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1. Introduction

The field of fractional calculus is constantly expanding, and applications range from
engineering and natural phenomena to financial perspectives (see [1-7]). Recently, there seems
to be much enthusiasm for the use of stochastic differential equations to describe a variety of
phenomena in population dynamics, physics, electrical engineering, geography, psychology,
biochemistry, and other areas of physics and technology (see [8-14]). Stochastic impulsive
differential equations arise in a very natural way as mathematical models (see [15-20]). The
introduction of drugs into the bloodstream and the consequent absorption into the body
are gradual and continuous processes that can be described by noninstantaneous impulsive
differential equations (see [21,22]). Now;, several authors have discussed different types of
controllability for fractional stochastic systems (see [23-29]). To the best of our knowledge, the
approximate controllability of CF noninstantaneous impulsive stochastic evolution equations
via fBm and Poisson jump mentioned in this study is an area of research that appears to give
extra incentive for completing this research.

Assume that the CF noninstantaneous impulsive stochastic evolution equation via
fBm, Poisson jump, and the control function has the following form:

D*N(p) + AN(p) = M(p, N(p), N({4

+ J5' V(k N(k),N(j1 (k)), ..., N(j (k)

+Q(p, N ( ), N(e1(p)), . ( (P)))d;ij” )

+ [rU(p,N(p), (11(@))/ N(uu(p)), )W(dgp,df), ¢ € (ki pit1], i€ [0,m]
()—h( N(p)), @6(@, ], i€ [l,m]

N(0) = No,

(9)),--+/ N(lu())) + Bu(p)
)

)dew (ke )

where D? is the conformable fractional derivative (CFD) of order % < £ < land —A
generates semigroup ©(p), ¢ > 0, on N. Here, X and G are separable Hilbert spaces with
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I - |l and u(-) € Ly(Y,4) is the control function, where L, (Y, ) is the Hilbert space of
control functions with 4 a Hilbert space. B is a bounded linear operator from {l into R,
and f; is a noninstantaneous impulsive function for all i = 1,2, ...,m. Suppose that the
time interval is Y = (0, b], where p;, k; are fixed numbers verifying 0 = ko < 1 < k; <
2 < ... <ky1 < pm <kpy < ppip1 = b. Assume {w(p)} >0 is a K-Wiener process
on (§,6,{6,},>0,B) with values in G and {Bp(p)} >0 is fBm with Hurst parameter
H € (%, 1) defined on (F,Sp, {6} >0, B) with values in Q; Q is a Hilbert space with
Il . || - In this paper, L(G, ®) and L(Q, R) are the space of all bounded linear operators from
G into X and from Q into X, respectively, with || . || . M, V, Q, U, and #; are defined in
Section 2.
The contributions of the present work are as follows:

¢  The conformable fractional noninstantaneous impulsive stochastic evolution equation
with fractional Brownian motion and Poisson jump is presented.

e To the best of the author’s knowledge, there has not been any research that has studied
the approximate controllability of (1).

*  Anexample is applied to show the established results.

2. Preliminaries

Here, we collect the basic concepts, definitions, theorems, and lemmas that are used
in the paper.

Definition 1 (See [7]). The CFD of order 0 < £ < 1 of z(p) for ¢ > 0 is defined as
2(p +vp' ")

—z2(p)
dp* v—0 v '

Furthermore, the conformable integral is defined as

o .
E(z)(p) = /0 KE12 (k) k.

Suppose (§, S,B) is a full probability area connected with a normal filtration Sp,,, p €
[0, b], where Gn, is the o-algebra generated by random variables {w(k), By (k),s € [0,b]}
and all PB-null sets. Let (F, &, g(df)) be a o-finite measurable space. The stationary Poisson
point process (py,) >0 is defined on (F, &, ) with values in F and characteristic measure g.
The counting measure of p, is denoted by { (g, df) such that W (g, 9) := E({(p,?)) = pc(9)
for ¢ € ¢. Define W(p,df) := {(p,df) — pA(df), the Poisson martingale generated by p,.

Let 3 € L(Q, Q) be an operator defined by 3, = Auxr, with Tr(3) = Y51 An < 0,
where A, > 0 (n = 1,2,...) are non-negative real numbers and {r,} (n = 1,2,...)is a
complete orthonormal basis in Q.

