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Abstract: Recently, a swarm-based method called Artificial Hummingbird Algorithm (AHA) has
been proposed for solving optimization problems. The AHA algorithm mimics the unique flight
capabilities and intelligent foraging techniques of hummingbirds in their environment. In this paper,
we propose a modified version of the AHA combined with genetic operators called mAHA. The
experimental results show that the proposed mAHA improved the convergence speed and achieved
better effective search results. Consequently, the proposed mAHA was used for the first time to find
the global maximum power point (MPP). Low efficiency is a drawback of photovoltaic (PV) systems
that explicitly use shading. Normally, the PV characteristic curve has an MPP when irradiance is
uniform. Therefore, this MPP can be easily achieved with conventional tracking systems. With shad-
ows, however, the conditions are completely different, and the PV characteristic has multiple MPPs
(i.e., some local MPPs and a single global MPP). Traditional MPP tracking approaches cannot distin-
guish between local MPPs and global MPPs, and thus simply get stuck at the local MPP. Consequently,
an optimized MPPT with a metaheuristic algorithm is required to determine the global MPP. Most
MPPT techniques require more than one sensor, e.g., voltage, current, irradiance, and temperature
sensors. This increases the cost of the control system. In the current research, a simple global MPPT
method with only one sensor is proposed for PV systems considering the shadow conditions. Two
shadow scenarios are considered to evaluate the superiority of the proposed mAHA. The obtained
results show the superiority of the proposed single sensor based MPPT method for PV systems.

Keywords: modified artificial hummingbird algorithm; metaheuristics; maximum power point
tracking; single sensor

MSC: 68T99; 68U99

1. Introduction

Optimization is used to solve many problems by maximizing or minimizing objective
functions. Various optimization methods are used to find the optimal solution. Metaheuris-
tic algorithms (MHs) are optimization tools in which various methods are used to increase
the effectiveness of search processes [1–4]. Although it is difficult to find an exact solution
in most cases, algorithms can provide the optimal global solution [5].

In this context, MHs can be divided into two categories: stochastic and determin-
istic methods. If the gradient is available, deterministic algorithms could be an option.
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Since these different techniques are based on established computations, it can be assumed
that the optimization procedure is repeatable. Each time the algorithm is run with the
same initial conditions, the optimization path and result are identical, making the process
replicable. Stochastic methods, on the other hand, have random properties that generate
different optimization pathways, leading to different optimized solutions even if the initial
conditions are the same for each run. The main advantage of stochastic algorithms is
that they do not require gradient information. However, accessing gradient information
is becoming increasingly difficult as problems become more complex. Researchers have
developed stochastic algorithms that do not require gradient information. The category
of MHs was developed due to the advancement of stochastic techniques [6]. Some stable
MHs, including genetic algorithm (GA) [7], particle swarm optimization (PSO) [8], bee
colony optimization (BCO) [9], and differential evolution [10], have been used to solve
various optimization problems. For example, MHs have excelled in several real-world
applications, such as medicine [11,12], COVID-19 [13,14], feature selection [15,16], and
image segmentation [17], as well as combinatorial problems [18–20].

Recently, an efficient swarm-based method called artificial hummingbird algorithm
(AHA) has been proposed for solving optimization problems [21]. The source of inspiration
of AHA is to mimic the unique flight capabilities and intelligent foraging behavior of
hummingbirds in their environment. Although AHA has been used to solve various
optimization problems, AHA still suffers from some drawbacks, such as (1) fast convergence
and robust utilization of space, (2) fast convergence to the found optimal solution, (3) lack
of self-adaptation of convergence rate. The aforementioned drawbacks cause the algorithm
to fall victim to the problem of premature convergence, which leads to further problems,
such as the algorithm getting stuck in regions with local optima, which prevents it from
finding the nearest/best solutions.

In this paper, the genetic operators are combined with the original AHA algorithm
to propose a modified version called mAHA. The role of genetic operators is to drive the
solution from local to global to improve the position and enable trapping in local search,
increasing the diversity of algorithms and avoiding local solutions in the comparison
between a new and a previous solution. The mAHA was used to solve the IEEE CEC’20 test
suite for optimization testing, and the results were compared with several stable methods,
including SMA [22], HHO [23], GWO [24], WOA [25], and the original AHA [21]. The
experimental results show that the proposed mAHA achieves (1) effective search results,
(2) lower computational cost, (3) good convergence speed, (4) balanced exploration and
exploitation behavior, and (5) avoidance of local optimum.

Electric power generation has been driven by new and renewable energy sources
(RES), which have seen rapid growth in the energy industry in recent years. Their ability to
provide clean, renewable, maintenance-free, ubiquitous, and low-cost energy has increased
the popularity of renewable energy [26]. Moreover, renewables can improve the reliability
and self-healing operation of utility grids through their reconfiguration into microgrids
and nanogrids. The installed capacities of renewable energy sources are increasing rapidly
worldwide. Photovoltaic (PV) capacity will increase by 179 TWh in 2021, a 22% growth
from 2020. It accounts for 3.6% of global electricity generation [27]. PV electricity is the third
largest energy source after hydropower and wind. It is expected that PV generation will be
about 7400 TWh in 2030. Tracking the maximum power point (MPP) is very important for
increasing the efficiency of the PV system. Under normal conditions, i.e., uniform irradiance
distribution, the power-voltage characteristic has only a single MPP [28]. This MPP can be
easily extracted using conventional MPPT techniques such as incremental resistance and
hill climbing. The situation is quite different for shaded conditions. Especially for large
PV systems, the probability of the presence of shade due to nearby trees or buildings is
very high [29]. The shadow problem reduces the PV output power. It is difficult to avoid
the shading. Therefore, a bypass diode is used to mitigate the shadow and protect the PV
system. During shading, the bypass diode is on and provides an additional path to current
draw. However, during normal operation, the bypass diode is off and has no effect [30].
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In summary, the power-voltage curve with shadow has some local MPP and one global
MPP. The conventional MPP tracking approaches cannot distinguish between local and
global MPPs and therefore simply stop at the local MPP. Consequently, an optimized MPPT
with a metaheuristic algorithm is required to determine the global MPP. The previous
algorithms that have been used to mitigate the shadow effect are the Marine Predator
algorithm [31], Search & Rescue algorithms [32], Group Teaching Optimization [33], and
the Firefly algorithm [34].

