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Abstract: An adaptive backstepping terminal sliding mode control (ABTSMC) method based on a
multiple−layer fuzzy neural network is proposed for a class of nonlinear systems with parameter
variations and external disturbances in this study. The proposed neural network is utilized to
estimate the nonlinear function to handle the unknown uncertainties of the system and reduce
the switching term gain. It has a strong learning ability and high approximation accuracy due to
the combination of a fuzzy neural network and recurrent neural network. The neural network
parameters can be adaptively adjusted to optimal values through the adaptive laws derived from the
Lyapunov theorem. To stabilize the control signal, the additional parameter adaptive law derived
by the adaptive projection algorithm is used to estimate the control coefficient. The terminal sliding
mode control (TSMC) is introduced on the basis of backstepping control, which can ensure that the
tracking error converges in finite time. The simulation example is carried out on the DC–DC buck
converter model to verify the effectiveness and superiority of the proposed control method. The
contrasting results show that the ABTSMC−DHLRNN possesses higher steady−state accuracy and
faster transient response.

Keywords: multiple−layer fuzzy neural network; recurrent neural network; adaptive projection
algorithm; adaptive backstepping terminal sliding mode control

MSC: 68T07; 93C40

1. Introduction

It is well known that most systems existing in a variety of scenarios are nonlinear
systems with a strict feedback form. The control purpose is to ensure that the state signals
of the system follow the reference signals. As the loading conditions and system parameters
are highly uncertain, it will lead to an undesirable impact on system regulation accuracy.
Therefore, it is necessary to design a stable and adaptive controller for a nonlinear system
with the presence of external disturbances and parameter variations.

It can be seen from early research that the PID controller has been widely concerned
due to its simple principle and application. In [1], a PID controller was designed to suppress
current harmonics for a permanent−magnet synchronous motor (PMSM). Irfan et al. [2]
designed double PID controllers per axis for a stable flight of Vertical Take−Off and Land-
ing drones. In order to handle the rapid variation in unknown disturbances, a dynamic
parameter tuning method for variable PID controllers was proposed in [3]. Moreover,
Meza et al. [4] presented a fuzzy self−tuning method to select PID gains according to the
actual state of the model. However, the PID controller is a linear control strategy, which
seldom ensures large−signal stability and robustness. Hence, more advanced control strate-
gies are proposed to handle the instability problem. In [5], a proportional−integral−fuzzy
controller based on an iterative feedback tuning algorithm was designed to control a class
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of servo systems. In recent research, some nonlinear control methods have been widely
used, including sliding mode control (SMC) [6] and backstepping control [7].

The main feature of backstepping control is that it designs virtual control laws for each
subsystem through a step−by−step recursive process, which can reduce the complexity of
the control design. Cai et al. [8] proposed a robust adaptive control strategy based on the
backstepping technique for nonlinear systems with unknown parameters, and Lin et al. [9]
designed an adaptive backstepping speed control system for a PMSM. However, when sys-
tem uncertainty and disturbances are involved, it is difficult for conventional backstepping
control to achieve high performance.

Due to the design of the switching term, SMC is another attractive choice for applica-
tion in the nonlinear system, which has the property of robustness to disturbances. In [10],
a second−order SMC algorithm was presented to solve motion control problems of robot
manipulators. In [11], a super−twisting algorithm was introduced into SMC, which can
effectively weaken the chattering phenomenon of the control input. Here, the backstep-
ping sliding mode control (BSMC) was proposed, which combines both characteristics of
backstepping control and SMC. It has also been developed in various scenarios such as
multimachine power systems [12], hypersonic vehicles [13], unmanned aerial vehicles [14],
and DC microgrids [15].

However, SMC can only guarantee that the tracking error asymptotically converges to
zero. With respect to this problem, the terminal SMC (TSMC) has attracted more attention,
which can ensure the finite−time convergence of the tracking error, thus improving the
dynamic property of the system [16]. Yao et al. [17] developed a robust adaptive nonsingular
TSMC (NTSMC) in the position and speed control of an automatic train operation system.
Wang et al. [18] adopted continuous TSMC to realize the trajectory tracking of flexible−joint
robots, and Xu et al. [19] introduced a novel nonsingular fast TSMC−reaching law to
shorten the response time of the controlled model.