We introduce the space L) := L3(Q, R) of all A-Hilbert-Schmidt operators y: Q — X.
u € L(Q,N) is called a A-Hilbert-Schmidt operator, if

[e9)

Iy := 3 IV AuNa|? < .

n=1

Lemma 1 (see [30]). If u : [0,b] — L3(Q, R) satisfies fob Ilp(k) ||%0 < oo then
2

o 2 o
B [ im0 < 200t [ i)yt

Theorem 1 (see [31]). Assume (¥;A) is a compact metric space. For a family of functions
Z € C(¥), then the following statements are equivalent:

(i) Zis relatively compact;
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(i)  Z is equicontinuous and uniformly bounded.
Through this paper, let L, (§, X) be a Banach space with
I NC) 2, 0= E | NG@) 1

where E(N) = fg N(w)d®. Assume C(Y, Lp(F, X)), from Y into L,(F, N), is the Banach
space of all continuous functions and satisfies sup .y E || N(g) |?< oo.
Define F = {- : N(p) € C(Y, L2(§, X))}, with

|- I} = sup E[IN(p)||*.
peY

Obviously, F is a Banach space.

We require the following hypotheses:

(A1) M : Y x ™1 — X verifies the following:
i) M:Y x X" 4 Ris continuous;
(i) VYe€N;e>03e():Y — R' such that

sup  E[[M(p,No, Ni,.., Nu)|* < ee(p),
INolI2-.. [ Nul[2<e

the function k — e¢(k) € L'((0,b],RT) and Ja x; > 0 such that

¥ ee(k)dk
lim inf 7”[0 ce(k)
£— 00

=X1 <00, pE (O,b]

(A2) V1 Y x R+ — (G, R) verifies the following:
(i) Vg €Y, thefunction V(gp,.) : X1 — L(G,R) is continuous and V (Np, Ny, ..., Ny) €
N+ the function V(.,No,Ni,...,Ni) : § = L(G,R) is & ,-measurable;

(i) Ve€N;e>03re():(0,b] - RT such that

'Y
sup / E|| V(k No,Ni, ..., Ny) |4 dk < re(g),
INol12 [N 26 70

the function k — r¢(k) € L'((0,b], R*) and Ja x» > 0 such that

¥ re(k)dk
lim inf 7‘[0 re(k)
£—00

=x2 <o, pe(0,b]

(A3) Q:Y x RPTL — L9(Q, N) satisfies the following:
(i) Vg €Y, the function Q(p,.) : RP1 — LI(Q, R) is continuous and ¥V (Np, N, ..., N)
€ NP+ the function Q(., No, Ny, ..., Np):J]— Lg(Q, N) is & ,-measurable;
(i) VeeN;e>037(-):(0,b] = R" such that
sup E H Q(pINOINlr"-rNP) ||%0S 75(@)/
INo 12| Nl 2 <e :

k — 7.(k) € L'((0,b], R*) and F a x3 > 0 such that

¥ 7.(k)dk
s11_)13(}1&% =x3 <00, pe(0b],

(A4) U : Y x R#F1 x F — N satisfies the following:

(i) U:Y xR F 5 Nis continuous;
(i) VeeN;e>03g():Y — R" such that
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sup [ EIB(0No Nuyo . Ny PIPAS) < 0,
INoI2,....| N [2<e '

k — ge(k) € L1((0, 9], R*), and Fa x4 > 0 such that

lim inf o 9e(k)dk
r—00

= x4 <, p € (0,b].

(A5) h; = (pi,k;] x X — Nis continuous and verifies the following:
(i) o3>0, such that

E|hi(o, N> <03 E|IN|?, VNeX; pe (p,k], i=12,...,m

(i) d o4 > 0, such that
E |[hi(p,N1) = hi(p, No)|[IP < 0 E|INy = Na ||, VN1, N> €R; p € (i, k], i =1,2,...,m
(A6) A generates a compact semigroup {O(p), p > 0} in X.