The disadvantage of previous techniques is that more than one sensor is needed,
e.g., voltage, current, irradiance, and temperature sensors. El-Helw et al. [35] proposed
a global MPPT method using a neural network that requires six sensors: four irradiance
sensors, voltage, and current. Moreover, the proposed method depends on the PV module
characteristics. In the same direction, Nafeh [36] proposed an MPPT method using per-
turbation and observation, which requires five sensors: two voltage sensors, two current
sensors, and one temperature sensor. Moreover, the shadow problem was not considered.
Camilo et al. [37] proposed an MPPT method based on the Monod equation. This technique
requires three sensors: current, temperature and radiation. Moreover, the shadow condition
is not considered. To fill the defined research gap, a global MPPT method with one sensor
for PV systems is proposed in this paper. For the first time, a mAHA is proposed to mitigate
the shadow and determine the global MPP in PV systems.

The contributions of the paper can be outlined as follows.

1. In this paper, an effective method called mAHA is proposed.
2. The proposed mAHA introduces the mechanisms of genetic operators (crossover and

mutation selection) to enhance AHA’s performance in increasing the diversity of the
population and avoiding local searches.

3. The proposed mAHA was adopted to address the ten global optimization tasks from
the CEC’20 test suite and was compared with other optimization algorithms and the
original AHA algorithm.

4. For the first time, a mAHA was used in the global MPPT optimization of PV systems
with a sensor.

5. The superiority of the proposed MPPT technique has been demonstrated.

The remaining sections are organized as follows: The artificial hummingbird algorithm
(AHA) is discussed in Section 2. Section 3 discusses the proposed mAHA algorithm.
Section 4 presents the evaluation results, including the CEC’20 test suite. Section 5 present
the maximum power point tracking (MPPT) application results. A brief discussion is
introduced in Section 6. Finally, Section 7 presents the conclusions and future work.

2. Artificial Hummingbird Algorithm

In this section, we explain the mathematical model of AHA, which is biologically in-
spired by the smart behavior of hummingbirds and developed to solve various optimization
problems [21]. The three basic phases of the AHA algorithm is explained below:

Food sources: The hummingbird frequently evaluates the characteristics of the sources,
such as the nectar quality/quantity of each nectar replenishment rate, the flowers, and the
last time the flowers were visited, to select a suitable source from a group of food sources.
For simplicity, it is assumed that each food source in AHA has the same type and number
of flowers—the solution vector represents the food source, and the function fitness value
represents the nectar fill rate. Accordingly, the higher the nectar fill rate, the better the
fitness value.

Hummingbirds: each hummingbird has a specific food source from which it can
only feed, so the food source and the hummingbird are constantly in the same place. The
hummingbird can register the location and nectar replenishment of a particular food source
and pass this knowledge on to other hummingbirds throughout the population. In addition,
each hummingbird could remember how long ago it last visited a particular food source.

Visit table: for different hummingbirds, the visit frequency for each food source is
recorded in the visit table and indicates how long it has been since the same hummingbird
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visited a particular food source. For a hummingbird, the food source with the highest
visitation rate is prioritized for visitation. To obtain more nectar, among the food sources, a
hummingbird should visit the one that has the highest nectar replenishment rate with the
same highest visitation level. Moreover, the visitation table is updated at each iteration to
find the target food source.

Moreover, the mathematical phases of the three foraging behaviors of hummingbirds
including the following phases: (1) guided foraging, (2) territorial foraging, and (3) migrat-
ing foraging are discussed in the following subsections. In Algorithm 1, the generic AHA
structure is provided [21].

Algorithm 1: Structure of AHA.

Initialization
While stop criterion is not satisfied
Guided foraging
Territorial foraging
Migration foraging

End

2.1. The Mathematical Model of AHA Algorithm
2.1.1. Initialization Phase

The n food sources construct the population of n hummingbirds, and is initialized
randomly as defined in [38] by Equation (1):

xi = Low + r · (Up− Low) i = 1, . . . , (1)

where for d-Dim problem, the Low and Up represent the upper and lower boundaries. The
variable r is a random vector within [0, 1], and the ith food source position is represented
by xi which is the solution of a specific problem. Accordingly, the visit table is defined
by Equation (2):

VTi,j =

{
0 if i 6= j
null i = j

i = 1, . . . , n; j = 1, . . . , n (2)

where for i = j, VTi,j = null refers to hummingbird is taking food from its particular food
source; for i 6= j, VTi,j = 0 refers to jth food source that has just been visited by the ith
hummingbird in this current iteration.

2.1.2. Guided Foraging Phase

By incorporating a direction-switching vector into the AHA algorithm, three flight ca-
pabilities are used as follows: omnidirectional, diagonal, and axial flights are appropriately
described during foraging. This vector is used to regulate the availability of one or more
directions in a dimension space. Axial flight shows that hummingbirds can fly along any
coordinate axis, while diagonal flight, which is determined by any two of three axes, allows
hummingbirds to fly from one corner of the rectangle to the other.

To be specific, all three flight patterns can be adapted to d-Dim, where axial flying is
formulated by Equation (3) as:

D(i) =

{
1 if i = randi([1, d])
0 else

i = 1, . . . , d (3)

Moreover, diagonal flight is formulated by Equation (4) as:

D(i) =

{
1 if i = P(j), j ∈ [1, k], P = randperm (k), k ∈ [2, dr1 · (d− 2)e+ 1]
0 else

i = 1, . . . , d (4)
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Then, omnidirectional flight is formulated by Equation (5) as:

D(i) = 1 i = 1, . . . , d (5)

where randi([1, d]) produces randomly an integer within 1 and d, a random integer per-
mutation within 1 and k is generated by the randperm(k), and r1 is a random number
within (0, 1]. Diagonal flight in a d-Dim is placed within a hyperrectangle that is bound by
any 2 to d-1coordinate axes.

Moreover, the mathematical modelling for the guided foraging behavior and candidate
food source is defined as follows:

vi(t + 1) = xi,tar(t) + a · D · (xi(t)− xi,tar(t)) (6)

a ∼ N(0, 1) (7)

where the ith food source position at time t is represented by xi(t). The target food source
at ith hummingbird is represented by xi,tar(t), the variable a is a guided factor with mean
equal 0 and standard deviation equal 1.