Although SMC can alleviate the adverse effects of system uncertainty and external
disturbances, it often causes the high−frequency chattering problem due to a large switch-
ing term gain. Moreover, the computation of the control signal depends on exact parameter
information of the system, which is not available in actual application. Some scholars have
developed adaptive sliding mode control (ASMC) [20,21]. In [20], an ASMC was presented
for parameter estimation in a boost converter through the use of state observers. In addition,
Xu and Yao [22] utilized the bounds on the parameters to construct an adaptive projection
algorithm, which ensures that the estimates belong to a known bounded region. However,
when dealing with fast time−varying parameters, control action through ASMC alone is
not reliable. This disadvantage is overcome by employing a neural network feedforward
control method of estimating the nonlinear function.

The neural network (NN) has a strong learning ability, which is widely applied in the
control of unknown systems. In [23], a novel NN−based controller was presented to obtain
the reference tracking control of a nonlinear position servo system, and the neural network
was trained by a Deep Q−Learning algorithm.

The radial basis function neural network (RBFNN), as a common network structure,
is obtained in nonlinear systems with unknown nonlinearities [24]. Moreover, a novel
self−organizing RBFNN was reported in [25], where the structure of the RBFNN can be
regulated according to the system behavior. Considering the low approximation capability
of the RBFNN, and that it takes a long time to adjust weights, this is not a favorable choice.

The fuzzy neural network (FNN) possesses the learning ability of neural networks
and inference capability of fuzzy systems in handling unknown information, which have
been developed rapidly for dynamic modeling and advanced controllers design [26–29].
Lin et al. [30] proposed a Takagi–Sugeno–Kang fuzzy neural network to estimate the
lumped uncertainty. The recurrent neural network (RNN) uses the cyclic connection tech-
nique, and the neuron feedback loop is utilized to transmit previous output signals, which
means that the network considers the previous dynamic information to improve the con-
nection dependency in layers. Therefore, the RNN has the ability to handle time−varying
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inputs and external disturbances. A self−organizing RNN with a general nonlinear form
for predicting system behaviors is proposed in [31]. However, it is difficult for the RNN
with a single hidden layer to maintain high approximation accuracy, which will also in-
crease the calculation computation due to the necessity of a large number of neurons. Thus,
the RNN with a double−loop structure was proposed [32,33]. In [33], this network struc-
ture was designed for identification and prediction of the motion control system. However,
conventional single−layer neural networks may need to train numerous neurons, which
will cause the increase in computational complexity and the excessive consumption of high
memory. Therefore, a multiple−layer neural network (MLNN) structure has been widely
concerned, which can provide fewer neurons training and higher approximation accuracy.
Lee et al. [34] designed a multiple−spatiotemporal−scale recurrent neural network for
action recognition. It was reported in [35] that a convolutional multiple−layer recurrent
neural network can be used for both homogeneous and heterogeneous images. In [36], a
multilayer perceptron neural network was developed as an exploratory test oracle. Some
fuzzy neural controllers were investigated to enhance the approximation capability of
neural networks for dynamic systems [37–43].

Based on the merits of FNN, RNN, and MLNN, this paper designs a multiple−layer
fuzzy neural network structure, i.e., double−hidden−layer recurrent neural network
(DHLRNN), which introduces double hidden layers and double loop feedbacks, suppress-
ing the adverse effects of external disturbances and dealing with the uncertainty of the
nonlinear systems.