Definition 2 (see [32]). N(p) : Y — N is a mild solution of (1) if Ny € X Vs € [0,b) the
function K*IM(k, N(k), N(¢1(k)),..., N(¢y(Kk))) is integrable and

O (% )No N 1@(” ““)M(k N (&), N(e1(K)), .-, N (K)) )i

+ [ KO (L) [F V(T N, N(n (1)), . NG (0) o)
+ [V k1o (v Ek Q(k, N(k) N(cl( ), -+, N(cp(k)))dB g (k)
+ P10 (L) [k, N(K), N1 (K)), . .., N(1(k)), )W (dk, df)
+ [FKE- 1@(" ) k)dk, ¢ € (0, p1]
hi(p,N(p)), p € (piki], i=1,2,...,m
NN o i Nk @

+ [k le( kﬁ)M N(t1(k)), ..., N(tu(k)))dk
+ K10 L fokv ), N(1(1)), ..., N((1)))dew () dk

+ [P K10 @‘ﬁkf O(k, N(c1(K)), ..., N(cp(k)))dB (k)
+ [ KA 1@(w’~zﬂ«‘)fvu k), N(11(k)), ..., N(1.(k)), )W (dk, df)
—O—fpi k£’1®<p£7k£)Bu Yk, p € (ki piv1], i=1,2,...,m,

is verified.

3. Approximate Controllability

Here, we investigate the approximate controllability of (1).
Consider the linear conformable fractional evolution equation in the following form:

{ DEN(p) + AN(p) = Bu(p), p € (0,b] ®
N(0) = Np.

We present the operators associated with (3) as

b £ _ £ £ _ 1.
:g:/ k£_1®<b K )BB*@*(b Ek )d]k,

and ®(b,E§) = (bI + E§)~!, b > 0, where the adjoint of B and @(
*and ©* (b

) are denoted by

) respectively.
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The state value of (1) at terminal state b, corresponding to the control u and the initial
value Ny, is denoted by N(b; Ny, u). Furthermore, the reachable set of (1) at terminal time b
is denoted by ®(b, Ny) = {N(b; No, u) : u € Lr(Y,U)}, and its closure in R is ®(b, Ny).
Definition 3 ([33]). Let (1) be approximately controllable on Y if ®(b, Ny) = L (F, N).

Lemma 2 ([33]). The linear system (3) is approximately controllable on Y if and only if
x(xI+®5)~1 — 0asx — 07.

Lemma3. V Nj, € Lo(§,R) 3P and ¢ € Lo(3; Lo(Y; LY)) such that
N, = EN, + / )dw(p) + / 0)dBH (o
We define the control function, for any § > 0 and Ny € Lr(3,R), in the following form:

B*O* (M) (x1_|_q>b)—1 ENb+f0blﬁ(k)dw(k)+fo gb(]k)dBH(k)

@“Nofw@ﬁ“)<<m<<»mmwmm

fk Ko (YK 1o N(ll(k)),‘.‘,N(zu(k)),f)w(dk,df)

bEEkf) (k),N(c1(k)), ..., N(cp(k)))dBp(k)|,

— Jy ke (B N(), N(j1(7)), .., N(j(1)))dew()dk

fw@”“ﬁ wwwmwwmmw<mm

~ Jy K10 (B ) A N(K), N1 (K)), .., N(ep(K)dBr(K) |, € (0, 0]
w(p)={ Bo*(L2L)(x1+ ob) 1[ENb+f0 K)dw(k) + [ ¢(k)dBH (k) )

thwmw

k“@“fhmwu mu> - N(ln(K)))dk

fw@“Jh N(1(1)), ... N(je(1)))deo()dk

- [y k1o

l/lerl
In this paper, we set ¢ = sup_ .y [|©(-)||, o = ||B|| and ¢p« = || B¥.

Theorem 2. Suppose (A1)—(A6) holds, then (1) has a mild solution on Y, such that

22 212 261 26-1 2(H+£-1) 261
) 0° Q5+ 03b b b 2Hb b
%6 {H (2;;4);@}{93*2,5 TG et —gp g ety tec<l ®)

8, 2b2£
and 71 = {2%7_1 + 04 + 4QZQ4} <1

Proof. Consider the map A on € defined by to be verified:
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O )No+ [k 1@( FHE) Mk, N(R), N (K), ., N(E (1)) )i
+ Jy K10 (£ ) Bu(k )dlk
+ Yo ) v N(1(1),- - N(i(1)deo(7)dk

+ Jy ke Ak, N() < L0, N(ey (50)) 1
+ [ EE0(SE) [ U, NI, N(1 (K)),- NG K), AW ), € 0,61