Accordingly, the position of ith food source is updated as follows:

xi(t + 1) =

{
xi(t) f (xi(t)) ≤ f (vi(t + 1))
vi(t + 1) f (xi(t)) > f (vi(t + 1))

(8)

where the function fitness value is indicated by f (·). The AHA’s guided foraging method
is presented in Algorithm 2 [21].

Algorithm 2: Guided foraging strategy of AHA.

For i th hummingbird from 1 to n
Perform Equation (6)
If f (vi(t + 1)) < f (xi(t))

xi(t + 1) = vi(t + 1)
For j th food source from 1 to n(j 6= tar, i)

Visit_table (i, j) = Visit_table (i, j) + 1
End
Visit_table (i, tar ) = 0
For j th food source from 1 to n

Visit_table (j, i) = max
l∈n and l 6=j

( Visit_table (j, l)) + 1

End
Else

For j th food source from 1 to n(j 6= tar , i)
Visit_table (i, j) = Visit_table (i, j) + 1

End
Visit_table (i, tar ) = 0
End

End

2.1.3. Territorial Foraging Phase

The local search within territorial foraging phase and the candidate food source is
defined by the mathematical formula:

vi(t + 1) = xi(t) + b · D · xi(t) (9)

b ∼ N(0, 1) (10)
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where the territorial factor is a normal distribution N(0, 1), represented by b with mean
equal 0 and standard deviation equal 1. The territorial foraging phase of AHA algorithm is
reported in Algorithm 3 [21].

Algorithm 3: Territorial foraging strategy of AHA.

For i th hummingbird from 1 to n
Perform Equation (9)
If f (vi(t + 1)) < f (xi(t))
xi(t + 1) = vi(t + 1)

For j th food source from 1 to n(j 6= i)
Visit_table (i, j) = Visit_table (i, j) + 1

End
For j th food source from 1 to n

Visit_table (j, i) = max l∈n and l 6=j(Visit_table (j, l)) + 1
End

Else
For j th food source from 1 to n(j 6= i)

Visit_table (i, j) = Visit_table (i, j) + 1
End

End
End

2.1.4. Migration Foraging Phase

Randomly, from the source, the obtained migration foraging with the lowest nectar-
refilling rate to a new one is defined as:

xwor(t + 1) = Low + r · (Up− Low ) (11)

where the food source is represented by xwor in the population with the lowest nectar-
refilling rate. Moreover, the migration foraging phase of AHA algorithm is reported in
Algorithm 4 [21].

Algorithm 4: Migration foraging strategy of AHA.

If mod(t, 2n) == 0
Perform Equation (11)

For j th food source from 1 to n(j 6= wor)
Visit_table (wor,j) = Visit_table (wor,j) + 1

End
For j th food source from 1 to n

Visit_table (j, wor) = maxl∈n and l 6=j(Visit_table (j, l)) + 1
End

End

In AHA, the following formula is used to define the migration coefficient in relation to
population size as follows:

M = 2n (12)

3. The Proposed mAHA Algorithm

In this section, the AHA algorithm is combined with genetic operators with AHA
algorithm to build a new version called mAHA. To be specific, the AHA includes three
stages: (1) Search agents are controlled; (2) search agents are produced for the hybrid
method; (3) the new population based on the previous step is updated.

In the update step, all AHA search agents control each position. Here, the genetic
operators produce more populations to avoid local optimality and affect AHA positions.
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Creating a new hybrid search agent requires creating a new hybrid individual from the
current AHA as shown in Equation (13).

Xhybrid = α× Xi + (1− α)× Si (13)

where α value between [0, 1] indicates AHA weight, Xi is AHA position, and Si represents
AHA individual position based on the operators, so this Equation (13) indicates the effects
of them. The search agent is updated using a greedy selection to select the optimal candidate
solution. To improve the quality of solutions and performance of the proposed algorithm.
The reasons that motivate us to present an alternative version of AHA called mAHA
algorithm are described in the following subsections.

3.1. Shortcomings of the Original AHA

Although the original AHA algorithm exhibits rapid convergence during the explo-
ration of the optimization problem space, where the solutions in each iteration move rapidly
toward the optimal solution found at the current time, this solution may not be the best for
the entire problem space. Moreover, the convergence of the algorithm is not self-adjusted
to encourage the proposed solutions to explore the remaining regions in the problem space,
but the convergence rate of AHA is not self-adjusted, which causes the algorithm to suffer
from the problem of premature convergence. This leads to other problems, such as the
algorithm getting stuck in regions with local optima and not being able to identify the
closest/best solutions. For complex optimization problems, the algorithm AHA, like other
metaheuristic optimization methods, is unable to adequately explore the entire search space
in its current state [2].

Therefore, to address these drawbacks of AHA, this paper proposes an alternative
version called modified artificial hummingbird algorithm (mAHA) by integrating the
genetic operator’s techniques. Genetic operators control the solution from local to global
using Equations (15) and (20) to enhance the position and permit the trapping in local
search, thereby increasing the variety of algorithms and avoiding local solutions compared
between a new and previous one. For more diversity, genetic algorithm operators are used
to integrate two mutant vectors, namely yMut and zMut, to generate a new child wCross as
described in Equation (19). Offspring fitness value: yMut, zMut, and wCross based on the
selection operator Equation (20) were compared to get the best prey px. To identify the
best candidate solution, the search space was boosted by exploring new regions, so several
positions are updated by Equations (19) and (20). The stop condition is the maximum
iterations that permit for evaluating the performance of the mAHA algorithm. Upon
completing the mAHA process, the best position is returned. Algorithm 5 demonstrates
how the best solution is proposed by calculating the objective function using Equation (14)
for many new populations. mAHA fitness ( f obj) is indicated as defined as:

f obj = α + β (14)

where β = α and fobj > T, where T is the greatest iteration. However, neither the algorithm
performance nor the optimization problem space is affected.

Additionally, plots of convergence curves in most testing functions show a slow diver-
gence of the original AHA during exploitation at most function evaluations, demonstrating
that the approach is trapping in local rather than global regions.

3.2. Architecture of the Proposed mAHA Algorithm

The main goal of this research is to propose an efficient alternative version of the
original AHA to solve the problems mentioned in the previous section. However, it
improves the algorithm AHA, by increasing the exploration time and maintaining diversity
using the genetic operator strategy.

