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Abstract: We explore various analytical rational solutions with symbolic computation using the
ansatz transformation functions. We gain a variety of rational solutions such as M-shaped rational
solutions (MSRs), periodic cross-rationals (PCRs), multi-wave solutions, rational kink cross-solutions
(RKCs), and homoclinic breather solutions (HBs), and by using the appropriate values for the relevant
parameters, their dynamics are visualized in figures. Additionally, two different types of interactions
between MSRs and kink waves are analyzed. Furthermore, we examine the stability of the obtained
solutions and create a corresponding table. We analyze the stability of these solutions and the
movement role of the wave by making graphs as two-dimensional, three-dimensional and density
graphs as well as contour visual and stream plots.

Keywords: exact solutions; periodic cross-rational; M-shaped rational solutions; breather solitons;
KdV equation
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1. Introduction

A partial differential equation (PDE) depicts the relationships between several par-
tial derivatives of a variety of multivariate functions. Physics and engineering are two
mathematics-based sciences that frequently use PDEs [1–4]. The fundamentals of con-
temporary scientific logic are formed by them for several ideas, including heat, sound,
diffusion, electrodynamics [5–7], electrostatics, elastic, hydrodynamics, and quantum me-
chanics [8–10]. A wide range of scientific fields are interested in studying nonlinear wave
phenomena [11–14]. This has to do with comprehending actual water waves, the way light
interacts with matter, how optical fibers transmit light, how traffic moves, how earthquakes
happen, and how galaxies grow. Nonlinear wave theory is a recent mathematical field
that commonly investigates asymptotic regimes (including fluctuating over several scales,
high frequencies, or large amplitudes) that are difficult to approach through numerical
simulations [15–19].

The (2+1)-dimensional KdV equation was taken into consideration in this work. For
nonlinear partial differential equation (NLPDE) solutions, several techniques have been
used in the literature. The pursuit of accurate NLPDE solutions is crucial for comprehend-
ing nonlinear physical phenomena [20–26]. For instance, kink-shaped tanh solutions and
bell-shaped sech solutions are frequently used to simulate the nonlinear wave phenomena
that are observed in optical fibers, fluid dynamics, and plasma [27–31]. Numerous authors
who have an interest in nonlinear physical phenomena have recently looked at the exact
solutions of NLPDEs. These authors have provided a large number of effective techniques
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for the instance inverse scattering technique [32], Darboux transform [33], F-expansion
scheme [34], generalized Riccati equation [35], Painleve expansion technique [36], Back-
lund transform [37], exp-function expansion mechanism [38], extended tanh function
approach [39,40], and (G′/G)-expansion method [41].

The KdV equation with constant coefficients in the (2+1)-dimensional space is given
by [42]

Γty + Γxxxy + δΓyxΓx + δΓyΓxx + ηΓxx + λΓyy = 0, (1)

Γ(x, y, t) = Λ(ε), ε = x− ρy− ct. (2)

By utilizing the above transformation in Equation (1), we obtain

ρcΛ′′ − ρΛ′′′′ − 2δρΛ′Λ′′ + ηΛ′′ + λρ2Λ′′ = 0, (3)

If the equation is integrated once into the final scenario, then the following equation is
produced:

(ρc + η + λρ2)Λ′ − δρ(Λ′)2 − ρΛ′′′ = 0. (4)

Numerous researchers have worked on the governing model. For instance, Wazwaz et
al. examined the Painleve test to look at the conditions for compatibility in order to make
sure that the suggested model could be integrated [42]. Ma obtained N-soliton solutions
for the (2+1)-dimensional KdV equation, the Kadomtsev–Petviashvili equation, and the
(2+1)-dimensional Hirota–Satsuma–Ito equation by analyzing the Hirota N-soliton condi-
tions [43]. Ma et al. presented the diversity of interaction solutions to the (2+1)-dimensional
Ito equation, such as the combined multi-wave solutions which were analyzed in [44].
Zayed et al. investigated a two-variable (G′

G , 1
G ) expansion technique for the nonlinear KdV

equation [45]. By using the symbolic computation with various ansatz transformations for
Equation (1), this manuscript aims to evaluate MSR and their interactions with one and
two kink waves, PCRs, RKCs, multi-wave solutions, and HBs.