(AN)(p) = h(p,N(p)), @e(@/kz}/ 1*12 s m
v @ vk hz (k;, N (k +f?’k£ 1@( gk kﬁ)M(k N(k), N(¢1(K)), .., N(£p(k)))dk

+fufk£ 1®E > %

+fu?k£ o ( )N(Jl(T)) - N(ji(1)))dew(T)dk
JEe( £ ) ok c1(K)), .-, N(e (K)) JdB (k)
+fgdk£ 1@(@‘4«5)” zl(k)),...,N(zu( ), fYW(dk,df),
ki, pip1], i=1,2

O

Next, show that A from € into itself has a fixed point. Set B, = {N € €, | N ||2 <e},
¢ > 0, integer. Therefore, B, C € is a bounded closed convex setin €, V .
From (A1) and Holder’s inequality, we obtain

£ _ 1L
E| /Oso]kﬁ—l@(pfdk>M(]k N(k),N(¢1(k)),..., N(lm(k)))dk ”2

il E| M N(K), N(6(K)), .., N ()[2dk (6)
T 2%-1Jh \\Nouz,...ﬁwks ' o

2b2£—1 ©

< ¢
— 2£-1Jo

ee(k)dk.

It follows that k*"'M(k, N(k), N (¢ (k)), .
Bochner’s theorem, A is defined on B..
From (A2)(ii) with Burkholder-Gundy’s inequality, we obtain

.,N(4y(k))) is integrable on Y, and by

5 £
£l ["k0( L5 ) [TV@N@NGO) - Nlan ()2 [P
21,261 O
<135 [ <Nozf?%,,z<s [ ENVEN© NG @), NG I dr)dk @)
< Tr(3) @22:2_5’11 | 0@ re(K)dk.

From (A3)(ii) with Burkholder-Gundy’s inequality, this yields

39 £ _ 1k
£ 10 (5 )0k NG, N(a () N(ey ()5 (0]
w su E||Q(k, N(k), N(c1(k N(c, ()%, dk 8
<l o, EIO N NG ), NG () ®)

2H, 2b2(H+£7l) Ie
<= /0 7o (k)dk.
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From Holder inequality’s and (A4)(ii), we obtain

£ £
£k 10(E55 ) [ 606N, NG 0)-.o, NGull), W, )P

Q2b2£71 o )
<& sup [ B B0k N, N (), Nwu(), 1) P Adf |de—(9)
O \IINol.... HNHII2<S
21261
0°b
<
SE—1 Jo T

(k)dk.

From Holder’s inequality and Burkholder-Gundy’s inequality with (A1)-(A4), we
obtain, for p € (0, p1],

. £k . b
el [ o (S putoal? < m[mmnum ) [ B0 3ak

b b2£71 ©
2H-1 = 2 2
2121 [TE|p() By + EINO)IP + 57— [ ec(i)de
PE-1 o
+Tr(3)ﬁ A re(k)dk
2HP2AHHE-L) o pE-1
+ 2 [ a5 [" gk,

and for p € (k;, p; 1], we obtain

. £ _ kE * '
B0 (S Jmua? < W{E”Nl’z”’()/ EIp I3k

2HpH /hE\|<p(k)\|20dﬂ<+eg3 i /@ ee(k)dk
Jo L 2£ -1 Jy,
pE-1 pp

T3 o1 ),

re(k)dk

2Hb2(H+£71) o b2£—1 ©
— / Rell) + g [k

We claim that 3 e > 0 such that A(B,) C B.. If it false, then V € > 0; there is a function
N () € Be, but A(N) ¢ B, thatis | (ANg)(p) ||2 > ¢ for some p = p(e) € Y, where p(¢)
means that @ is dependent on e.

From (A5) and Equations (6)—(9), we have, for p € (0, 1],

IANIE < 36sup{EH®( )N0||2
peY

S [0 LT ) Mo N N6 (), N )i P
+E | /Opﬂ«“ (”ﬁ k£)8u )ik |2
e [Tk LT [ N NG @), NG P
<2 [ k0 L1 )l N, N 9) . Niey ()il I (10)
+ [T ) [ N, N 9). NG (), SIW Gl ) HZ}
< 360 {1+Q(ZZB*QB) }{EHN(O)H2+;£2£ - Obeg(]k)d[k
+Tr(3)2b£2i ()i %/f k)dk
o [aoam) 4 CEBE Tps e n03) [ Bl s