The mathematical modeling and steps of the mAHA are formulated in Algorithm 5.
The algorithm starts with a random starting population of size 2N. In the modified mAHA,
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the solutions of the population are evolved first, followed by the individual phase from the
original AHA. At each iteration, a linear population reduction is applied to manage the
population diversity, and the same approach is repeated until the optimization is complete.
The following subsections explain the genetic operators.

Genetic Operators

Several algorithms use evolutionary operators, especially the two basic algorithms
namely, differential evolution and genetic algorithms. Some examples of such operators
are mutation as Bit inversion, crossover as single-point crossover and selection.

Mutation: The mutation operation is built using the results of AHA tasks, as the solu-
tion goal Position. A number between 0 and 1 is produced at random for each component.
The target agent element position is considered when the value reaches the mutation rate
(zeta). If this value is less than the mutation rate (zeta), the old vector is replaced with a
component of the y or z vectors. The mutation operator is determined by applying the
following formula: where jth dimension is known by lbj and ubj, rv have D components
generated by randomly between (0, 1).

yMut =

{
position if rand 1 ≥ ζ

y else
and zMut =

{
position if rand 2 ≥ ζ

z else
(15)

Where :
{

ζ = 1
T ;

y =
∣∣position− xi

l

∣∣ (16)

yMut =

{
position if ρ1 ≥ ζ

y else
and zMut =

{
position if ρ2 ≥ ζ

z else
(17)

Where :


ζ = t

T ;
y =| (position)− xi

l |
z = y− rv

(18)

Crossover: The crossover is the combination of two individuals to produce more
variety. To generate a new offspring wCross, a linear combination with random integers tau
and tau’ is used.

wCross = τ ∗ yMut +
(
1− τ′

)
∗ zMut and τ 6= τ′ (19)

Selection: The selection type used in AHA is a greedy selection, which is based on
differential evolution. When functions of evolution (mutation and crossover) are accessed,
the offspring are created. The child and parent’s performance are then compared to
determine which is the best. Finally, if the parent’s performance is good, then they have a
chance to stay in the population. The rule that defines greedy selection is as follows:

pi
x+1 =



yMut if fit (yMut) < fit
(

P(x
)i
)

zMut if fit (zMut) < fit
(

P(x

)i
)

wCross if fit (wCross ) < fit
(

P(xx
)i
) (20)

where p(x) is the current position and (pi
x+1) is the next position.

Eventually, the pseudo code of the proposed mAHA algorithm is given in Algorithm 5.
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Algorithm 5: The proposed mAHA.

1- Initialization phase based on Equations (1) and (2)
2- While stop criterion is not satisfied

3- Calculate the fitness of all individuals position← the best search agent.
4- Calculate guided foraging using Algorithm 2
5- Calculate territorial foraging using Algorithm 3
6- Calculate migration foraging using Algorithm 4
7- t = t + 1

8- End While
9- Return the best criteria

4. Experimental Stage 1: Statistical Results for CEC’20 Test Suite

Several metaheuristic algorithms (MHs) are applied to solve different optimization
problems such as adaptive gaining sharing knowledge [39], differential evolution through
Bayesian [40], adapted evolutionary algorithm [41], and the hybrid gaining-sharing knowl-
edge [42]. In this study, the IEEE CEC’20 test suite [43] is one of the proper test metrics,
as it tests the optimizer performance over ten various search spaces, the performance of
the proposed mAHA is assessed over the CEC’20 test suite on Dim 10 and Dim 20. The
experimental results of the proposed mAHA on the CEC’20 test suite is compared to the
results obtained from set of the state-of-the-art optimization algorithms, namely the slime
mold algorithm (SMA) [22], Harris hawks optimization (HHO) [23], grey wolf optimizer
(GWO) [24], whale optimization algorithm (WOA) [25], and the original AHA [21].

4.1. Statistical Results Analysis

Further, the statistical metrics includes the average, and the standard deviation (STD)
methods are applied for the best-so-far solutions reached in each run. Tables 1 and 2 exhibit
these statistical results for the proposed mAHA algorithm and the other competitors for
each CEC’20 test suite with the Dim 10 and Dim 20 respectively. As the CEC’20 test
suite are minimization problems, the best results are the lowest values. The introduced
mAHA approach outperformed the other comparative algorithms in solving most of the
CEC’20 test suite in terms of mean and STD. Consequently, the proposed mAHA algorithm
achieved the first rank in the Friedman mean rank-sum test. Moreover, Table 3 reports
the computation time that has been obtained by the proposed mAHA and the competitor
algorithms for 30 runs with Dim 10 and Dim 20 on the CEC’20 test suite.
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Table 1. The statistical results on the CEC’20 test suite that have been obtained by the proposed mAHA and the competitor algorithms for 30 runs with Dim 10.

Functions
SMA GWO WOA HHO AHA mAHA

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

F1 9.34 × 103 3.93 × 103 3.80 × 107 1.08 × 108 2.75 × 106 5.04 × 106 6.14 × 105 2.58 × 105 5.64 × 101 5.45E × 101 1.14 × 10−1 5.49 × 101

F2 1.58 × 103 1.58 × 102 1.60 × 103 1.74 × 102 2.26 × 103 3.85 × 102 2.03 × 103 2.69 × 102 1.46 × 101 4.19 × 101 1.24 × 101 1.95 × 101

F3 7.24 × 102 4.89 × 10 7.32 × 102 1.27 × 101 7.66 × 102 1.47 × 101 7.89 × 102 1.93 × 101 5.61 × 101 1.56 × 101 1.03 × 101 1.18 × 101

F4 1.90 × 103 3.95 × 10−1 1.90 × 103 2.46 × 101 1.91 × 103 2.77 × 101 1.91 × 103 2.75 × 101 3.77 × 101 4.77 × 10−1 4.29 × 101 5.12 × 10−2

F5 7.14 × 103 5.13 × 103 8.17 × 103 5.51 × 103 2.15 × 105 2.38 × 105 6.00 × 104 4.42 × 104 2.25 × 101 4.32 × 101 1.31 × 101 4.32 × 101

F6 1.60 × 103 3.08 × 10−1 1.61 × 103 2.41 × 101 1.61 × 103 8.51 × 101 1.61 × 103 9.13 × 101 1.00 × 101 5.20 × 101 1.75 × 101 3.55 × 101