Based on the above research, an adaptive backstepping terminal sliding mode control
based on the DHLRNN is proposed in this paper. The DHLRNN and parameter adaptive
law derived from the projection algorithm are utilized to estimate the unknown function
and control coefficient of the universal nonlinear system, respectively, and the estimated
value is then transferred to the controller for effective feedforward compensation. Moreover,
the proposed SMC method combines the features of backstepping control and TSMC; under
the framework of such a control strategy, the system can obtain faster transient responses.
The main contributions of the proposed control method compared with existing works are
summarized as follows:

(1) The proposed DHLRNN inherits the fuzzy inference ability of the FNN, and includes
the self−regulation ability of the RNN, which can be used to estimate more complex
unknown functions. Therefore, the DHLRNN can counteract and compensate system
uncertainties to improve the tracking accuracy of the control system. As an improve-
ment of the single−hidden−layer neural network, the DHLRNN contains two−layer
activation functions for feature extraction. It can process complex data and avoid
serious calculation complexity by reducing the number of neurons.

(2) This paper utilizes Lyapunov stability theory to derive the adaptive laws of the
DHLRNN. The parameters including base width, center vector, and feedback weights
can be trained online. The neural network output can be continuously updated accord-
ing to the system parameter variations. This means that the proposed neural network
will reach the optimal value after a short learning and adjustment. The proposed
controller can obtain dynamic regulation instead of relying on exact mathematical
models. The adaptive law of the control coefficient derived from Lyapunov theory
adopts an expression form of a projection algorithm, which ensures that the estimated
value changes in a known bounded region. Whether faced with disturbances or not,
the control coefficient remains bounded all the time, and the stability of control signal
can be guaranteed.

(3) The design of backstepping TSMC not only reduces the complexity of control design,
but also makes the state tracking error converge in finite time. The use of the switching
term can also counteract the adverse effects of external disturbances and the lumped
approximation error of the neural network to improve the steady−state performance
and anti−disturbance performance of the system.
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The rest of this paper is organized as follows. Section 2 introduces the state equation
of nonlinear systems and the problem statement is presented. In Section 3, the design of
the proposed control method is given, including the neural network definition and stability
proof. The simulation study is shown in Section 4. Finally, Section 5 concludes this paper.

2. System Description and Problem Statement

Consider the following a class of a SISO partially unknown nonlinear system

.
x1 = x2.
x2 = x3
...
.
xn−1 = xn.
xn = f (X) + bu + d(t)

(1)

where X = [x1 x2 · · · xn]
T is the state vector, and f (X) and b are a nonlinear function

and control coefficient, respectively. u denotes the control signal and d(t) denotes the
external disturbance.

Due to the parameter variations and measurement limitations, the system parameters
are difficult to obtain accurately; there exists f (X) = f0(X) + ∆ f (X), where f0(X) is the
nominal part of the nonlinear function and ∆ f (X) is the unknown uncertainty. ∆ f (X) is
considered upper−bounded. The control coefficient b is considered bounded.

The main control objective is to design an appropriate control signal u so that the state
signal X can accurately track the reference trajectory Xr, i.e.,

lim
t→∞
|X− Xr| = lim

t→∞
|E| = 0 (2)

where Xr = [xr,
.
xr, · · · , x(n−1)

r ]
T

and E = [e,
.
e, · · · , e(n−1)]

T
is the error vector.

The BTSMC method is presented for the control problem; f (X) and b are assumed to
be known. Moreover, the terminal function p(t) is introduced into the backstepping control
to ensure finite−time convergence, and the sliding surface is built by the backstepping
control variables.

Remark 1. Consider that the terminal function p(t) is a continuous differentiable function with n
order. In order to obtain global robustness, the condition of e(i)(0) = p(i)(0), i = 0, 1, · · · , n− 1 is
established. Moreover, for the set time T > 0, when t ≥ T, p(t) = 0,

.
p(t) = 0, · · · , p(n)(t) = 0

should be satisfied to obtain finite−time convergence of the tracking error. Therefore, the terminal
function is defined as

p(t) =


n
∑

k=0

1
k! e(0)

(k)tk +
n
∑

j=0

n
∑

l=0
[

ajl

T j−l+n+1 e(0)(l)] tj+n+1, i f 0 ≤ t ≤ T

0, i f t > T

(3)

The terminal function coefficients ajl can be calculated by solving the equations p(T) = 0,
.
p(T) = 0,

· · · , p(n)(T) = 0.

