000 mm, tank width (L) = 520 mm, and tank height = 160 mm.
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(a) (b)

(c)
Figure 4. Geometry of a slosh noise baffle integrated in the tank. (a) The geometry of the baffle tank
used for (MA). (b) Assembly of the baffle in the tank. (c) The geometry of the baffle tank used for
experimental study.

We consider the movement of the free surface on the width of the tank as flat movement
in the xOy plane (in the transverse plane) and with the same values of the amplitude at
any section along the length of the tank. According to the geometry shown in Figure 4a,
with sp = notation for the presence of a slosh noise baffle inside the tank and f sp = notation
for the case without the presence of a slosh noise baffle inside the tank, the movement
in the tank is broken down into two areas: D = D1 ∪ D2 with D1 = [h, h + hsp]× [−l, 0],
D2 = [h, h + hsp]× [0, l]. The description of the geometry of the baffle for the experimental
study (Figure 4b,c) is found in the patent, which is referenced within the paper at the
beginning of Section 2.

The potential φ = ϕ + ψ check the Laplace equation with the shape (16) for ϕ and (20)
for ψ in both areas.

Taking into account the initial speed U0 and the volume of liquid in the tank, one
obtains an average value for the mass forces f (t) =

∫ F
m dt = f0(t), which will be used in

the boundary conditions. According to the experimental approach and data, see [20], below
are presented the values for the forces associated to the initial speed U0.

The data from Table 1 show the values for the forces, f0, associated with different
initial speeds, U0 (10 km/h, 30 km/h, and 50 km/h) for three different volumes (15 L,
25 L, and 35 L) and corresponding masses (12.5 kg, 20.9 kg, and 29.2 kg) of a liquid. The
forces are consistent across different speeds for the same volume and mass. The data show
that the force decreases with increasing volume and mass of the liquid and that the force
increases with increasing initial speed.

The boundary conditions on the D1 side walls are:

∂ψ

∂x
(− L

2
, y, t) = Ẋ(t),

∂ψ

∂x
(0−, y, t) = f (t), y ∈ [h, h + hsp], (39)

and on the D2 side walls are

∂ψ

∂x
(0+, y, t) = 0,

∂ψ

∂x
(

L
2

, y, t) = Ẋ(t), y ∈ [h, h + hsp], (40)
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also, on the floor of the tank, the condition imposed is:

∂ψ

∂y

∣∣∣∣
y=0

= 0. (41)

The first condition in (39) and the last condition in (40) expressed for
∂ψ

∂x
express the

condition on the wall of the tank, in which case the fluid will have the velocity of the tank
described by Ẋ(t). On the left side of the baffle, the mass forces are considered identically
distributed on the baffle using f0(t).

Table 1. Parameter values of f0 [N/kg] relative to the initial speed U0.

Volume Mass f0 [N/kg] f0 [N/kg] f0 [N/kg]
Liquid [L] [kg] at U0 = 10 km/h at U0 = 30 km/h at U0 = 50 km/h

15 12.5 2.00800 2.28800 2.57600
25 20.9 2.00800 2.00000 2.27751
35 29.2 2.00342 2.28082 2.57192
45 37.6 2.0000 2.27926 2.56915

Using the inertia coefficient C and the drag coefficient α =

(
1

P Cc
− 1
)2

described

through the porosity of the breaker (see [5]) and the discharge coefficient Cc, the jump
condition on the sides of the breaker is:[

∂ψ

∂t
(x, y, t)

]+
−
=

α

2
∂ψ

∂x

∣∣∣∣∂ψ

∂x

∣∣∣∣+ 2 C
∂2ψ

∂x∂t
. (42)

and C is negligible if the thickness of the wave breaker is neglected.
On the other hand, the condition of the speed continuity at the level of y = h expressing

that the speed is continuous when passing from the level y < h to y = h. For y < h, the
liquid is without a wave breaker and the speed solution is known at the free surface y = h,
in each domain (D1 and D2) determined by the separation of the baffle:

∂ψ

∂x
= u f sp(x, y, t)

∣∣∣
y=h

, x ∈ [−l, 0], for determining the solution in D1, (43)

∂ψ

∂x
= u f sp(x, y, t)