F7 2.52 × 103 3.31 × 102 8.00 × 103 4.41 × 103 5.66 × 104 5.03 × 104 2.03 × 104 2.66 × 104 1.38 × 101 4.83 × 101 1.19 × 101 3.06 × 101

F8 2.31 × 103 2.30 × 103 2.31 × 103 2.30 × 103 2.37 × 103 2.31 × 103 2.31 × 103 2.31 × 103 6.59 × 101 4.50 × 101 3.85 × 101 4.44 × 101

F9 2.76 × 103 6.12 × 10 2.74 × 103 1.15 × 101 2.76 × 103 5.75 × 101 2.81 × 103 1.24 × 102 1.38 × 101 3.27 × 101 5.62 × 101 2.86 × 101

F10 2.93 × 103 2.61 × 101 2.94 × 103 1.49 × 101 2.95 × 103 1.18 × 101 2.92 × 103 2.44 × 101 2.48 × 101 2.17 × 101 1.32 × 101 1.16 × 101

Friedman 6.2 2.3 4.7 6.8 3.1 1.2

Rank 5 2 4 6 3 1

Table 2. The statistical results on the CEC’20 test suite have been obtained by the proposed mAHA and the competitor algorithms for 30 runs with Dim 20.

Functions
SMA GWO WOA HHO AHA mAHA

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

F1 9.54 × 103 3.96 × 103 3.83 × 107 1.09 × 108 2.78 × 106 5.09 × 106 6.18 × 105 2.65 × 105 5.74 × 101 5.55 × 101 1.24 × 10−1 5.52 × 101

F2 1.70 × 103 1.61 × 102 1.65 × 103 1.77 × 102 2.29 × 103 3.89 × 102 2.08 × 103 2.78 × 102 1.56 × 101 4.29 × 101 1.29 × 101 2.05 × 101

F3 7.44 × 102 4.92 × 101 7.36 × 102 1.29 × 101 7.68 × 102 1.49 × 101 7.92 × 102 2.03 × 101 5.68 × 101 1.66 × 101 1.09 × 101 1.28 × 101

F4 2.10 × 103 3.98 × 10−1 1.93 × 103 2.48 × 101 1.96 × 103 2.79 × 101 1.98 × 103 2.85 × 101 3.78 × 101 4.80 × 10−1 4.33 × 101 5.52 × 10−2

F5 7.34 × 103 5.18 × 103 8.19 × 103 5.56 × 103 2.18 × 105 2.40 × 105 6.09 × 104 4.47 × 104 2.28 × 101 4.42 × 101 1.38 × 101 4.42 × 101

F6 1.80 × 103 3.128 × 10−1 1.66 × 103 2.48 × 101 1.66 × 103 8.58 × 101 1.69 × 103 9.19 × 101 1.04 × 101 5.33 × 101 1.79 × 101 3.65 × 101

F7 2.72 × 103 3.378 × 102 8.03 × 103 4.46 × 103 5.68 × 104 5.10 × 104 2.08 × 104 2.65 × 104 1.40 × 101 4.90 × 101 1.28 × 101 3.10 × 101

F8 2.51 × 103 2.34 × 103 2.36 × 103 2.36 × 103 2.39 × 103 2.30 × 103 2.39 × 103 2.37 × 103 6.62 × 101 4.62 × 101 3.99 × 101 4.45 × 101

F9 2.90 × 103 6.188 × 101 2.77 × 103 1.18 × 101 2.79 × 103 5.85 × 101 2.91 × 103 1.29 × 102 1.43 × 101 3.38 × 101 5.77 × 101 2.90 × 101

F10 3.13 × 103 2.68 × 101 2.97 × 103 1.52 × 101 3.09 × 103 1.20 × 101 2.99 × 103 2.49 × 101 2.52 × 101 2.29 × 101 1.44 × 101 1.30 × 101

Friedman 6.4 2.6 4.9 7.1 3.4 1.4

Rank 5 2 4 6 3 1
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Table 3. The CPU time that has been obtained by the proposed mAHA and the competitor algorithms for 30 runs with Dim 10 and Dim 20 on the CEC’20 test suite.

Functions
SMA GWO WOA HHO AHA mAHA

Dim 10 Dim 20 Dim 10 Dim 20 Dim 10 Dim 20 Dim 10 Dim 20 Dim 10 Dim 20 Dim 10 Dim 20

F1 6.24 × 101 6.63 × 101 6.40 × 101 6.77 × 101 6.20 × 101 6.34 × 101 6.24 × 101 6.48 × 101 6.25 × 101 6.50 × 101 6.35 × 101 6.98 × 101

F2 3.38 × 101 3.50 × 101 3.40 × 101 3.60 × 101 3.30 × 101 3.55 × 101 3.28 × 101 3.45 × 101 3.41 × 101 3.55 × 101 3.56 × 101 3.70 × 101

F3 3.98 × 101 4.10 × 101 4.08 × 101 4.20 × 101 4.02 × 101 4.30 × 101 4.03 × 101 4.20 × 101 4.11 × 101 4.40 × 101 4.20 × 101 4.50 × 101

F4 7.30 × 10−1 7.40 × 10−1 7.20 × 10−1 7.50 × 10−1 7.10 × 10−1 7.40 × 10−1 7.15 × 10−1 7.40 × 10−1 7.29 × 10−1 7.40 × 10−1 7.40 × 10−1 7.60 × 10−1

F5 4.24 × 101 4.43 × 101 4.34 × 101 4.54 × 101 4.20 × 101 4.42 × 101 4.20 × 101 4.44 × 101 4.34 × 101 4.54 × 101 4.40 × 101 4.64 × 101

F6 8.07 × 101 8.17 × 101 8.27 × 101 8.47 × 101 8.17 × 101 8.27 × 101 8.02 × 101 8.19 × 101 8.20 × 101 8.47 × 101 8.47 × 101 8.67 × 101

F7 4.34 × 101 4.54 × 101 4.37 × 101 4.57 × 101 4.30 × 101 4.44 × 101 4.30 × 101 4.54 × 101 4.37 × 101 4.50 × 101 4.50 × 101 4.74 × 101

F8 4.18 × 101 4.30 × 101 4.20 × 101 4.34 × 101 4.24 × 101 4.44 × 101 4.29 × 101 4.44 × 101 4.30 × 101 4.48 × 101 4.40 × 101 4.60 × 101