b
+2Hbz”’1/0 EHq’)(k)Higdk},
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for p € (i, ki
HAMH%SﬂﬁEWA@NQﬂWZSQﬁ- (11)
pe
and for p € (ki, pit1]
£ £
AN < 36512;{5\\@<@ 5 i, NG
£ £
+E | / KE 1@(” -k )M(p,Nw),N(el(m),-..,Nwm(m»dk &
+E | /[‘ kﬁ*@(d ;kﬁ)Bu(k)dk I
o oF — KE
<21 [0 ) [TV N, NG, .o NG () I
o £ KE
+E || /[ k*l@(“ £k>0(k,N(k),N(c1(k)) ,,,,, N(cp(k)))dB u (k) | (12)
¥ b1 p- — k-
+/ki K @( ) [ 00k, N (), N1 (), N(1u(K), )W (dk, df) uz}

IN

2.2 2 12E 2£—1 b 2£—1 b
> 0°0p+ 0b b b /
360 {1 + 2-1)2 }{£Q3 + T . eg(k)kor Tr(3) 57— i), re(k)dk

ZHQZbZ(HJrEfl) b p2-1
= /k )k + 5 — qs( )dk}
0'05- 05 2 / 7 () 12
t -1 [EHNbH +1r(3) | Ellgp(R)lI5dk

b
+2Hb2H’1/0 EH(p(k)Hngdk}.

Adding (10), (11) and (12) in the inequality e <|| (AN;)(p) ||?, dividing both sides of the
inequality by ¢, and applying the limit ¢ — 4-o00, then

2 0"Qp- 05 ! !
sec? {1+ @£>}Q“151M+W@u_ﬁ2

S HpR(H+£-1) p2E-1
2y Nt —qXagtesz 1.

This contradicts (5) Hence, for ¢ > 0, A(B¢) C B,. Next, we have to demonstrate that
A has a fixed point on B,. We decompose A as A = A1 + Ap, where A and A; are defined
on B, by

£

O(F )No+ 3 k10 (L7 ) M(k, N(k), N(6 (), ... Nl ()dk, € (0,01]
iy N(g). pe(m,k] =12,
T >h(ﬂ<uN + oK (L kﬁ) (k, N(k), N(&1(K)), .., N(£w (k)))dk,

p € (ki, pit1), i=12,...,m

j‘)kL{*@(@E—kﬁ)Bu(k)dk
+ k1o p fo N(11(7)), -, N(k(1)))dew(T)dk
(AaN) () = |+ [ E10(2£E )oK, N( ) ( 1(k)), ..., N(cp(k)))dBp (k)

+fwk£ 1@( .a ]kﬁ)fF (k, N(k), N(11(k)), ..., N(1,(k)), f)W(dk,df),
o€ (kipit], i=01,...,m

0, otherwise.
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for p € Y. Next, we show that A is a contraction and A; is a compact operator. To show
that A is a contraction, let N;, N, € B, then for each p € Y and by (A1) and (A5),

we obtain
El(N)(o) -~ (NP < 2| [k o S ) [M(k,wk),wl(el(k)),...,wm(k)))
2

—M(k, Na(k), N2 (¢4(k)), ..., NZ(gm(k)))] dk (13)

£
< 2V EIN(e) - M@, o€ 00
E Il (AN (0) — (AN)(9) B < E || 3o, M) = i, Na(o)) I

< 0 E | Ni(p) = Na(p) > 9 € (0,01]p € (i, ki] (14)

E || (A1Ny)(p) — (A1N2) () |7

§4E|@(“y;hy>mﬂ@NﬂkD—hﬂ%NﬂkDHF

£_ £
+4E | [ 10 () Mo, Ni0), Na(Aa () M) 15

~ M, Na(), Nal02(9)) - Nalln () |2
Q2b2£ )
<4 ton+ E]EIN(0) - Nao) I, 0 € 01

Combining (13), (14) and (15), we obtain

2b2£ ) )
+ 04 +40°04 | E || N1() — Na(p) ||

ElL (AN (o) - (M)} [P < |56

< mE || Ni(p) — Na(p) 1>

Taking sup .y for both sides of the inequality, we obtain

Sur;E | (A1N1)(9) — (A1N2) () [P< m Sur;E I Ni(p) — Na(p) |17
e pe

Hence,
| ALNy — AqNo [2< 7 | Ng = Ny |3

Thus, A1 is a contraction.