This article is set up as follows. In Section 2, we assess the MSRs and examine their
associated 3D visualizations. Section 3 provides a concise analysis of the interaction of MSRs
with a single exponential function along several 3D, 2D, and contour profiles. In Section 4,
we calculate the interaction solution of M-shaped double exponential functions for the
provided model using the necessary 3D, 2D, and contour plots. Section 5 evaluates RKCs
and their findings for various parameters. In Section 6, we will discuss PCRs, and we will
draw some associated graphs. In Section 7, we will explore multi-wave solutions and make
graphical visuals with suitable parameters. In Section 8, we will study the interactional
solution of MSRs with a rogue wave solution. HBs and their pictorial representations are
dispatched in Section 9. The stability property of the solutions is covered in Section 10,
along with how it applies to all solutions that were found. In Section 11, we discuss our
findings and debate them. Finally, in Section 12, we make our final observations.

2. Rational M-Shaped Solution (MSRs)

Let us use the transformation [46]

Λ(ε) = 2(lnω)ε, (5)

If this transformation is substituted into Equation (5), hten the bilinear form shown
below is obtained:

−2ηω2ω′2 − 2cρω2ω′2 − 2λρ2ω2ω′2 + 12ρ4 − 4δρω′4 + 2ηω3ω′′ + 2cρω3ω′′ + 2λρ2ω3ω′′ − (6)

24ρωω′2ω′′ + 8δρωω′2 + 6ρω2ω′′2 − 4δρω2ω′′2 + 8ρω2ω′ω′′ − 2ρω3ω′′′′ = 0.
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Now, we use this bilinear form to evaluate various rational and interactional solutions.
For MSRs, we consider ′ω′ as [47]

ω = ε2
1 + ε2

2 + m5, (7)

where

ε1 = m1ε + m2, ε2 = m3ε + m4.

However, mj(1 ≤ j ≤ 5) represents any constants. By using Equation (7) in Equa-
tion (6) and collecting the coefficients of ε, we then solve the system of equations to find the
values of the parameters:

δ = −13
2 , m1 = −1, m3 = m2 = 0, m5 =

−(λρ2m2
4+ρm2

4c+ηm2
4−36ρ)

λρ2+ρcη
. (8)

Via the above parametric values, we have

ω = m2
4 + ε2 +

(−m2
4η + 36ρ−m2

4cρ−m2
4λ)

η + cρ + λρ2 . (9)

By using Equation (9) in Equation (5), we obtain

Λ(ε) =
4ε

m2
4 + ε2 +

(−m2
4η+36ρ−m2

4cρ−λρ2)

η+cρ+λρ2

. (10)

By replacing Equation (2) with Equation (10), we obtain the M-shape rational solution
of Equation (1):

Γ1(x, y, t) =
4(−ct + x− yρ)

m2
4 + (−ct + x− yρ)2 +

(−m2
4η+36ρ−m2

4cρ−λρ2)

η+cρ+λρ2

. (11)

Equation (11) specifies the MSRs, and Γ(x, y, t) is graphed with η = −1, c = 2, ρ = 2,
λ = 2, and m4 = 9.

3. MSR with a One-Kink Solution

In this section, we explore MSRs with kink rational solutions using the following
transformation [48]

ω = κ2
1 + κ2

2 + z1κ3, (12)

where

κ1 = g1ε + g2, κ2 = g3ε + g4, κ3 = g5ε + g6.

However, gj(1 ≤ j ≤ 6), where all are assumed to be parameters. By inserting Equa-
tion (12) into Equation (6), and by using mathematica, we can evaluate all the coefficients ε.
We obtain equations which provide the following values:

g2 = −1
2 g1

(4δ+11)

δ

√
−(−λρ2−ρc−η)

δ

, g5 =
√
−(−λρ2−ρc−η)

δ , g3 = 0. (13)

By utilizing the above values, we obtain

ω = g2
4 + e

g6+ε
√

c+ η
ρ +λρ

z1 +

(
g1ε− g1(11 + 4δ)

2δ
√

c + η
ρ + λρ

)
. (14)
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Inserting Equation (14) into Equation (5) yields

Λ(ε) =

2
(

e
g6+ε

√
c+ η

ρ +λρ
z1

√
c + η

ρ + ρ + 2g1

(
g1ε− g1(11+4δ)

2δ
√

c+ η
ρ +λρ

))
g2

4 + e
g6+ε

√
c+ η

ρ +λρ
z1 +

(
g1ε− g1(11+4δ)

2δ
√

c+ η
ρ +λρ

) . (15)

By substituting Equation (15) into Equation (2), we achieve the MSR with a one-kink
solution for Equation (1):

Γ2(x, y, t) =

2
(

e
g6+(−ct+x−yρ)