F9 8.40 × 101 8.60 × 101 8.43 × 101 8.67 × 101 8.47 × 101 8.70 × 101 8.35 × 101 8.57 × 101 8.45 × 101 8.70 × 101 8.55 × 101 8.77 × 101

F10 3.71 × 101 3.81 × 101 3.69 × 101 3.82 × 101 3.66 × 101 3.81 × 101 3.61 × 101 3.77 × 101 3.69 × 101 3.83 × 101 3.74 × 101 3.85 × 101
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4.2. Convergence Performance Analysis

The performance of the proposed mAHA and other competitors evaluated on the
CEC’20 test suite, the results are explained graphically with the convergence curves as
shown in Figure 1. According to the convergence plots, the proposed mAHA reached a
stable point over most of the test methods. From convergence plots the fast convergence
refers to the optimal solution. Thus, the introduced mAHA method considers an applicable
approach to tackle different optimization problems that need fast computing i.e., the online
optimization problems.
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4.3. Boxplot Behavior Analysis

Boxplots are employed to exhibit the data distribution. The distribution reflects the
local minimum of test functions. Furthermore, boxplots consider an effective presenting
method for data distributions in quartiles, where the obtained maximum and minimum
data points are represented by the Boxplot whisker’s edges. Furthermore, the higher the
level of data agreement, the narrower the boxplot, Figure 2. Boxplot introduces the results
for ten functions, Dim10. It is observed that the mAHA algorithm reaches the best results
compared to the other algorithms.
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4.4. Qualitative Metrics Analysis

The optimizer solutions behavior reflects a stable analysis about the algorithm perfor-
mance and behavior through the search process. The qualitative analysis of the proposed
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mAHA introduced in Figure 3, shows the agent’s behaviors, 3D views of the functions,
average fitness history, search history, and convergence curves.
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5. Stage 2: Maximum Power Point Tracking 

Figure 3. The qualitative metrics on the CEC’20 test suite have been obtained by the proposed mAHA.

The next points are worthwhile from the visualization curves such as convergence,
boxplots, and qualitative analysis:

(1) Search history: The second column in Figure 3 shows the agents’ search history from
the beginning to the last iteration. Furthermore, the problem search space is formed
on a counter line, it reflects the gradient from blue to red color lines indicating a
higher fitness value. The introduced mAHA approach can reach the positions with
the higher fitness values, according to the search history.

(2) Average fitness history: The third column in Figure 3 demonstrates the average fitness
value. From this figure, the agents’ overall behavior is represented by the fitness
history as well as their contribution in the optimization process.

(3) Accordingly, the performance of mAHA approach is assessed against the other com-
petitors on CEC’20 test suite. The performance of the proposed mAHA is evaluated
using both quantitative and qualitative indicators for mAHA. According to Tables 1–3,
the proposed mAHA method has reached near/optimal results for convergence and
the highest fitness value. The graphical boxplot and minimum convergence curve are
shown in Figures 1 and 2 respectively. These graphical representations demonstrate
the stable performance of the proposed mAHA algorithm as introduced in Figure 3,
which indicate that the introduced method is dependable for a real situation and are
drawn from the test metrics.

5. Stage 2: Maximum Power Point Tracking

The PV system is shown in Figure 4. It includes 36 photovoltaic panels forming
6 arrays, DC-DC converter, controller, and 480 V battery bank. The specification of the PV
system is presented in Table 4.
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Table 4. Specifications of the PV system.

Item Specification

Maximum power of the panel 200 W
PV current at MPP 7.61 A
PV voltage at MPP 26.3 V

No. of arrays 6
No. of series PV panels per array 3

No. of strings in array 2
Battery bank voltage 480 V

The duty cycle is the key to control the DC-DC converter to boost the PV power. It
may be defined as follows:

Vbatt =
1

1− D
×VPV (21)

where Vpv and Vbatt represent the PV voltage and battery voltage respectively.
The PV voltage may be defined as follows:

VPV = Vbatt(1− D) (22)

where D is the duty cycle.
Referring to the above relation, with constant battery voltage, the PV voltage is

proportional with (1 − D). Therefore, as an alternative of utilizing voltage sensor, it can be
using the value of (1 − D) to replace the PV voltage. Consequently, the objective function
required to be maximum can be defined as follows.

f (D) = IPV × (1− D) subjected to 0 ≤ D ≤ 1 (23)

where IPV denotes PV current, and the duty cycle (D) is selected to be the decision variable
during the optimization process.

Two shadow scenarios have been considered to assess the suggested mAHA global
MPPT technique. Figure 5 and Table 5 show the PV characteristics of the two scenarios.
Altering shadow pattern is conducted to change the location of global MPP to assess the
consistency of the suggested mAHA.
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(c) P-V curve second scenario, and (d) I–V curve second scenario.

Table 5. Specification of shadow patterns and data at MPP.

Irradiance Intensity (W/m2) Six Series-Connected PV Arrays Data at MPP

Pattern Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 Current (A) Voltage (V) Power (W) Duty

1st scenario 1000 900 700 400 300 200 11.13 245 2725.9 0.4896

2nd scenario 900 600 500 400 300 200 6.38 332.28 2119.4 0.3077

To allow a fair comparison, both the number of populations (5) and iterations (20) were
kept constants for all methods considered. During the optimization process, the product of
PV current and (1 − D) was used as the objective function to be maximized. The decision
variable is the duty cycle of DC-DC. To prove the consistency of the proposed mAHA,
the studied algorithms were executed 30 times. The statistical analysis of the considered
algorithms is shown in Table 6. The details of the 30 runs for both shadow scenarios are
shown in Table 7.

Table 6. Statistical assessments of considered algorithms for both shadow scenarios.

SMA HHO GWO WOA AHA mAHA

1st Scenario

Best cost function 5.678486 5.678486 5.678486 5.678486 5.678486 5.678486

Maximum PV power (W) 2725.673 2725.673 2725.673 2725.673 2725.673 2725.673

Worst 4.307119 4.555636 4.307109 4.307124 4.30633 5.659904

Mean 5.632443 5.603838 5.412551 5.63269 5.30468 5.676989

Average PV power (W) 2067.417 2186.705 2067.413 2067.419 2067.039 2716.754

STD 0.246108 0.277208 0.482421 0.246152 0.516302 0.004308
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Table 6. Cont.