We show that A; is compact.

First, we prove the continuity of A on B,.

Let {N,} C B, with N, — yin B, and the control function u(p) = u(p, N). Therefore,
for each

k €Y, Ny(k) — N(k) with A2(i), A3(i), and A4(i), we obtain

V(& Nu (%), N (11 (K)), -, NuG(K))) = V (&, N(I), N(11 (K)), .., N(j(K))), s 1

?(k, Niu(k), Nu(c1(K)), ..., Nu(cp(K))) = Q(k, N(k), N(c1(k)), ..., N(cy(k))),asn —

U(k, Ny (k), Ny (11(k)), ..., Nu(14(k)), f) — O(k,N(k), N(11(k)),..., N(u(k)), f), as
n — oo,
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From Lebesgue’s dominated convergence theorem, we have

/ﬂj kﬁ—l@(pﬁgkﬁ> (Bu(k, N,) — Bu(k, N)) dk

£ 1.E
+/[: ﬂ«“®<p £ : >/o]k (V(Tf Ni(0), Nu(1 (1)), -, Nu(ji (1))

| A2Ny — Agy |7 = sup {E
p€e]

_V(TfN(T)rN(]l(T))/“-rN(]k(T)))>dw(T)dk
£ 1.t
+/kp k£1®<p£k) (Q(k,Nn(k),Nn(cl(k)),...,Nn(cp(]k)))

—O(k, N(k), N(c1(k)), .. -/N(Cp(k)))> d%Bp (k)

_f_/[:k‘el@(ﬁzM)/F(U(k,Nn(k),Nn(h(k)),---/Nn(lu(]k))rf)

2
} —0,
as n — oo, which is continuous.
Next, we show that {Axy : N € B,} is an equicontinuous family of functions. Assume
€ > 0,small, k; < py < pg < i1, then

—6<ﬂ«,N<k>,N<zl<k>>,..-,N<zu<k>>,f>>W<dk,df>

E || (A2N)(pp) — (A2N)(0a) |12

oE — Kkt £ )L
<E|\/ ‘K- 1( (ﬁ> ) K’Aﬁk ))Bu(k)d]k 2
£ £
P £ -k £ KE
+E H/ k£1<® ﬁ‘) 7@<m k >>Bu(k)dk |2
Oa—€ £ £

£ £
o5 — K
+E H/ ke 1@( “ﬁ >Bu(k)d]k 2

(29

X/0 V(t,N(1),N(1(1)), .., N(x(1)))dew(t)dk |2
fef K oi — k*
+E | @MkE 1<®< ; )-@( ; ))
X/O]kV(T N(7),N(j1 (7)), -+, (k(7)))deo(T)dk ||*
o5 —k*
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(ASN)(p)

N )
F
£ £
Pr pﬁfk - of —kE
+EH‘/M76]1< (@ . o
N

N (K)), ..., N(tu(k)), f)W(dk, df) ||
£

As pg — oo, we see that E || (A2N)(pp) — (A2N)(pa) |> — 0independently of
N € 9B, with € sufficiently small, because the compactness of () for p > 0 tends to the
continuity in the uniform operator topology. Furthermore, we can show that AN, N € B,
are equicontinuous at p = 0. Then, A, maps B, into a family of equicontinuous functions.
Next, we show that T(p) = {(A2N)(p) : N € B,} is relatively compact in B,. Clearly,
T(0) is relatively compact in B,.

Assume k; < p < p;11 tobe fixed; k; < € < p for N € B, we define

:/u(é)_ekﬁl(a(M)Bu(k)dlk
+/ﬂj€k£1®<p££_ﬂé> /Ok V(t,N(t),N(1(1)),---,

0—€ £ 1.t
+/g k£1@<@ Ek )Q(k,N(k),N(cl(k)),...,N(cp(]k)))d%H(]k)

N (jx(7))dew(T)dk

+ [ oK) /Fzsk,Nu@,N( () NGaR)), W, )
=o() [ were(*
oo ef) Oﬂ«U
e
)

Bu(k

7),N(j1(7)), ...,

N (jx(7))dew(T)dk

N(er(k)), ..., N(ep(k)))dB (k)

N(w (k)), f)W(dk, df).