∣∣∣
y=h

, x ∈ [0, l], for determining the solution inD2, (44)

where u f sp(x, t) =
∂ψ f sp

∂x
(x, h, t), ψ f sp being the potential solution of the form (20) for the

problem of the motion without a breaker.
According to the previously determined solution, we find that:

u f sp(x, t) = −a t + ∑
n

u f sp
n (x, t), t ∈ [0, t1],

u f sp(x, t) = −a t1 + ∑
n

u f sp
n (x, t), t ∈ [t1, ts],

(45)

where

un f sp(x, y, t) =
∂ψ

f sp
n

∂x
(x, y, t) =

∂ f f sp
n

∂x
(x, y) sin(ω f sp

n t), t ∈ [0, ts]. (46)

and for any t ∈ [0, ts], we have

u f sp
n (x, t) = un f sp(x, y, t)

∣∣∣
y=h

= Knλn cosh(λnH) sin(λn(x + l)) sin(ω f sp
n t). (47)
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(see [4]).
Additionally, the hydrostatic pressure and free surface can be described by:

p = −g
∂ψ

∂t
, η =

p
ρg

. (48)

The solutions of the potential function in the two areas are:

ψ1 = ψ1
0 + ψ f , x ∈ [−l, 0], respectively, ψ2 = ψ2

0 + ψ f , x ∈ [0, l], (49)

with ψ f = ∑∞
n−1 ψn, where ψn = f 1

n(x, y) sin(ωsp
n t) has solution type (21), n ≥ 1,

f 1
n(x, y) = −Cn cos(λsp

n (x + l)) cosh(λsp
n H), (50)

f 1
n is a fundamental solution that verifies:

∆ f 1
n = 0,

∂ f 1
n

∂x
(−l, y) = 0 =

∂ f 1
n

∂x
(0, y),

∂ f 1
n

∂y
|y=0 = 0 (51)

For the functions ψ1
0 in the D1 domain and ψ2

0 in the D2 domain, we have obtained for
∀y ∈ [h, h + hsp], t ∈ [0, t1] the solutions

ψ1
0 = A1

0 1(t) +
∫ 1

0

1
ω

sp
1
[−a(1− θ) + f0θ] dθ + x((U0 − at)(1− θ) + f0tθ), (52)

when x ∈ [−l, 0] and

ψ2
0 = A2

0 1(t) +
∫ 1

0

1
ω

sp
1
[ f0(1− θ)− aθ] dθ + x( f0t(1− θ) + (U0 − at)θ) (53)

when x ∈ [0, l], for θ =
t
t1

.

For t ∈ [t1, ts] and denoting θ =
t− t1

ts − t1
, the functions ψ1

0 and ψ2
0 have the shape

ψ1
0 = A1

0 2(t) + x((U0 − at)(1− θ) + f0tθ), ∀x ∈ [−l, 0],
ψ2

0 = A2
0 2(t) + x( f0t(1− θ) + (U0 − at)θ), ∀x ∈ [0, l],

(54)

where A2
01(t) = A1

01(t) = c11er1t + c12er2t; A2
02(t) = A1

02(t) = c21er1t + c22er2t.
The free surface, depicted in Figure 5 for t ∈ [0, 0.4] s and t ∈ [0, 0.9] s, is determined

by the relationship
∂η

∂t
+ gη = 0 for y = η(x, t), with ηi = ηi

0 + ∑n ηi
n(x, t) and i = 1, 2 the

free surfaces in the two domains D1 and D2 .
According with the method of fundamental solutions used in (20), we obtain:

ηi
0 = − 1

g
∂ψi

0
∂t
− 1

g
∂ψ f

∂t
, i = 1, 2. (55)

where

− 1
g

∂ψ f

∂t
=

∞

∑
n=0

H cos(λsp
n (x + l)) cos(ωsp

n t) (56)

Additionally, for t ∈ [0, t1], we have

− 1
g

∂ψ1
0

∂t
= − 1

g

[
Ȧ1

0 1(t) + x
(
−a + 2( f0 + a)

t
t1
− U0

t1

)]
, ∀x ∈ [−l, 0],

− 1
g

∂ψ2
0

∂t
= − 1

g

[
Ȧ2

0 1(t) + x
(

f0 +
U0

t1
− 2( f0 + a)

t
t1

)]
, ∀x ∈ [0, l],

(57)
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and for t ∈ [t1, ts], one obtains

− 1
g

∂ψ1
0

∂t
= − 1

g

[
Ȧ1

0 2(t) + x
(
−a + 2( f0 + a)

t
ts − t1

− U0

t1

)]
, ∀x ∈ [−l, 0],

− 1
g

∂ψ2
0

∂t
= − 1

g

[
Ȧ2

0 2(t) + x
(

f0 +
U0

t1
− 2( f0 + a)

t
ts − t1

)]
, ∀x ∈ [0, l].