SMA HHO GWO WOA AHA mAHA

Median 5.678466 5.678475 5.67825 5.67848 5.659086 5.678435

Variance 0.060569 0.076844 0.23273 0.060591 0.266568 1.86 × 10−5

Average time (s) 69.39628 169.6144 70.38237 70.86129 74.29785 73.42117

2md Scenario

Best cost function 4.415491 4.415491 4.415491 4.415491 4.415491 4.415491

Maximum PV power (W) 2027.256 2027.74 2027.735 2027.742 2017.267 2117.477

Worst 4.223449 4.224458 4.224447 4.224463 4.202639 4.41141

Mean 4.363836 4.402683 4.383512 4.40273 4.37282 4.415039

Average PV power (W) 2094.641 2113.288 2104.086 2113.31 2098.954 2119.219

STD 0.08421 0.047632 0.071131 0.047644 0.076916 0.000996

Median 4.415443 4.415484 4.415365 4.415483 4.41405 4.415467

Variance 0.007091 0.002269 0.00506 0.00227 0.005916 9.92 × 10−7

Average time (s) 69.3757 159.2509 69.37294 69.5756 73.37224 73.80433

Table 7. Cost function values during optimization process.

SMA HHO GWO WOA AHA mAHA SMA HHO GWO WOA AHA mAHA

1st Shadow Scenario 2nd Shadow Scenario

1 5.6785 5.6761 5.671 5.6784 5.6543 5.6785 4.4154 4.4155 4.2245 4.4155 4.239 4.4138

2 4.3071 5.6785 5.6785 5.6785 5.6785 5.6783 4.4154 4.4155 4.415 4.4155 4.4155 4.4155

3 5.6767 5.6674 5.6784 4.3071 5.6785 5.6785 4.4154 4.4153 4.4155 4.4155 4.4155 4.4155

4 5.6785 5.6785 5.6785 5.6785 5.6781 5.6785 4.4155 4.4154 4.4155 4.2245 4.4132 4.4151

5 5.6782 5.6784 4.3071 5.6785 4.5697 5.6771 4.2244 4.4155 4.4154 4.4155 4.2242 4.4155

6 5.6783 5.6778 5.6718 5.6785 5.6765 5.6777 4.4155 4.4155 4.4155 4.4154 4.4155 4.4155

7 5.6781 5.6785 5.6784 5.6785 5.6783 5.6783 4.4155 4.4155 4.4154 4.4155 4.4154 4.4155

8 5.6731 5.6785 5.6771 5.6785 5.6783 5.6784 4.4155 4.4155 4.4153 4.4154 4.4152 4.4155

9 5.6785 5.6785 5.6785 5.6785 4.4733 5.6785 4.4155 4.4155 4.2245 4.2245 4.4154 4.4154

10 5.6785 5.6785 4.5696 5.6785 5.678 5.6784 4.4155 4.4155 4.4155 4.4155 4.4155 4.4155

11 5.6782 5.6785 4.5697 5.6785 5.6784 5.6785 4.4155 4.2245 4.4144 4.4155 4.4155 4.4143

12 5.6785 5.6785 5.6782 5.6785 5.6785 5.6784 4.4153 4.4155 4.4154 4.4155 4.4137 4.4155

13 5.6785 5.6784 5.6785 5.6785 4.5647 5.6783 4.4153 4.4155 4.4154 4.4155 4.4118 4.4155

14 5.6785 5.6785 4.5697 5.6784 4.5697 5.6599 4.4155 4.2245 4.415 4.4155 4.4154 4.4155

15 5.6785 4.5556 5.6764 5.6785 5.6776 5.6785 4.2245 4.4155 4.4152 4.4154 4.4154 4.4155

16 5.6785 5.6785 5.6784 5.6785 5.6578 5.6749 4.2244 4.4155 4.4151 4.4155 4.4144 4.4114

17 5.6785 5.6785 5.6783 5.6785 5.6604 5.6784 4.2244 4.4146 4.4155 4.4155 4.4154 4.4155

18 5.6784 5.6785 5.6783 5.6785 4.5697 5.6784 4.4155 4.4155 4.4155 4.4155 4.4119 4.4154

19 5.6785 5.6785 5.6759 5.6785 4.3063 5.6785 4.3963 4.4152 4.4155 4.4155 4.4153 4.4154

20 5.6784 5.6785 5.6784 5.6766 5.3566 5.6785 4.4152 4.4154 4.4152 4.4155 4.3922 4.4119

21 5.6785 5.6784 5.6785 5.6785 5.6146 5.6767 4.2243 4.4155 4.2244 4.4155 4.2095 4.4155

22 5.6785 5.678 5.6783 5.6782 5.5155 5.6785 4.4155 4.4154 4.4152 4.4155 4.4084 4.4155
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Table 7. Cont.

SMA HHO GWO WOA AHA mAHA SMA HHO GWO WOA AHA mAHA

1st Shadow Scenario 2nd Shadow Scenario

23 5.6783 5.6783 4.6416 5.6785 4.5661 5.6785 4.2234 4.4153 4.2245 4.4154 4.4155 4.4155

24 5.6785 5.6784 5.6778 5.6784 5.6785 5.6785 4.4155 4.4155 4.4155 4.4154 4.2245 4.4154

25 5.6785 4.5778 5.6783 5.6785 5.6722 5.6784 4.4155 4.4155 4.4155 4.4153 4.406 4.4155

26 5.678 5.6785 5.6784 5.6785 5.6785 5.6784 4.4155 4.4153 4.4155 4.4155 4.2026 4.4146

27 5.6785 5.6785 5.6785 5.6785 5.4584 5.6624 4.2245 4.4155 4.4155 4.4155 4.3614 4.4155

28 5.6778 5.6782 4.5696 5.6785 5.6741 5.6782 4.2244 4.4155 4.2245 4.4155 4.4113 4.4155

29 5.6785 5.6781 5.6751 5.6785 4.5697 5.6785 4.4155 4.4152 4.4155 4.4155 4.4154 4.4152

30 5.6784 5.6785 4.5697 5.6784 4.5498 5.677 4.4155 4.4155 4.4154 4.4155 4.2245 4.4146