Since ©® (% ,
relatively compact in X for every €, k; < e < p.

%ﬁ > 0 is a compact operator, hence T¢(p) = {(ASN)(p) : N € B} is
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Moreover, V N € B, we have

0 e1g (P~ 2
| Agy — ASy ||3 < 16su1? E| . ek © — Bu(k)dk||
pe -

£_ £
+e ] [ wte(ELE) [TV N NG ), N (0 |

0 £ Tt
+£ ] [ k0( 1 )l N, N(@(®) .. Ny (9)dBu (i) |

0 £ 1.t
+E | ;ekﬁl@<@ - £ )/FU(k,N(k),N(zl(k)),...,N(zu(k)),f)W(d]k,df) |2}
2£—1 _ _A\2E-1,2 .
16@2{ 0= 8 7 e |
2£6—1 —€ 2£-1
O SO [ [ B V(@ NN NGe(e) [ e

26-1 _ (1 _ ~\26—1
Lope2HA1 (b 2£(b— 16) ) /hh_eE | O(k,N(k), N(c1(k)),...,N(cp(k))) ||ig dk

+Tr(3)

(b2£71 _ (b —e

2£-1
OO e 5 NG, N () NGa() ) ||2Adfdﬂ«}.

We see that, for each N € B, || Aoy — A§ |2 — 0as e — 0T. Therefore, there are
relative compact sets arbitrarily close to T(p) = {(A2N)(p) : N € B}; hence, T(p) is also

relatively compact in B,.

Thus, by the Arzela—Ascoli theorem A; is a compact operator. Hence, A = Aj + Ay is
a condensing map on B, and by the fixed-point theorem of Sadovskii, there exists a fixed

point N(-) for A on B,. Thus, the stochastic system (1) has a mild solution on Y.

Theorem 3. Suppose that Assumptions (A1)—(A6) are satisfied. Moreover, if M, V, U and Q)

are uniformly bounded, then (1) be approximately controllable on'Y.

Proof. Assume N is a fixed point of A. By the stochastic Fubini theorem, we obtain

Ny —x(xI + 2 {EN;, +/ s)dw(s) + '/OT @(s)dBH (s)

b £ ]k£
x/ﬂ(I (x1+58)_1k£_1®<b

(k, N(k), N(¢1(k)), ..., N(lu(k)))dk

)
x/i(xl—l—”h et 1@( )
x/ﬂ:n(xl+ Ikt 1®<b£ k£)

()

b
x/ (xI—l—"’b “k-le

M
/Ok V(t,N(1), N(1(1)), ., N(jx(7)))dew(T)dk

O(k, N(k),N(Cl(k)),-.-,N(Cp(k)))d%H(k)}-

From the condition on M, V, U and ), there exists ® > 0 such that

IM(k, N(K), N(£1(K)), ..., N(€m(K))|[* <D, [[V(T,N(7), N(1(1)),..., NG (D)5 <D,

15k, N(k), N(11(K)), ..., N(1u(k)), /) |* <D,
||Q(k/N(k)/N(Cl(k))r-~-/N(Cp(k)))||%g <D

O(k, N(k), N(11(k)), ..., N(1(k)), f)W(dk,df)
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IA

Consequently, the sequences
{M(k,N(k),N(£1(k)), ..., N(m(k))}, {O(k N(k), N(u(k)),..., N(t(k)), f)},
[V (, N(¥), N1 (1) ., NGi(0) 3, {0 ,

weakly compact in
Ly(J,R), La(L3(G,N)) and Ly(L3(Q X)),
so there are subsequences
{M(k, N(k), N(£1(k)), ..., N(m(k))}, {00k N
V(@ N(), N (1)), NGi(1))) { Cp
that weakly converge to {M( )} {0k N} {V(k)}, {Q(k)}in Ly(Y,R), Ly(L3(G,N)),
and Ly (L3(Q, N)).
From the above, we have

E[IN(b) — Ny|?
— b —_
36E|\x(x1+33)—1ENh||2+36E||/O [x(xI + E§) " 'p(k)dw (k)|
b
36E|\/0 x(xI + E8) (k) dB (k) |2

b bt —
365|\/ x(x1+58)1k£1®<

£ )
£ £
365|\/ x(xl + EY) 1k 1®<b £k )M(]k)dk|2
£ 1.E
36E| (x1+33)—1k£—1®<b ﬁk)
knl