√
c+ η

ρ +λρ
z1

√
c + η

ρ + ρ + 2g1

(
g1(−ct + x− yρ)− g1(11+4δ)

2δ
√

c+ η
ρ +λρ

))
g2

4 + e
g6+(−ct+x−yρ)

√
c+ η

ρ +λρ
z1 +

(
g1(−ct + x− yρ)− g1(11+4δ)

2δ
√

c+ η
ρ +λρ

) . (16)

4. MSR with a Two-Kink Solution

In this section, we work on MSRs with double kinks which consist of two exponential
functions. We consider [2]

ω = ζ2
1 + ζ2

2 + z1eζ3 + z2e−ζ4 , (17)

where

ζ1 = u1ε + u2, ζ2 = u3ε + u4, ζ3 = u5ε + u6, ζ4 = u7ε + u8.

However, uj(1 ≤ j ≤ 8) are all constants. We put Equation (17) into Equation (6) using
mathematica and calculated the coefficients of ε and the exponential functions. We obtain a
system of equations that provides the values of the constants:

u1 = 1
5

√
2
√

5, u7 =
√
−1
2

(λρ2+ρc+η)
ρ , u2 = −8

5
(δ+2)

√
2
√

5

(4δ+3)

√
−1
2

(ρ2+ρc+η)
ρ

, (18)

u4 =

√
−(−624δ2ρ−3336δρ−3651ρ)

20λρ2+20ρc+20η

(4δ+3) , u8 = u3 = 0, u5 =
√

(−ρρ2−ρc−η)
2ρ .

Using the obtained values in Equation (17), we obtain

ω = eu6+
ε

√
−η+cρ+ρ3

ρ√
2 z1 + e−u8−

ε

√
−η+ρ(c+λρ)

ρ√
2 z2 +

(
u3ε +

2
√

3
5

√
(1217+1112δ+208δ2)ρ

η+ρ(c+λρ)

(3+4δ)

)2

(19)

+

(√
2
5 ε− 16(2+δ)

√
5(3+4δ)

√
−η+ρ(c+λρ)

ρ

)2

.

Inserting Equation (19) into Equation (5) gives

Λ(ε) =

2
(

4
5 ε + e

u6+
εϑ√

2 z1ϑ√
2
− 6
√

2(2+δ)
5(3+4δ)ϑ

− e
−u8−

εϑ√
2 z2ϑ√

2
+ 2u3µ

)

eu6+
εϑ√

2 z1 + e−u8− εϑ√
2 z2 +

(
u3ε +

2
√

3
5

√
(1217+1112δ+208δ2)ρ

η+ρ(c+λρ)

(3+4δ)

)2

+

(√
2
5 ε− 16(2+δ)√

5(3+4δ)ϑ

)2
, (20)

where

µ =

(
u3ε +

2
√

3
5

√
(1217+1112δ+208δ2)ρ

η+ρ(c+λρ)

(3 + 4δ)

)
, ϑ =

√
−η + cρ + ρ3

ρ
.
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Inserting Equation (20) into Equation (2) gives the MSR with a double-kink solution to
Equation (1):

Γ3(x, y, t) =
2
(
− 4

5 (ct− x + yρ) + e
u6+

(ct−x+yρ)ϑ√
2 z1ϑ√
2

− 6
√

2(2+δ)
5(3+4δ)ϑ

− e
−u8−

(ct−x+yρ)ϑ√
2 z2ϑ√

2
+ 2u3µ

)
eu6+

(ct−x+yρ)ϑ√
2 z1 + e−u8−

(ct−x+yρ)ϑ√
2 z2 + ν2 +

(√
2
5 (ct− x + yρ)− 16(2+δ)√

5(3+4δ)ϑ

)2 (21)

where

ν =

(
u3(ct− x + yρ) +

2
√

3
5

√
(1217+1112δ+208δ2)ρ

η+ρ(c+λρ)

(3+4δ)

)
, ϑ =

√
−η+cρ+ρ3

ρ ,

µ =

(
u3ε +

2
√

3
5

√
(1217+1112δ+208δ2)ρ

η+ρ(c+λρ)

(3+4δ)

)
.

5. Rational Kink Cross Solution (RKCs)

We use the transformation [1]

ω = e−σ1 + m0eσ1 + σ2
2 + σ2

3 + q7, (22)

where

σ1 = q1ε + q2, σ2 = q3ε + q4, σ3 = q5ε + q6.

