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Abstract: Academic knowledge graphs are essential resources and can be beneficial in widespread
real-world applications. Most of the existing academic knowledge graphs are far from comple-
tion; thus, knowledge graph completion—the task of extending a knowledge graph with missing
entities and relations—attracts many researchers. Most existing methods utilize low-dimensional
embeddings to represent entities and relations and follow the discrimination paradigm for link
prediction. However, discrimination approaches may suffer from the scaling issue during inference
with large-scale academic knowledge graphs. In this paper, we propose a novel approach of a
generative transformer with knowledge-guided decoding for academic knowledge graph completion.
Specifically, we introduce generative academic knowledge graph pre-training with a transformer.
Then, we propose knowledge-guided decoding, which leverages relevant knowledge in the training
corpus as guidance for help. We conducted experiments on benchmark datasets for knowledge graph
completion. The experimental results show that the proposed approach can achieve performance
gains of 30 units of the MRR score over the baselines on the academic knowledge graph AIDA.

Keywords: knowledge graph; transformer; generation

MSC: 68T50; 68T30

1. Introduction

Knowledge graphs (KGs), also known as semantic networks, can represent much
symbolic knowledge, including entities, relations, and events; thus, they appeal to many
researchers. With the fast development of artificial intelligence (AI), knowledge graphs can
provide back-end support for widespread tasks and be applied to real-world applications,
including search engines [1,2], recommendation systems [3], medical health [4], natural
language understanding [5–8], commonsense reasoning [9], time-serious prediction [10],
and cross-discipline scenarios [11]. Note that most of the existing knowledge graphs are
far from completion [12]; thus, knowledge graph completion—the task of extending a
knowledge graph with missing entities and relations—attracts many researchers.

In the academic domain, knowledge graphs are essential resources due to their po-
tential value for scientific research. With the fast development of knowledge graphs, we
have witnessed many popular knowledge graphs, including OpenCitations [13], Core [14],
Microsoft Academic Graph [15], Aminer [16], Open Research Knowledge Graph [17], and
so on. These resources provide essential advantages for various research studies and can
help research policymakers and funding agencies. Moreover, academic knowledge graphs
can provide support for scientific literature research, can recommend related papers and
authors, and can help discover future research trends. Nevertheless, with the fast evolution
of the academic domain, most of those knowledge graphs are far from complete, which is a
major obstacle for their application. For example, as shown in Figure 1, the relation type
between “author: Yann Lecun” and “paper: Convolutional Networks and Applications in
Vision” is missing, which makes the relational triple less informative and even ambiguous.
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Therefore, it is crucial for models to be able to complete missing entities/relations for
academic knowledge graphs.

has_published

author: Yann Lecun

paper: Deep learning

paper: Convolutional Networks and Applications in Vision

?

affiliation: New York University

affiliated_with author_affiliation

author:Geoffrey Hinton 

has_published

author:Yoshua  Bengio 

has_published

topic: AI 

has_topic

has_topic

paper: ImageNet Classification with Deep           
                     Convolution Neural Networks

has_published

has_topic

author_affiliation

Figure 1. Academic knowledge graph completion. This paper focuses on addressing this task
through link prediction—for example, inferring the relation between “author: Yann Lecun” and
“paper: Convolutional Networks and Applications in Vision”.

Conventionally, information extraction technologies [18–21] such as named entity
recognition [22], relation extraction [23], and event extraction [24,25], can extract knowl-
edge from a text corpus and help to complete the missing academic knowledge. However,
when facing large-scale real-world academic knowledge graphs, it is necessary to de-
velop efficient knowledge graph completion methodologies. Concretely, many knowledge-
graph-embedding approaches (e.g., TransE [26], RotatE [27]) that utilize low-dimensional
representations to embed entities and relations, which are dubbed knowledge graph em-
beddings, and obtain target predictions via score functions for those embeddings have
been developed. More recently, some approaches (e.g., KG-BERT [28]) have tried to lever-
age pre-trained language models in natural language processing and encode relational
triples with transformers to obtain the final score for a missing target. Note that most of
those methodologies followed the discrimination paradigm with a pre-defined scoring
function for knowledge graph representation learning. We argue that these discrimination
approaches are time-consuming due to the costly scoring of candidate relational triples
when inferring missing knowledge. Moreover, discrimination approaches lack rich in-
teractions between relations and entities and suffer from the issue of the instability of
negative sampling.