The two shadow scenarios are shown in Table 7, where the proposed mAHA has the
best performance compared to other algorithms. For the first scenario, the average PV
power values varied between 2716.754 W and 2067.039 W. mAHA achieves the maximum
PV power of 2716.754 W, which is matched by HHO (2186.705 W). The minimum PV power
of 2067.039 W is achieved by AHA. Thus, the proposed mAHA increases the PV power by
31.3% compared to the original AHA. The values of STD vary from 0.004308 to 0.516302.
The minimum STD of 0.004308 is achieved by mAHA, followed by SMA (0.246108). The
worst value of STD of 0.516302 is achieved by AHA. For the second shadow scenario,
the average PV power values vary from 2119.219 W to 2094.641 W. mAHA achieves the
maximum PV power of 2119.219 W, followed by WOA (2113.31 W). The minimum PV
power of 2094.641 W is achieved by SMA. The values of STD vary from 0.000996 to 0.08421.
The minimum STD of 0.000996 is achieved by mAHA, followed by HHO (0.047632). The
worst value of STD of 0.08421 is obtained by SMA.

The mean cost function variation during optimization process for first and second
shadow scenarios are presented in Figures 6 and 7 respectively.
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Figure 7. Mean cost function variation during optimization process for second shadow scenario.

Table 8 shows the results of the analysis of variance (ANOVA), and Figure 8 shows the
corresponding ranking. If the value of F is greater than the p value, the null hypothesis is
true. The data collected show that the p-value is much lower than the F-value, indicating a
significant difference between the results. As shown in Figure 8, the mAHA can outperform
the other commonly used methods. The mAHA has the smallest range of variance and the
largest mean fitness (maximization problem), indicating its resilience and accuracy.

Table 8. ANOVA results for first shadow scenario.

Source df SS MS F p-Value

Columns 5 3.3452 0.6690 5.56 8.8039 × 10−5

Error 174 20.9198 0.1202

Total 179 24.2651
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Figure 8. ANOVA ranking for first shadow scenario.

A Tukey Honestly Significant Difference (Tukey HSD) post hoc analysis was performed
to support the ANOVA results. The findings are shown in Figure 9. The mAHA has the
greatest mean fitness. After the mAHA, the WAO and SMA provided good results.
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Figure 9. Tukey test for first shadow scenario.

Table 9 shows the ANOVA test results for the second case, and Figure 10 shows the
corresponding ranking. The obtained results show that the p-value is smaller than the
F value, indicating a significant difference between the outcomes. As shown in Figure 10,
the mAHA may outperform the other commonly used method. The mAHA has the
smallest variance range and the greatest mean fitness (maximization problem), indicating
its resilience and accuracy.

Table 9. ANOVA results for the second shadow scenario.

Source df SS MS F p-Value

Columns 5 0.0592 0.0118 3.04 0.0118

Error 174 0.6782 0.0039

Total 179 0.7374
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Figure 10. ANOVA ranking for the second shadow scenario.

To support the ANOVA results for this case, a Tukey Honestly Significant Difference
(Tukey HSD) post hoc analysis was performed. The findings are shown in Figure 11. Like
the previous case, the mAHA has the greatest mean fitness. After the mAHA, the WAO
and HHO provided good results.
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6. Discussion

The aim of this study is to propose an effective optimization method for solving
the optimization problem and finding the global maximum power point (MPP). In many
occurrences, the proposed mAHA method achieved better or similar results.

The proposed mAHA method provides the following merits:

1. mAHA is well able to resolve global optimization issues based on the CEC’22 test
suite. mAHA generates optimization solutions with better fitness values than the
other competitor algorithms as shown in Tables 1–3.

2. The AHA algorithm is combined with genetic operators to enhance the convergence
ability of the mAHA method is achieved as demonstrated in Figures 1 and 2.

3. The proposed mAHA was used for the first time to find the global maximum power
point (MPP), includes 36 photovoltaic panels forming 6 arrays, DC-DC converter,
controller, and 480 V battery bank.

4. Table 6 shows the results of the analysis of variance (ANOVA), and Figure 8 shows
the corresponding ranking. As shown in Figures 8–11, the mAHA can outperform the
other commonly used methods. The mAHA has the smallest range of variance and the
largest mean fitness (maximization problem), indicating its resilience and accuracy.

5. The obtained results show the superiority of the proposed single sensor-based MPPT
method for PV systems. The scalability analysis demonstrated the robustness and
flexibility of the proposed mAHA method.

Along with advantages, the proposed mAHA also has some limitations, which are
detailed below:

1. Despite eminent applications, AHA is still attributed for its slow convergence and
stagnancy issues when employed on high-dimensional problems.

2. The obtained solutions generated by mAHA may change each time it is run because it
is an optimization strategy based on randomization. As a result, there is no assurance
that the features subset chosen in one run will be present in another.

3. The performance of the proposed mAHA method on complex and high dimensional
problems may be worse according to the several mutations.

7. Conclusions

A modified version of the artificial hummingbird algorithm (AHA) has been proposed
in this paper. It introduces the mechanisms of genetic operators (crossover and mutation
selection) to enhance AHA’s performance in increasing the diversity of the population and
avoiding local searches. After demonstration the superiority of mAHA, it has been used
for first time to mitigate the shadow condition and extracting the global maximum power
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point (MPP) for photovoltaic (PV) system. The proposed MPP tracking (MPPT) technique
needs only a single current sensor. Therefore, the cost of the controller will be reduced.
Two shadow scenarios are used to evaluate the proposed single-sensor MPPT technique.
For the first scenario, the average PV power values fluctuated between 2716.754 W and
2067.039 W. mAHA achieves the maximum PV power of 2716.754 W flowed by HHO
(2186.705 W). The minimum PV power of 2067.039 W is obtained by AHA. Therefore, the
proposed mAHA increased the PV power by 31.3% compared to the original AHA. For
the second shadow scenario, the average PV power values fluctuated between 2119.219 W
and 2094.641 W. mAHA achieves the maximum PV power of 2119.219 W flowed by WOA
(2113.31W). The minimum PV power of 2094.641 W is obtained by SMA. The STD values
varied between 0.000996 and 0.08421. According to the excellent efficiency obtained, the
proposed mAHA can be applied in several real-world applications, such as object tracking,
calculating solar cell parameters, electrical applications, hyperparameter optimization, and
image segmentation.
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