However, gj(1 ≤ j ≤ 5) are all real-valued constants. We insert Equation (22) into
Equation (6) and compute all the coefficients of the exponential functions and powers of ε.
We gain equations which provide the following values:

m4 = 0, δ = −9
4 , q1 =

√
−1
9

(2λρ2+2ρc+2η)
δ , q6 =

2(q2
3+q2

5)√
−1
9

(2λρ2+2ρc+2η)q5
δ

. (23)

We then use Equation (23) in Equation (22):

ω = q7 + e−q2− 1
3

√
2ε
√
−η+ρ(c+λρ)

ρ + eq2+
1
3

√
2ε
√
−η+ρ(c+λρ)

ρ m0 + q2
3ε2 + (q5ε +

3
√

2(q2
3 + q2

5)

q5

√
−η+ρ(c+λρ)

ρ

)2. (24)

By substituting Equation (24) into Equation (5), we obtain

Λ(ε) =

(
2
(

2q2
3ε + 2q2

5ε +
6
√

2(q2
3+q2

5)
ϕ − 1

3

√
2τϕ + 1

3

√
2eq2+

1
3

√
2εϕm0 ϕ

))
q7 + τ + eq2+

1
3

√
2εϕm0 + q2

3ε2 + (q5ε +
3
√

2(q2
3+q2

5)
q5 ϕ )2

, (25)

where

τ = e−q2− 1
3

√
2ε
√
−η+ρ(c+λρ)

ρ , ϕ =

√
−η + ρ(c + λρ)

ρ
.

We then substitute Equation (25) into Equation (2) to find the RKCs of Equation (1):
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Γ4(x, y, t) =
(

2
(

2q2
3(ct− x + ρy) + 2q2

5(ct− x + ρy) + 6
√

2(q2
3+q2

5)
ϕ − 1

3

√
2τϕ + 1

3

√
2 (26)

eq2+
1
3

√
2(ct−x+ρy)ϕm0 ϕ

))
/q7 + τ + eq2+

1
3

√
2(ct−x+ρy)ϕm0 + q2

3(ct− x + ρy)2 +

(q5(ct− x + ρy) + 3
√

2(q2
3+q2

5)
q5 ϕ )2.

where

τ = e−q2− 1
3

√
2ε
√
−η+ρ(c+λρ)

ρ , ϕ =

√
−η + ρ(c + λρ)

ρ
.

6. Periodic Cross-Rational Solutions (PCRs)

We use the transformation [49]

ω = v2
1 + v2

2 + m1 cos(v3) + m2 cosh(v4) + e9, (27)

where

v1 = e1ε + e2, v2 = e3ε + e4, v3 = e5ε + e6, v4 = e7ε + e8.

However, ej(1 ≤ j ≤ 9) are all real-valued parameters. We put Equation (27) into
Equation (6) and collect equations by comparing the coefficients of the trigonometric
function to obtain

δ = 15
8 , e1 = Ie3, e5 =

√
−1
3

(2λρ2+2ρc+2η)
ρ , e7 =

√
−1
3

(−2λρ2−2ρc−2η)
ρ . (28)

By putting Equation (28) into Equation (27), we obtain

ω = e9 + (e2 + ie3)
2 + (e4 + e3ε)2 + m1 cos

(
e6 +

ε
√
−2η+2cρ+2λρ2

ρ√
3

)
+ m2 cos

(
e8 +

ε
√

2η+2cρ+2λρ2

ρ√
3

)
. (29)

By replacing Equation (29) with Equation (5), we obtain

Λ(ε) =
12e3(ie2 + e4)− 2

√
6m1

√
−η+ρ(c+λρ)

ρ sin(β) + 2
√

6
√

c + η
ρ + λρ sinh($)

3
(

e2
2 + e2

4 + e9 + 2ie2e3ε + 2e3e4ε + m1 cos(β) + m2 cosh($)
) . (30)

where

β = e6 +

√
2
3

ε

√
−η + ρ(c + λρ)

ρ
, $ = e8 +

√
2
3

ε

√
c +

η

ρ
+ λρ.

Replacing Equation (30) with Equation (2) to find the PCRs of Equation (1) yields

Γ5(x, y, t) =
12e3(ie2 + e4)− 2

√
6m1

√
−η+ρ(c+λρ)

ρ sin(φ) + 2
√

6
√

c + η
ρ + λρ sinh(ψ)

3
(

e2
2 + e2

4 + e9 − 2ie2e3(ct− x + yρ)− 2e3e4(ct− x + yρ) + m1 cos(φ) + m2 cosh(ψ)
) . (31)

where

φ = e6 +

√
2
3
(ct− x + yρ)

√
−η + ρ(c + λρ)

ρ
, ψ = e8 +

√
2
3
(ct− x + yρ)

√
c +

η

ρ
+ λρ.
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7. Multi-Wave Solution

We use the transformation [50]

ω = l0 cosh($) + l1 cos($1) + l2 cos($3), (32)

where

$ = m1ε + m2, $ = m3ε + m4, $3 = m5ε + m6.