In this paper, to address the above-mentioned challenges, we propose a new tech-
nical solution for academic knowledge graph completion, which is named a generative
transformer with knowledge-guided decoding (GTK). Specifically, we introduce generative
academic knowledge graph pre-training with a transformer. We formulate knowledge
graph completion as a sequence-to-sequence task and leverage BART-style [29] pre-training.
We further propose knowledge-aware demonstrations inspired by GPT-3 [30], which con-
catenate some selected samples to the input sequence. Since there exist rich semantics
and types of constraints for knowledge graph completion, we propose knowledge-guided
decoding, which leverages relevant knowledge in the training corpus as guidance for help.
We further utilize a policy gradient [31] to learn the generation strategy for maximizing the
correctness of the generated knowledge and mitigating exposure bias.
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We evaluate the proposed model GTK against previous baselines, including TransE [26]
and KG-BERT [28], on the benchmark datasets of AIDA, MAG, and other popular knowl-
edge graph completion datasets, namely, FB15K-237, WN18RR, and OpenBG500 [32,33].

The extensive experimental results illustrate that the proposed approach can yield
better performance than that of the baselines with a faster inference speed. In total, we
summarize the contributions of this work as follows:

• We propose a novel model of a generative transformer with knowledge-guided decod-
ing (GTK) for academic knowledge graph completion.

• We propose knowledge-aware demonstration and knowledge-guided decoding for
knowledge graph completion.

• We evaluate the model on various benchmark datasets for knowledge graph comple-
tion, which demonstrates the effectiveness of the proposed approach.

In the following sections, we will introduce the related work (Section 2) and back-
ground (Section 3). Then, we will introduce the technical details of the proposed approach,
including link prediction as Seq2Seq generation (Section 4.1), knowledge-aware demonstra-
tion (Section 4.2), and knowledge-guided decoding (Section 4.3). Finally, we will introduce
the experiments (Section 5) and conclude the paper (Section 6).

2. Related Work

Constructing knowledge graphs from scratch is intractable and requires the effi-
cient completion of missing triples. Given the trait of incompleteness, knowledge graph
completion (KGC) approaches can be divided into embedding-based methods and text-
based methods.

In preliminary works, embedding-based methods showed many advantages in han-
dling KGC tasks [34]. By converting triples into continuous embedding vectors, relations
between entities are treated as special mapping functions that score pairs of top-k entities in
a low-dimensional space. Such methods include TransE [26], TransR [35], and RotatE [27].
The Trans-series models, which are translation based, are equipped with both simplicity
and strong interpretability in practice. Another type of embedding model, a semantic
matching model, utilizes semantic similarity functions to capture the plausibility of latent
triples in knowledge graphs. These methods emphasize the structural information ob-
served in triples rather than contextualized information, and they include DistMult [36],
ComplEx [37], Tucker [38], and Trans4E [39], which is an embedding model fit for academic
knowledge graphs with N to M relations.

In contrast, text-based methods attempt to incorporate available texts for represen-
tation by leveraging state-of-the-art pre-trained language models [28,40–42]. When the
architecture of a transformer occurs, it is employed in CoKE [43] to encode the path and
edge sequences in graphs. Before long, pre-trained language models advanced contextu-
alized text representation learning. KG-BERT [28], which took the first step in applying
BERT [44] for KGC, concatenated the text of triples as sequences and handled the sequence
classification problem with binary cross-entropy optimization. Referring to KG-BERT,
StAR [45] followed the textual encoding paradigm and applied a Siamese-style textual
encoder that partitioned each triplet into two asymmetric parts. kNN-KGE [46] derived
knowledge graph embeddings by interpolating the entity distribution linearly from the
knowledge store with the k-nearest neighbors (kNN) model. Apart from switching to the
InfoNCE loss, SimKGC [47] introduced three types of negatives: pre-batch negatives, self-
negatives, and in-batch negatives. LMKE [48] formulated a contrastive learning framework
with the goal of augmenting long-tail entity representations with the inductive capabilities
of description-based approaches. Motivated by prompt-based models, PKGC [49] manu-
ally defined each triple as a natural prompt sentence and further introduced soft prompts
for better representation. Considering both the structure of a knowledge graph and the
underlying textual description, StATIK [50] used language models to extract semantic infor-
mation while incorporating a structure via message-passing neural networks. LASS [51], a
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joint embedding approach, embedded knowledge graphs via fine-tuned BERT or RoBERTa
with respect to a probabilistic structured loss.