The detailed design process is described as the following steps

Step 1 Design of the virtual control term α1

(i) Define the tracking error z1 = x1 − xr − p;
(ii) Design the virtual control term α1 = −k1z1, where k1 > 0.

Step 2 Design of the virtual control term α2

(i) Define the tracking error z2 = x2 −
.
xr −

.
p− α1;

(ii) Design the virtual control term α2 = −k2z2 − z1 +
.
α1, where k2 > 0;
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(iii) Take the derivative of z1:
.
z1 = −k1z1 + z2.

Step i Design of the virtual control term αi

(i) Define the tracking error zi = xi − x(i−1)
r − p(i−1) − αi−1;

(ii) Design the virtual control term αi = −kizi − zi−1 +
.
αi−1, where ki > 0;

(iii) Take the derivative of zi−1:
.
zi−1 = zi − ki−1zi−1 − zi−2.

Step n Design of the control law

(i) Define the tracking error zn = xn − x(n−1)
r − p(n−1) − αn−1;

(ii) Design the following terminal sliding surface s = czn−1 + zn, where c > 0;
(iii) Take the derivative of zn−1:

.
zn−1 = zn − kn−1zn−1 − zn−2;

(iv) Take the derivative of zn:
.
zn = f (X) + bu + d(t)− x(n)r − p(n) − .

αn−1;
(v) Design an equivalent control law ueq: ueq = 1

b [−c(−kn−1zn−1 − zn−2 +

zn)− zn−1 − f (X) + x(n)r + p(n) +
.
αn−1];

(vi) Design a switching control law usw: usw = 1
b [−ρs− λsign(s)], where ρ > 0,

λ > D, and sign(·) denotes a sign function;
(vii) Design the ideal control law u: u = ueq + usw.

Theorem 1. For SISO nonlinear system (1), when all parameter information of the system is known
and the external disturbance d(t) is bounded, if the terminal sliding surface is chosen as

s = czn−1 + zn (4)

and the ideal controller using a switching term is designed as

u= ueq + usw

=
1
b
[−c(−kn−1zn−1 − zn−2 + zn)− zn−1 − f (X) + x(n)r + p(n) +

.
αn−1 − ρs− λsign(s)]

(5)

all signals of the closed−loop system will asymptotically converge to zero.

Proof. The Lyapunov function is selected as

V =
1
2

n−1

∑
i=1

z2
i +

1
2

s2 (6)

Taking the first derivative of (6) and combining the relationship between zi and sliding
surface s, it can be obtained that

.
V =

n−1
∑

i=1
zi

.
zi + s

.
s = −

n−1
∑

i=1
kiz2

i + zn−1zn + s
.
s

= −
n−1
∑

i=1
kiz2

i + zn−1zn + s[c(−kn−1zn−1 − zn−2 + zn)

+ f (X) + bu + d(t)− x(n)r − p(n) − .
αn−1]

(7)

Substituting control input (5) into (7) obtains

.
V = −

n−1
∑

i=1
kiz2

i + zn−1(s− czn−1) + s(−zn−1 − ρs− λsign(s) + d(t))

= −
n−1
∑

i=1
kiz2

i − cz2
n−1 − ρs2 − λ|s|+ sd(t)

≤ −
n−1
∑

i=1
kiz2

i − cz2
n−1 − ρs2 − λ|s|+ D|s|

(8)
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Assume |d(t)| ≤ D, where D is an unknown positive constant. When the condition
λ > D is satisfied, the following inequality holds:

.
V ≤ −

n−1
∑

i=1
kiz2

i − cz2
n−1 − ρs2 − (λ− D)|s|

≤ −
n−1
∑

i=1
kiz2

i − cz2
n−1 − ρs2

(9)

Therefore, inequality (9) satisfies
.