However, mi(1 ≤ i ≤ 6) are constants. Inserting Equation (32) into Equation (6) yields
the following values:

m1 =

√
−(−3λδ2−3ρc−3η)

4λδ−3ρ , m5 = 0, m3 =

√
−(λρ2+ρc+η)

2δρ−2ρ . (33)

By inserting Equation (33) into Equation (32),we obtain

ω = l1 cos(m4 + ε

√
−η − cρ− λρ2

−2ρ + 2δρ
) + l2 cosh(m6) + l0 cosh

(
m2 + ε

√
3η + 3cρ + 3λρ2

−3ρ + 4δρ

)
. (34)

Substituting Equation (34) into Equation (5) yields

Λ(ε) =
2(−l1ς sin(m4 + ες + l0τ sinh(m2 + ετ)))

l1 cos(m4 + ες) + l2 cosh(m6) + l0 cosh(m2 + ετ)
. (35)

where

ς =

√
−η − cρ− λρ2

−2ρ + 2δρ
, τ =

√
3η + 3cρ + 3λρ2

−3ρ + 4δρ
.

We then insert Equation (35) into Equation (2) to obtain the multi-wave solution:

Γ6(x, y, t) =
2(−l1ς sin(m4 + (−ct + x− yρ)ς + l0τ sinh(m2 + (−ct + x− yρ)τ)))

l1 cos(m4 + (−ct + x− yρ)ς) + l2 cosh(m6) + l0 cosh(m2 + (−ct + x− yρ)τ)
. (36)

where

ς =

√
−η − cρ− λρ2

−2ρ + 2δρ
, τ =

√
3η + 3cρ + 3λρ2

−3ρ + 4δρ
.

8. MSR Interaction with Rogue Waves

We explore the interaction between MSRs and rogue waves using the transformation

ω = o2
1 + o2

2 + eo3 + l0 cosh(o4) + p9, (37)

where

o1 = p1ε + p2, o2 = p3ε + p4, o3 = p5ε + p6.

However, pi(1 ≤ i ≤ 9) are the parameters. Substituting Equation (37) into Equa-
tion (6) yields the values of the assumed parameters:

p1 = −1
6

√
2
√

3
√

δ, p2 = 1
3

√
2
√

3
3
2 p5

(p2
5−p2

7)
, p3 = p8 = 0, p9 = −1

3
(3p2

4 p4
5−6p2

4 p2
5 p2

7+3p2
4 p4

7+2δ3 p2
5)

p4
5−2p2

5 p2
7+p4

7
. (38)
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Putting Equation (38) in Equation (37) yields

ω = p2
4 + ep6+p5ε − (

(3p2
4 p4

5 − 6p2
4 p2

5 p2
7 + 3p2

4 p4
7 + 2δ3 p2

5)

p4
5 − 2p2

5 p2
7 + p4

7
) +

(√ 3
2 p5δ

3
2

p2
5 − p2

7
−
√

λ√
6

)2

+ l0 cosh(p6ε). (39)

By inserting Equation (39) into Equation (5), we obtain

Λ(ε) =

2
(

p5ep6+p5ε −
√

2
3

√
δ

(√
3
2 p5δ

3
2

p2
5−p2

7
−
√

λ√
6

)
+ p7l0 sinh(p7ε)

)
p2

4 + ep6+p5ε − (
(3p2

4 p4
5−6p2

4 p2
5 p2

7+3p2
4 p4

7+2δ3 p2
5)

p4
5−2p2

5 p2
7+p4

7
) +

(√
3
2 p5δ

3
2

p2
5−p2

7
−
√

λ√
6

)2

+ l0 cosh(p6ε)

. (40)

We replace Equation (40) with Equation (2) to find the interaction between the rogue
wave and MSR:

Γ7(x, y, t) =
2
(

p5

(
υ− 2δ2

p2
5−p2

7

)
+ δ(φ) + 3p7l + 0 sinh(p7(φ))

)
3(p2

4 + υ− 3p2
4(p2

5−p2
7)

2+2p2
5δ3

3(p2
5−p2

7)
2 + 1

6 δφ2 + l0 cosh(φ))
. (41)

where

υ = ep6+p5(2p2
7t+x+ t

αδ β−yρ+tλρ), φ = 2p2
7t + x +

t
δ

β− yρ + tλρ.