Rather than using discriminative methods, a line of recent work changed KGC into
sequence-to-sequence generation problems. Posing link prediction as a sequence-to-
sequence task, KGT5 [52] adopted a transformer model and was further fine-tuned; it
used autoregressive decoding to reduce the model size by up to 98% in comparison with
that of KGE models. For better representation learning and fast inference, GenKGC [33]
proposed entity-aware hierarchical decoding to generate In addition, KG-S2S [53], which
uniformly codified the representation of KG facts into “flat” text, was capable of handling a
variety of verbalizable graph structures.target entities.

However, most previous works regarded entities and relations as plain text, ignoring
the structural bias when generating target knowledge, which hindered their knowledge
graph completion performance.

3. Background

A knowledge graph represents the fact that knowledge exists in the form of a triple.
In this paper, we target the knowledge graph completion task with the aim of predicting
missing parts (entities or relations) based on existing triples.

A knowledge graph G = (E ,R) composed of an entity set E = {e1, e2, e3, . . .} and
an edge set R = {r1, r2, r3, . . .} is given. The node set V consists of both entities and
relations, that is, V = E ∪R. The graph structure can be represented as an adjacency matrix
A ∈ {0, 1}|V|×|V|, where |V| denotes the number of nodes in the graph. The element A[i, j]
in the adjacency matrix equals 1 if there exists a link between nodes vi and vj; otherwise,
A[i, j] = 0, where i and j refer to the ID of the node v.

For the knowledge graph completion task, a triple is denoted as (vsrc, vp, vtarget), or
T for short. We define the contextualized sub-graph TG as the subgraph surrounding the
triple T (including the triple itself). Meanwhile, the corresponding graph structure of the
contextualized sub-graph sequence is preserved in matrix AG. TM denotes the masked
contextualized sub-graph. Therefore, the goal of knowledge graph completion is to learn a
mapping f : TM, AG → Y, where Y ∈ R|E |+|R| are the label sets of the triple T . f refers to
the score function, which maps facts into embeddings to generate label sets.

3.1. Knowledge-Graph-Embedding-Based Methods

Knowledge-graph-embedding-based methods are the approaches for knowledge
graph completion that have recently been dominant. Given a triple (h, r, t), the key is
to find the relationships between relations and entities via a score function as follows:

score(h, r, t) = fr(h, t) (1)

The relevance or distance is calculated with a pre-defined score function f , and there
are many score functions [26,27,35]. It should be noted that the translational distance
method is essentially a ranking model, and it requires negative samples to maximize the
difference between the positive and negative triples. A straightforward approach to getting
negative triples (h′, r, t) or (h, r, t′) is randomly replacing head or tail entities. Thus, we can
optimize knowledge-graph-embedding-based knowledge graph completion as follows:

L = − log σ(γ− scorepos(h, r, t))

−∑ log σ(scoreneg(h, r, t)− γ)
(2)

where γ is a marginal hyper-parameter, and σ is a sigmoid function.

3.2. Pre-Trained Language-Model-Based Methods

With the fast development of pre-training, there are many approaches that leverage
pre-trained language models for the knowledge graph completion task. For example,
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KG-BERT [28] utilizes a single encoder to encode relational triples in a knowledge graph
via text description. Formally, we have the score of the relational triple as follows:

Score(h, r, t) = TransformerEnc(Xh, Xr, Xt), (3)

where TransformerEnc is the BERT [44] model followed by a binary classifier. Note that the
previous studies mostly followed the discrimination paradigm; however, they may suffer
from inefficiency and inflexibility issues.

There are several reasons for this: (1) A ranking model is not a straightforward way
to predict the missing part of a triple, since it needs to repeatedly compute all scores of
the candidates. (2) A score function is essentially an artificial constraint, and handcrafting
the best-performing score function is like finding a needle in a haystack. (3) The negative
sampling process is full of uncertainty with different batch sizes or sample difficulties.
Thus, it is intuitive to develop a new solution for better knowledge graph completion, and
the generation paradigm is a good fit for that role.