V ≤ 0. According to the LaSalle invariance principle,
the convergence of backstepping control variables and the sliding surface can be guaranteed,
i.e., when t→ ∞ , then zi = 0 (i = 1, 2, · · · n), s = 0. Moreover, the tracking error E will
converge to zero in finite time under the constraint of terminal function p(t). The detailed
proof is shown in Remark 5. �

Remark 2. When the Lyapunov function and system control law are selected, then the condition
of lim

s→0
s

.
s ≤ 0 is derived, and it can be concluded that lim

s→0+

.
s ≤ 0 and lim

s→0−

.
s ≥ 0. This means that

as long as there are state signals close to switching surface s(x) = 0, they will be attracted and
fluctuate around the switching surface. Therefore, according to the designed sliding mode trajectory,
the state signals can reach the specified region.

3. Design of Adaptive Backstepping Terminal Sliding Mode Controller Using Dhlrnn

Although the ideal control signal designed in (5) can guarantee the convergence of all
states and signals of the nonlinear system (1), an accurate mathematical model is difficult
to obtain because of environmental fluctuations and disturbances. Control actions through
SMC alone result in a large switching term gain, which will cause system chattering and
damage the steady−state performance of the system. In order to observe the real−time
information of the model, this section utilizes the DHLRNN and parameter adaptive laws
to estimate the nonlinear function f (X) and control coefficient b, respectively, and the
estimated value is introduced into the controller for effective feedforward compensation to
improve control accuracy.

3.1. Structure of DHLRNN

The specific structure of the proposed neural network is shown in Figure 1, which
comprises the input layer (layer 1), the first hidden layer (layer 2), the second layer (layer 3),
and the output layer (layer 4).

The proposed DHLRNN is a multi−layer network structure and possesses self−learning
ability, which combines the advantages of the FNN and RNN. It can be used to estimate
complex nonlinear functions, which provides an effective solution to the unknown uncer-
tainty problem of the system.

The detailed signal transmission and the basic function in each layer of the DHLRNN
are introduced as follows

Layer 1 (Input Layer): The main function of this layer is to pass the input variables to
the next layer. Due to the design of external feedback, the output value exY at the previous
time is connected to the input layer by the feedback weight Wroi(i = 1, 2, · · · , m), thus
providing the optimal input for the subsequent processing. For every node in the input
layer, the ith node output is calculated as follows:

θi = xi ·Wroi · exY, (i = 1, 2, · · · , m) (10)

where xi denotes the input of the ith node, X = [x1, x2, · · · , xm]
T is the input vector in this

layer, and θ = [θ1, θ2, · · · , θm]
T is the output vector. The external feedback weight matrix of

the input layer is described as

Wro = [Wro1, Wro2, · · · , Wrom]
T (11)
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Layer 2 (The First hidden layer): This layer adopts a Gaussian function as an activation
function to realize fuzzification operation with the aim to expand the dimension of the input
variables. The signal is mapped from the low−dimensional space to the high−dimensional
space. The internal feedback loop is realized and the dynamic recursion leads to better
mapping, which improves the neuron activation intensity. The output form of the jth node
is expressed as

φ1j = e−net1j , (j = 1, 2, · · · , n)

net1j =
m
∑

i=1

(θi ·Wrj ·Lφ1j−c1j)
2

b2
1j

(12)

where b1j and c1j are the center vector and the base width of the jth activation function,
respectively. Lφ1j represents the previous output of the jth node, which will be fed back
to the current node through the feedback weight Wrj. The output vector of the first
hidden layer is Φ1 = [φ11, φ12, · · · , φ1n]

T . The center vector matrix, base width matrix, and
feedback weight matrix of the first hidden layer are, respectively, described as

B1 = [b11, b12, · · · , b1n]
T (13)

C1 = [c11, c12, · · · , c1n]
T (14)

Wr = [Wr1, Wr2, · · · , Wrn]
T (15)