(58)

The relationships developed, (57) and (58), indicate a dependency of the height and
number of waves created within a vehicle tank on the presence or absence of a wave
breaker, its geometry also being important. The same dependency was also determined
experimentally, following the measurement of the noise level recorded under different
running conditions, according to the data in Table 2.

In [24,25], a correlation between the sound intensity due to sloshing and the pressure

fluctuation dp/dt has been found, and connecting to (49),
∂η

∂t
=

1
ρg

∂p
∂t

, the variation in

time and space was depicted in Figure 5.

(a) with baffle in the two areas of integration,
time interval 0.4 s.

(b) with baffle in the two areas of integration,
time interval 0.9 s.

Figure 5. Evolution of the free surface (a) t ∈ [0, 0.4] s, (b) time t ∈ [0, 0.9] s.

Table 2. Initial conditions for the cases considered during acoustic measurements.

No. Case Presence of Baffle Volum of Speed before
Liquid [L] Braking [km/h]

1 S1 no baffle 15 10
2 S2 no baffle 15 30
3 S3 no baffle 25 10
4 S4 no baffle 25 30
5 S5 no baffle 35 10
6 S6 no baffle 35 30
7 S7 no baffle 45 10
8 S8 no baffle 45 30
9 F1 Baffle included 15 10
10 F2 Baffle included 15 30
11 F3 Baffle included 25 10
12 F4 Baffle included 25 30
13 F5 Baffle included 35 10
14 F6 Baffle included 35 30
15 F7 Baffle included 45 10
16 F8 Baffle included 45 30

According to Figure 5, when a tank has a wave breaker, a single large wave is observed
and the liquid tends to move towards the sides. Theoretically, by incorporating a wave
breaker into a tank, the noise caused by the sloshing phenomenon is reduced due to the
lack of waves. By analysing Figures 6 and 7, it can be seen that the free surface behaves
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differently, with a significant reduction in the number of waves in the case of a wave
breaker being integrated. This results in a reduction in the discomfort caused by the
sloshing phenomenon. Negative values on the X-axis are a result of the chosen axis system,
where −0.25 m and +0.25 m represent the tank walls.

The reference level is set to the level of the liquid at rest (H level, as seen in Figures 1b
and 4b) and positive and negative variations from this level are observed after braking.
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)
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)
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6
)
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)

(b)
Figure 6. Evolution of wave amplitude (free surface section in direction X). (a) Evolution of wave
amplitude for a tank without a baffle. (b) Evolution of wave amplitude for a tank with a breaker in-
cluded.

(a) (b)
Figure 7. Evolution of wave amplitude. (a) Behaviour of the free surface for a slosh noise baffle-free
tank. (b) Behaviour of the free surface for a slosh noise baffle in the tank.

As can be seen in Figure 7a, there are ripples on the free surface, these being unfrac-
tionated surfaces (the gradient on the curves does not change its convexity), which are
smoother, and thus no noise is generated by the collision of small waves. The greater
the distance between two peaks of the amplitude, the flatter the free surface is, and thus
non-noisy.

In the considered model, the study is carried out in the centre of the tank, not taking
into account that the vehicle tanks have an upper limit, given by the tank ceiling. For
future research, it is an advanced study taking into account the model’s upper limitation,
considering that when the wave returns, the potential movement becomes turbulent.

All the graphics in the paper were created by the authors, and the computations were
made using MatlabR2022b codes.

5. Conclusions and Future Researches

For people travelling in a car with a stop-start system, the slosh noise caused by
the movement of fuel in the tank is considered to be an annoyance. The intensity of this
phenomenon increases during braking and accelerating.

The paper studies the movement of fuel in the tank, analysing both the waves and
the sound generated during the accelerating and braking of the car. The associated phe-
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nomenon, called the slosh noise effect, is studied through analytical and approximate
models. The analytical mathematical model of the free surface of the fluid during move-
ment includes the determination of the potential function and the velocity components, in
two different variants, with and without wave breakers. The model of the fuel movement
in a tank containing wave breakers (baffles) was developed by dividing the fuel volume
into two regions, separated by the baffle surfaces and defining both boundary and jump
conditions on the baffle surfaces.