4. Approach
4.1. Link Prediction as Seq2Seq Generation

In this paper, we follow BART [29] in formulating knowledge graph completion as
sequence-to-sequence generation. Specifically, we regard the entities and relations as
token sequences and utilize an encoder–decoder architecture for generation. As shown in
Figure 2, we follow [28] in leveraging text descriptions rather than specific embeddings to
represent entities and relations. Given an input triple with a missing tail entity (ei, rj, ?),
we get the descriptions drj and dei of rj and ei, respectively. Then, we concatenate these
embeddings to obtain the input sequence of < ei, r >. Note that we aim to generate the
token sequence of ek, which is similar to natural language generation. For example, given
the text sequence regarding the Query <Steve Jobs, founded, ?>, we aim to generate a target
entity with the text sequence Apple Inc. It is intuitive to pre-train the generation model to
boost performance.

D

Pre-trained Encoder

Steve Jobs born in America 
Steve Jobs friends Wozniak 
Steve Jobs founded NeXT 

D

Steve Jobs founded

Query: <Steve Jobs, founded, ?>

Pre-trained Decoder

<bos>

[company]

[company]

Apple

Apple

Inc

Inc

<eos>

Language Model

RL Policy  Gradient

+

<bos>

[company] [city]

Apple

Inc

<eos>

NeXT

<eos>

..

Multihop Imagination

Figure 2. The architecture of the proposed model of the generative transformer with knowledge-
guided decoding (GTK) for academic knowledge graph completion. We utilize a sequence-to-
sequence-based architecture with a pre-trained transformer and leverage knowledge guidance in the
input and during generation.
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We leveraged a large-scale corpus (while filtering the triples, such as FB15K-237,
during the evaluation to avoid data leakage) from Wikipedia and aligned it with the
Wikidata knowledge graph for pre-training.We pre-trained the model with 16 A100 for one
week. During inference, we used autoregressive generation, and more details can be found
in Section 4.3.

4.2. Knowledge-Aware Demonstration

Inspired by GPT-3 [30], we propose the utilization of relevant triples in the training
set as demonstrations to boost the generation performance. Regarding the long-tailed
distribution in a large-scale knowledge graph, for example, only 37 instances of the relation
film/type_of_appearance exist in the popular FB15k-237 dataset. We utilized the prior
knowledge distribution of entities and relations as guidance for sampling demonstrations.
To be specific, we first filtered the relations based on the input sequence and then sampled
the triples according to the distribution of entity types. Thus, those long-tailed relational
triples have more representative demonstrations for help. Finally, we can construct the
demonstration examples {rin, ttrain} and obtain the final input sequence as follows:

x = <bos> demonstration(rj) <sep> dei drj <sep>

4.3. Knowledge-Guided Decoding

During inference, we can use the Beam Search to obtain the top k entities in E (k
is the hyper-parameter of the beam size). Note that there is no native sampling, as we
directly optimize via the generation of the right entities. Since academic knowledge
graphs contain rich semantic and schematic knowledge, such as entity types, we propose
knowledge-guided decoding to boost performance. Firstly, we sample the lowest-frequency
entity types and construct a trie tree due to the fact that these low-frequency entities are
challenging to decode. We add some special tokens as entity types in the vocabulary of the
language models for knowledge-guided decoding. We first utilize the standard cross-entry
loss to optimize the log-likelihood for generation as follows:

L = − log pθ(y | x) (4)

Inspired by [54], we then formulate sequence generation as a reinforcement learning
problem. The action is the current step’s output token (i.e., at = yt), and the state is the
same as that of the tokens generated before t. Then, we utilize the policy πt to pick token yt
(action at) given the state st = y<t through multi-hop imagination to constrain the output
of generation. We use a policy gradient [31] to learn optimized strategies.

5. Experiments
5.1. Datasets

We followed [39] and use the AIDA+MAG knowledge graph for evaluation. It contains
180 K triples with 68,906 entities, including affiliated organizations, authors, publications,
and so on. The subset of the hasGRIDType relation contains research paper entities. The
subset of the hasTopic relation mainly consists of triples of articles with associated topics.
The datasets were split according to a ratio of 8/1/1 (80% for the training set, 10% for the
validation set, 10% for the test set) to construct the training, validation, and test sets.