9. Homoclinic Breather Solutions (HBs)

For HBs, we use [51]

ω = e−µ1 + m1eµ2 + m2 cos(µ3), (42)

where

µ1 = g(n1ε + n2), µ2 = g(n3ε + n4), µ3 = g1(n5ε + n6).

However, ni(1 ≤ i ≤ 6) are all real-valued constants. We use Equation (42) with
Equation (6) and evaluate the values of the assumed constants:

δ = −15
4 , n1 =

−1
6

(λρ2+cρ+η)
ρ

g , n3 = 0, n5 =
−1
2

(−λρ2−cρ−η)
ρ

g1
. (43)

Putting Equation (43) into Equation (42) yields

ω = e
−g(n2+

ε

√
−η+cρ+λρ2

ρ√
6g

)
+ en4gm1 + m2 cos

(
g1

(
n6 +

ε
√
−(−η−ρx−λρ2)

ρ√
2g1

))
. (44)

By inserting Equation (44) into Equation (5), we obtain

Λ(ε) =

−
√

6
√
−η+cρ+λρ2

ρ + 3
√

2en2g+
ε

√
−η+cρ+λρ2

ρ√
6 m2

√
−η+cρ+λρ2

ρ sin
(

n6g1 +
ε

√
−η+cρ+λρ2

ρ√
2

)

3
(

1 + en2g+n4g+
ε

√
−η+ρ(c+λρ)

ρ√
6 m1 + en2g+

ε

√
−η+ρ(c+λρ)

ρ√
6 m2 cos

(
n6g1 +

ε
√
−η+ρ(c+λρ)

ρ√
2

)) . (45)

We then substitute Equation (45) into Equation (2) to find the HBs:
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Γ8(x, y, t) =
−
√

6
√
−η+cρ+λρ2

ρ + 3
√

2ϕm2

√
−η+cρ+λρ2

ρ sin(φ)

3(1 + en2g+n4g+
(−ct+x−ρy)

√
−η+ρ(c+λρ)

ρ√
6 m1 + ϕm2 cos(φ))

, (46)

where

φ = n6g1 +
(−ct + x− ρy)

√
−η+cρ+λρ2

ρ√
2

, ϕ = en2g+
(−ct+x−ρy)

√
−η+cρ+λρ2

ρ√
6 .

10. Stability Property of Solutions

Now, using a Hamiltonian approach, we will examine the stability property for a
(2 + 1)-dimensional KdV equation of constant coefficients. The Hamiltonian methodology
“K” is given by

K =
1
2

∫ h

−h
Υ2(z)dz. (47)

The solutions’ stability condition can be assessed as follows:

∂K
∂ρ

> 0. (48)

The wave velocity is ρ, and K stands for the momentum in the Hamiltonian system.
Using the Hamiltonian system, the stability’s condition is stated, and all feasible solutions
are then determined (Table 1).

Table 1. Stability properties of the solutions Γi(x, y, t), where (i = 1, 2, 3, ..., 8).

Solution Stable Unstable Values of Variables

Γ1(x, y, t) X η = −1, c = 2, ρ = 2, λ = 2, m4 = 9, x, y, t ∈ [−7, 7]

Γ2(x, y, t) X
g6 = 8, c = 1, ρ = −1, η = 1, λ = 1, g1 = 3,
δ = 3, g4 = 2, z1 = 1, t = 5, x, y, t ∈ [−1, 1]

Γ3(x, y, t) X
c = 1.7, ρ = 4, z1 = 3, u8 = 2, η = 2, u3 = −1,

z2 = 1, δ = 2, λ = 2, t = 1, u6 = 9, x, y, t ∈ [−2, 2]

Γ4(x, y, t) X Singular solution

Γ5(x, y, t) X Singular solution

Γ6(x, y, t) X
l1 = 4, η = 1, c = 1, ρ = 3, l0 = 2, m2 = 3, m6 = 2,

λ = 1.2, δ = 2, l2 = 12, t = 9, m4 = 3, x, y, t ∈ [−3, 3]

Γ7(x, y, t) X
p6 = 3.3, p5 = 1, p7 = 1.2, δ = 1.5, l0 = 2, η = 3,

ρ = 2, λ = 2, p4 = 1, t = −1, x, y, t ∈ [−11, 11]