Based on the analytical models (for tanks with and without baffles), graphical represen-
tations of the free surface movement were made in both variants, with and without baffles.
Comparing the graphs of the waves in each case, it is observed that the introduction of the
baffles reduces the phenomenon by half (see Section 4). Thus, it is found that the amplitude
of the movement of the free surface of the fluid in the case of the implementation of a
wave breaker solution of the type of baffle is reduced by half compared to the movement
of the free surface of the fluid contained in a fuel tank that does not present anti-blinking
technical solutions.

The theme represents the creation of a new baffle design for fuel tanks in the auto-
motive industry that can be adapted to already existing fuel tanks without modifying the
original design. The baffle is needed to decrease noise generated by the fuel waves inside
the fuel tank. Its effect is shown in Figure 8, confirmed by physical experimental tests [20].

(a)

(b)
Figure 8. Noise variation based on a technical solution implemented inside the tank. (a) Fuel tank
without any slosh noise solution. (b) Patented slosh noise baffle integrated in the tank.

The comparative analysis by the amplitude and free surface leads to new future
research directions on the correspondence between free surface movement and the noise
level generated through the module of the velocity, and the nondimensional simplified
form of the Bernoulli integral for incompressible flows:

1
2
(v f sp)2 +

(c f sp)2

γ− 1
=

1
2
(vsp)2 +

(csp)2

γ− 1
,

with γ being the ratio between specific heat at constant pressure and specific heat at constant
volume [1,26]. The Bernoulli integral allows us to make the connection between the velocity
of the fuel and the level of the sound due to the waves in the tank. As one observes from
the previous formula, for a smaller module of the velocity v f sp =

√
u2

f sp + v2
f sp results in a
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larger value for the sound speed and also in a larger value of the velocity module when

the wave breaker is introduced, meaning vsp =
√

u2
sp + v2

sp, then the speed sound becomes
smaller.

According with our notations, v sp = (usp, vsp) and v i sp = (ui
sp, vi

sp) with i = 1, 2, is
the velocity corresponding to the two domains D1 and D2 (see Section 4). For t ∈ [0, t1] and
any y ∈ [h, h + hsp], we have

u1
sp =

∂ψ1
0

∂x
= (U0 − a t)(1− θ) + f0tθ

+
∞

∑
n=1

Cn

λ
sp
n

sin(λsp
n (x + l)) cosh(λsp

n y) sin(ωsp
n t), θ =

t
t1

v1
sp =

∂ψ1
0

∂y
= −

∞

∑
n=1

Cn

λ
sp
n

cos(λsp
n (x + l)) sinh(λsp

n y) sin(ωsp
n t),

(59)

and also for t ∈ [t1, ts] and any y ∈ [h, h + hsp], the velocity components are

u2
sp =

∂ψ2
0

∂x
= (U0 − a t)θ + f0t(1− θ)

+
∞

∑
n=1

Cn

λ
sp
n

sin(λsp
n (x + l)) cosh(λsp

n y) sin(ωsp
n t), θ =

t− t1

ts − t1

v2
sp =

∂ψ2
0

∂y
= −

∞

∑
n=1

Cn

λ
sp
n

cos(λsp
n (x + l)) sinh(λsp

n y) sin(ωsp
n t).

(60)

Figure 8, expressing the result of the experimental study, and Figures 3, 5–7, describing
the results of the analytical study, lead to the conclusion that the use of the baffle reduces
the slosh noise, improving the efficiency of the tank usage. Figure 3a is compared with
Figure 5a, and Figure 3b is compared with Figure 5b.

For future studies, we aim to analyse the energy behaviour of the system through
potential energy defined in (12) and kinetic energy defined in (13) that, for the case with
the breaker solution implemented, becomes

Ue
sp =

1
2

ρgb
(∫ 0

−l
(η1

0)
2(x, t) +

∫ l

0
(η1

0)
2(x, t)

)
d x,

Te
sp =

1
2

ρg
∫

V
(∇ψsp)

2d V.
(61)

and compare the two solutions from this point of view.
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Abbreviations
The notations used all over the paper are the following:
m mass of the material systemM and ρ(x, t) the mass density
ν, g molecular viscosity in [kg m−1 s−1 ] and gravitational acceleration
L , b tank width [mm] and tank length [mm]
η amplitude of the free surface of the fluid inside the tank
x, v, a position, velocity and acceleration of the material point
vt velocity of the tank
n, f normal exterior and external forces acting on the surface ∂D
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