We also evaluated the proposed approach on FB15k-237, WN18RR, and a real-world
knowledge graph for e-commerce, OpenBG500 (OpenBG500 is a subset of the open business
KG from https://kg.alibaba.com/ accessed on 1 September 2022). For FB15k-237, we
leveraged descriptions from the Wikipedia page for entities and relations. For WN18RR,
each entity contained a word sense, and we leveraged the word definitions for descriptions.
For OpenBG500, we leveraged the descriptions from the e-commerce description page
for entities and relations. We illustrate the statistical details of FB15k-237, WN18RR, and
OpenBG500 in Table 1.

https://kg.alibaba.com/


Mathematics 2023, 11, 1073 7 of 12

Table 1. Statistics of FB15k-237, WN18RR, and OpenBG500. # refers to the number.

Dataset # Ent # Rel # Train # Dev # Test

AIDA 68,906 2 144,000 18,000 18,000
WN18RR 40,943 11 86,835 3034 3134
FB15k-237 14,541 237 272,115 17,535 20,466
OpenBG500 269,658 500 1,242,550 5000 5000

5.2. Metrics

We used the metrics of hits@1, hits@3, hits@10, and MRR for evaluation. We sorted
the scores of the entities in the candidate set to obtain a ranked list. We obtained the hits
at k metric (Hits@k) by counting the number of times that the correct triple appeared at
position k. We defined rankhead as the position of the correct entity in the rank list. We
calculated the reciprocal rank with 1/rankhead and repeated the procedure by predicting
the tail entity to obtain the reciprocal rank 1/ranktail. Additionally, the mean rank (MR)
refers to the rankhead and ranktail averaged across all triples in the KG. The mean reciprocal
rank (MRR) refers to the mean of these two values. Formally, we have:

MRR =
1

2|T | ∑
t∈T

(
1

rankhead
+

1
ranktail

)
(5)

It is to be noted that the entities in the test triple were assumed to be seen in the
training set.

5.3. Settings

We used 16 Nvidia A 100 GPUs for model pre-training and fine-tuning. We developed
our model with Pytorch and utilized the BART-base as a backbone. The learning rate was
set to 5× 10−5. We leveraged a grid with a validation set search to find the optimized hyper-
parameters. We also utilized early stooping for each dataset. Specifically, we recorded the
test-set performance of the best-performing model on the development set for each random
seed and reported the final performance as the average of the results across the five seeds.

5.4. Results

On the one hand, from Table 2, we observed that on the subsets of hasTopic and
hasGRIDType, the previous baselines TransE, RotatE, and QuatE were able to obtain better
performance than that of ComplEx, while Trans4E was able to achieve better performance
than all of them. We argue that Trans4E can better represent academic knowledge graphs
with N to M relations, thus leading to better performance. We further found that the
performance of knowledge-embedding models in the hasGRIDType subset was much
higher than that in the hasTopic subset. We think that this was because the hasGRIDType
subset is a relatively easy subset of academic knowledge graphs. We also noticed that
the proposed GTK model was able to obtain the best performance on both academic
knowledge graph datasets. On the other hand, note that previous knowledge-graph-
embedding approaches regard relations and entities as dense vectors in the same space;
thus, they struggle with the memory cost for large-scale academic knowledge graphs.
However, our GTK has a fixed memory size with a pre-trained language model, which
contains 110 M parameters, and will not scale with the size of entities.
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Table 2. Evaluation results on the AIDA academic knowledge graph.

Model Type hasTopic hasGRIDType

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE 3982 0.400 0.294 0.462 0.592 1 0.968 0.944 0.990 1.000
RotatE 4407 0.433 0.332 0.492 0.622 1 0.953 0.933 0.975 0.996
QuatE 1353 0.426 0.341 0.472 0.581 1 0.957 0.928 0.983 0.998
ComplEx 5855 0.099 0.077 0.109 0.129 1566 0.566 0.531 0.596 0.609
Trans4E 3904 0.426 0.318 0.492 0.628 1 0.968 0.944 0.995 0.998

GTK 3835 0.456 0.355 0.488 0.650 1 0.975 0.967 0.998 1

From Table 3, we also observe that GTK obtained better performance than that of KG-
BERT [28] on WN18RR, FB15k-237, and OpenBG500. Moreover, the proposed model had a
faster inference speed, since it directly generated the target entities rather than engaging in
the costly scoring of candidate relational triples. For example, when the number of target
candidate entities was very large, it cost lots of time (KG-BERT took about 91,100 s) for
inference, as shown in Table 4. However, the proposed model only had to generate the top
k entities with knowledge-guided decoding, which was faster.