Γ8(x, y, t) X Singular solution

11. Results and Discussion

With the help of the proper parameter settings, we were able to successfully produce
the desired type of solution, which illustrates a wave discrepancy. In Figure 1, the wave
appears in the MSRs with η = −1, c = 2, ρ = 2, λ = 2, m4 = 9, and t = 11. We
can see how the wave moves and changes its position with various values for the time
parameter t. Figures 2 and 3 display the movement of the wave and the stability conditions
with t = 9 and t = −6, respectively. In Figure 4, we explore MSRs with exponential
functions with 3D, contour, 2D, and stream plots via g6 = 8, c = 1, ρ = −1, η = 1, λ = 1,
g1 = 3, δ = 3, g4 = 2, z1 = 1, and t = 5. Figures 5 and 6 show a wave with a
high amplitude. Figure 7 shows the interaction solution between the MSRs and kink
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II via 3D, 2D, contour, and stream plots with c = 1.7, ρ = 4, z1 = 3, u8 = 2, η = 2,
u3 = −1, z2 = 1, δ = 2, λ = 2, t = 1, and u6 = 9. In Figure 8, various bright and dark
lumps appear via the assumed parameters c = 1.7, ρ = 4, z1 = 3, u8 = 2, η = 2, u3 = −1,
z2 = 1, δ = 2, λ = 2, t = 1, and u6 = 3. Figure 9 depicts PKCs in which a soliton
wave appears with a high amplitude via g3 = 6, c = 1, ρ = 2, g5 = 3, η = 1, λ = 1,
g2 = 5, m0 = 5, g7 = 11, and t = 3.

The PKCs in Equation (31) are graphically presented in Figures 10 and 11. Figure 12
shows a visual representation of the multi-wave solution in Equation (36) in which multiple
bright lumps appear, considering l1 = 4, η = 1, c = 1, ρ = 3, l0 = 2, m2 = 3, m6 = 2,
λ = 1.2, δ = 2, l2 = 12, t = 9, and m4 = 3. The multi-wave shape profiles are explained
via l1 = 4, η = 1, c = 1, ρ = 3, l0 = 2, m2 = 3, m6 = 2, λ = 1.2, δ = 2, l2 = 12,
t = 9, and m4 = 2.5 in Figure 13. For various parametric values, we attained the multi-
wave sketches in Figure 14 via l1 = 4, η = 1, c = 1, ρ = 3, l0 = 2, m2 = 3, m6 = 2,
λ = 1.2, δ = 2, l2 = 12, t = 9, and m4 = 4.5. In Figure 15, we constructed the interactional
solution between the MSRs and rogue wave profiles via p6 = 3.3, p5 = 1, p7 = 1.2,
δ = 1.5, l0 = 2, η = 3, ρ = 2, λ = 2, p4 = 1, and t = −1. The dynamical behavior of the
solution in Equation (41) via p6 = 3.3, p5 = 1, p7 = 1.2, δ = 1.5, l0 = 2, η = 3, ρ = 2,
λ = 2, p4 = 1, and t = 3 is presented in Figure 16. With p6 = 3.3, p5 = 1, p7 = 1.2,
δ = 1.5, l0 = 2, η = 3, ρ = 2, λ = 2, p4 = 1, and t = 5, the solution to the MSRs with
rogue waves via three-dimensional, contour, two-dimensional, and stream plots are shown
in Figure 17. We attained HBs using Equation (46) with η = 2, ρ = 1.3, c = 3.1, λ = −2,
n2 = −2, n6 = 3, m2 = −1, m1 = 2, m4 = 3, g1 = −5, and t = 3. Figure 18 shows 3D
visuals of the homoclinic solution with (1) Figure 18a with g = −0.4, (2) Figure 18b with
g = −1.4, (3) Figure 18c with g = −2.4, and (4) Figure 18d with g = −4.4. Figure 19 shows
the stability conditions corresponding to Figure 18.

Figure 1. Evolution plots for Γ1(x, y, t) with the values η = −1, c = 2, ρ = 2, λ = 2, m4 = 9, and
t = 11.

Figure 2. MSR graphic profiles for Γ1(x, y, t) with t = 9.

Figure 3. MSR visual representation for Γ1(x, y, t) with t = −6.
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Figure 4. The dynamical behavior of MSR with one exponential function solution via g6 = 8,
c = 1, ρ = −1, η = 1, λ = 1, g1 = 3, δ = 3, g4 = 2, z1 = 1, and t = 5.