<[ [v<r,N<r>,N<n<r>>,...,Nok(r))) - v<r>]dw<r>dku2

b P _KE\ [k
36EH/ x(x1+ag)—1k£—1®< . )/ V(1)dew(7)dk|?
ks, 0
b £ 1.t
36E|\/ x(x1+38)1k£1®<b k )
Kk

X /F [U(k,N(k),N(zl(k)),...,N(

~

(

-k

b >>,f>6<k>}w<dk,df>||2
£

£

oy
™

36E|/]: x(x1+38)1k£1®< )/FU(Jk)W(alk,alf)||2

£

Tt
36E|| /u«i x(x1+ag)1k“®<b£k) [Q(]k,N(k),N(cl(]k)),...,N(cp(k))) —Q(k) |dBy(k)|?

b b\ —1p.£-1 bﬁ_kﬁ: 2
36E|| [ x(x1+25) K10 T ) Q)dBL ()|

By Lemma 2, x(xI + E4)~! — 0 strongly as x — 0% for all k,, < k < b, and fur-
thermore, ||x(xI + E8)~!|| < 1. Thus, E[[N(b) — N;||> — 0 as x — 0T by the Lebesgue-
dominated convergence theorem and the compactness of ®(k). Hence, the system (1) is
approximate controllable.

4. Example

Consider the CF noninstantaneous impulsive stochastic partial differential equation
with fBm and Poisson jump of the form:
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360° { 1+

D8£N(@,Z)+§22N(w, )= 1%S%N(p, z) +w(p,z) + [§ 37 EN(k, z)dw(k)

+ 195 N(p,2) 29 1 [ h(p,N(p,2), )W (dp,df), p € (0,3]U(3,3, 0<z<n

N(p,0) = N(p, ) =0, @6(0,3], (16)
N(pz) = Fe Dol pe Gl osz<m

(N(0,2z)) = No(z), 0<z<m,

where D% is the CFD of order £ = 0.6, w is a Wiener process, and By is an fBm with

He (1.

Assume X = Q = G = 4 = Ly([0,7]) and A, where Ay = —(%)N with domain

D(A) = {N € ®: N, ¥ are absolutely continuous and ( )N e N, N(0) = N(mn) =0}.
Then, —A generates a strongly continuous semigroup @( ), which is compact analytic,

and self-adjoint. Moreover, —A has a discrete spectrum with eigenvalues n2, n € N and
the corresponding normalized eigenfunctions given by

/2
1, =4/ —sinuN, n=1,2,...
T

In addition, (r,),en is a complete orthonormal basis in . Then,

—AN = Y #*(N,tn)tn, N € D(A).

n=1

Moreover, —A generates an analytic semigroup of the bounded linear operator,
{®(p)}p>0 on X, and is defined by

O(p)N =Y x9N, x)x,, NER, p > 0.
n=1

with [|[O(p)]| < x7¥ < 1. We define B : {{ = X by Bu(p)(z) =w(p,z), 0<z<m, u il
Furthermore,M:YxN%N,V:YXNHL(G,N),Q:YXN%LO(Q, ),O:JXNXF—

X, and #; : (p;, ki] x X — N are defined by M(¢p, N)(z) = 17505 N(p,2), V(k N)(z) =

37 EN(k,z), Q(p,N)(z) = 15 N(p,2), B(p, N)(z) = h(p, N(p,z2), f),and iy (9, N()) =
%e’(g’*é)lf‘]lsfp( )|>|, respectively. Then M, V, Q, U, and hy verify (A1)-(A6).
Let B = B* = I. Therefore, all conditions of Theorems 2 and 3 are verified and

QQB*szZE +bzﬁ—l LT3 pRE-1 +2Hb2(H+£—l) pRE-1 ot
e—1) (2T T MO gt = o g e e

21,2L
and y; = [% +o4+ 4QZQ4} <1
Thus, (16) is approximately controllable on Y.

5. Conclusions

By using fractional calculus, a compact semigroup, Sadovskii’s fixed-point theorem,
and stochastic analysis, we investigated the approximate controllability of the given sys-
tem (1). The obtained theoretical conclusions were illustrated in the later portion with an
example. The results can be extended to a fractional stochastic inclusion system.
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