Table 3. Evaluation results on WN18RR, FB15k-237, and OpenBG500. Note that the � resulting
numbers were reported by previous works, which means that we reproduced the experimental
results on OpenBG500 and took other results from the original papers.

WN18RR FB15k-237 OpenBG500

Method Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

Graph-embedding approach

TransE [26] � 0.043 0.441 0.532 0.198 0.376 0.441 0.207 0.340 0.513
DistMult [36] � 0.412 0.470 0.504 0.199 0.301 0.446 0.049 0.088 0.216
ComplEx [37] � 0.409 0.469 0.530 0.194 0.297 0.450 0.053 0.120 0.266
RotatE [27] 0.428 0.492 0.571 0.241 0.375 0.533 - - -
TuckER [38] 0.443 0.482 0.526 0.226 0.394 0.544 - - -
ATTH [55] 0.443 0.499 0.486 0.252 0.384 0.549 - - -

Textual encoding approach

KG-BERT [28] 0.041 0.302 0.524 - - 0.420 0.023 0.049 0.241
StAR [45] 0.243 0.491 0.709 0.205 0.322 0.482 - - -
GenKGC [33] 0.287 0.403 0.535 0.192 0.355 0.439 0.203 0.280 0.351

GTK 0.449 0.501 0.616 0.291 0.402 0.550 0.210 0.366 0.551

Table 4. Training and inference speed comparison. |d| refers to the length of the entity description. k
refers to the number of negative samples of KG-BERT and the beam size for the proposed model. |E |
refers to the number of unique entities in the knowledge graph. We used time under A100 to estimate
the training and inference speed on OpenBG500.

For One Triple Method Complexity Time under A100

Training KG-BERT O(|d|2 × (k + 1)) 72 ms
GTK O(|d|2) 2.01 ms

Inference KG-BERT O(|d|2 × |E|) 91,100 s
GTK O(|d|2 × |d|k) 0.73 s

5.5. Case Study

To further analyze the proposed model, we randomly sampled some instances and
provide case studies. We provide the empirical results with and without knowledge-guided
decoding, which indicates that we leveraged the vanilla Beam Search to generate the target
entities. As shown in Table 5, we noticed that the proposed model could achieve better
generation performance than that of a vanilla Beam Search. For example, the proposed
GTK model could generate University of California, Irvine with the highest probability
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given the Query (?, student, Michael Chabon). Moreover, we found that the proposed
model without knowledge-guided decoding could stop early with the correct—but not
very precise—target entity. We think that this was due to the bias from the pre-trained
language models, as high-frequency terms may lead to biased predictions. However, the
model with knowledge-guided decoding could generate the correct decoding sequence
due to prior knowledge.

Table 5. We list a query and the first five entities with their probabilities predicted by GTK without
entity-aware decoding and the reranking with GTK.

Query:(?,student, Michael Chabon)

Rank GTK w/o hierarchical decoding Probability

1 University of California
5 University of California, Santa Cruz
2 University of California, Irvine
3 University of California, San Francisco
4 University of California, Davis

Rank GTK Probability

1 University of California, Irvine
2 University of California, San Francisco
5 University of Calgary
4 University of California, Santa Cruz
3 University of California, Davis

6. Conclusions and Future Work

In this paper, we proposed a novel model of a generative transformer with knowledge-
guided decoding for academic knowledge graph completion. Specifically, we proposed
knowledge-aware demonstration and knowledge-guided decoding. We evaluated the
proposed approach on four datasets. The extensive experimental results indicate that the
proposed model can obtain better performance in academic knowledge graph completion
and on popular benchmark datasets, and it can yield a faster inference speed than that of
KG-BERT. The success of the proposed approach reveals that treating academic knowledge
graph completion as a sequence-to-sequence generation task can be beneficial because
knowledge can be inferred directly rather than engaging in the costly scoring of candidate
triples. However, the proposed approach still has the limitations of trie tree construction.

In the future, we plan to explore the following: (1) how to obtain the suitable trie tree
for candidate knowledge in decoding; (2) how to design specific pre-training objects for
knowledge graphs.
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