Figure 5. The plots of Γ2(x, y, t) via g6 = 5, c = 1, ρ = −1, η = 1, λ = 1, g1 = 3, δ = −2,
g4 = 3, z1 = 1, and t = 5.

Figure 6. The graphs of Γ2(x, y, t) in Equation (16) via g6 = 3, c = 1, ρ = −1, η = 1, λ = 1,
g1 = 3, δ = −2, g4 = 3, z1 = 1, and t = 5.

Figure 7. The graphical profiles of MSR with double exponential function along with c = 1.7,
ρ = 4, z1 = 3, u8 = 2, η = 2, u3 = −1, z2 = 1, δ = 2, λ = 2, t = 1, and u6 = 9.

Figure 8. The dynamical behavior of M-shaped funciton with two kinks via c = 1.7, ρ = 4,
z1 = 3, u8 = 2, η = 2, u3 = −1, z2 = 1, δ = 2, λ = 2, t = 1, and u6 = 3.
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Figure 9. The sketch of Γ4(x, y, t) in Equation (31) via q3 = 6, c = 1, e4 = 4, ρ = 2, q5 = 3,
η = 1, q2 = 5, λ = 1, q7 = 11, m0 = 5, and t = 3.

Figure 10. The pictorial representation of PCRs in Equation (31) with e3 = 11, e2 = 4.9, e4 = 4,
m1 = 14, e6 = 5, η = 1, c = 2, λ = 6, e9 = 3.1, m2 = 8.5, e8 = 3, t = −2, and ρ = 1.

Figure 11. The sketch of Γ5(x, y, t) in Equation (31) via e3 = 11, e2 = 4.9, e4 = 4, m1 = 14,
e6 = 5, η = 1, c = 2, λ = 6, e9 = 3.1, m2 = 8.5, e8 = 3, t = −2, and ρ = 1.

Figure 12. Multi-wave shape profiles of Γ6(x, ty, t) in Equation (36) via l1 = 4, η = 1, c = 1,
ρ = 3, l0 = 2, m2 = 3, m6 = 2, λ = 1.2, δ = 2, l2 = 12, t = 9, and m4 = 3.

Figure 13. Multi-wave dynamical behavior via l1 = 4, η = 1, c = 1, ρ = 3, l0 = 2, m2 = 3,
m6 = 2, λ = 1.2, δ = 2, l2 = 12, t = 9, and m4 = 2.5.
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Figure 14. Multi-wave sketches of Γ6(x, ty, t) in Equation (36) via l1 = 4, η = 1, c = 1, ρ = 3,
l0 = 2, m2 = 3, m6 = 2, λ = 1.2, δ = 2, l2 = 12, t = 9, and m4 = 4.5.

Figure 15. Γ7(x, y, t) in Equation (41) is plotted with p6 = 3.3, p5 = 1, p7 = 1.2, δ = 1.5, l0 = 2,
η = 3, ρ = 2, λ = 2, p4 = 1, and t = −1.

Figure 16. Interaction solution in Equation (41) presented graphically with p6 = 3.3, p5 = 1,
p7 = 1.2, δ = 1.5, l0 = 2, η = 3, ρ = 2, λ = 2, p4 = 1, and t = 3.

Figure 17. Γ7(x, y, t) in Equation (41) sketched via p6 = 3.3, p5 = 1, p7 = 1.2, δ = 1.5, l0 = 2,
η = 3, ρ = 2, λ = 2, p4 = 1, and t = 5.

(a) g = −0.4 (b) g = −1.4 (c) g = −2.4 (d) g = −4.4
Figure 18. The 3D HB profiles for Γ8(x, y, t) with η = 2, ρ = 1.3, c = 3.1, λ = −2, n2 = −2,
n6 = 3, m2 = −1, m1 = 2, m4 = 3, g1 = −5, and t = 3.
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(a) g = −0.4 (b) g = −1.4 (c) g = −2.4 (d) g = −2.4

Figure 19. Stream plots corresponding to Figure 18.

12. Conclusions

Some analytical solutions were acquired by symbolic computations. Additionally, a
thorough investigation of the solutions’ dynamics was conducted. In this work, the MSRs,
multi-wave solitons, RKCs, PCRs, HBs, and interactional solutions such as MSRs with one
kink, double kinks, and rogue waves were all studied. Using the Hamilton system features,
we identified solutions as stable or unstable solutions. Finally, the findings were graphically
analyzed using contour, density, three-dimensional, two-dimensional, and stream plots.
We obtained entirely unique outcomes with our research.
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