Layer 3 (The second hidden layer): This layer also utilizes Gaussian function for nonlinear
mapping, which is similar to the function of the first hidden layer. The signals are mapped
from the first hidden layer space to the higher−dimensional space, and the features of
the input vector are further extracted. The kth node output of the second hidden layer is
expressed as

φ2k = e−net2k , (k = 1, 2, · · · , l)

net2k =
n
∑

j=1

(φ1j−c2k)
2

b2
2k

(16)

where b2k and c2k denote the center vector and the base width, respectively. Φ2 = [φ21, φ22, · · · , φ2l ]
T

is the output vector of the second hidden layer. The center vector matrix and base width matrix of the
second hidden layer are, respectively, described as

B2 = [b21, b22, · · · , b2l ]
T (17)
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C2 = [c21, c22, · · · , c2l ]
T (18)

Layer 4 (Output layer): This layer will calculate the overall output of the network and
serve as the feedback signal of the input layer. The single output node is connected with
each neuron of the second hidden layer by the weight Wk(k = 1, 2, · · · , l), which is labeled
with the symbol Σ. The output of the DHLRNN is the weighted sum of the Gaussian
function calculated by the second hidden layer, expressed as

Y = WTΦ2 =
l

∑
k=1

Wkφ2k (19)

where the weight matrix of the output layer is described as

W = [W1, W2, · · · , Wl ]
T (20)

Based on the number of nodes m, n, l in each layer, the proposed DHLRNN structure
is defined as m− n− l − 1, which can be selected carefully according to the specific system.

3.2. Approximation Error of DHLRNN

The DHLRNN is used to estimate the nonlinear function in the ideal controller (5),
and there exists B∗1 , C∗1 , W∗r , B∗2 , C∗2 , W∗ro, and W∗, satisfying the following expression

f (X) = W∗
T

Φ∗2(B∗1 , C∗1 , W∗r , B∗2 , C∗2 , W∗ro) + ε (21)

where ε is the reconstruction error between the optimal value and actual value, bounded
as: ε ≤ εN , and εN is a positive constant.

The optimal parameters of the DHLRNN are obtained from the following equation(
B∗1 , C∗1 , W∗r , B∗2 , C∗2 , W∗ro, W∗

)
= argmin

(B1,C1,Wr ,B2,C2,Wro ,W)

[sup‖ f − f ∗‖] (22)

The estimated value of f (X) is the real output of the neural network, expressed as

f̂ (X) = ŴTΦ̂2(B̂1, Ĉ1, Ŵr, B̂2, Ĉ2, Ŵro) (23)

where Ŵ, B̂1, Ĉ1, Ŵr, B̂2, Ĉ2, Ŵro are the estimated values of the neural network parameters.
Therefore, the approximation error between the estimated value and actual value is

defined as
f − f̂ = W∗

T
Φ∗2 − ŴTΦ̂2 + ε

= W∗
T
(

Φ̂2 + Φ̃2

)
− ŴTΦ̂2 + ε

= W∗
T

Φ̂2 + W∗
T

Φ̃2 − ŴTΦ̂2 + ε

=
(

ŴT + W̃T
)

Φ̂2 +
(

ŴT + W̃T
)

Φ̃2 − ŴTΦ̂2 + ε

= W̃TΦ̂2 + ŴTΦ̃2 + ε0

(24)

where ε0 = W̃TΦ̃2 + ε denotes the total approximation error and W̃ = W∗ − Ŵ is the
weight error.

In order to convert nonlinear f (X) into a partially linear form, the Taylor expansion
linearization technique is used in this paper. The Taylor expansion of the optimal output
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vector Φ∗2 of the second hidden layer at B∗1 = B̂1, C∗1 = Ĉ1, W∗r = Ŵr, B∗2 = B̂2, C∗2 = Ĉ2,
and W∗ro = Ŵro can be calculated as follows

Φ∗2(B∗1 , C∗1 , W∗r , B∗2 , C∗2 , W∗ro) = Φ̂2(B̂1, Ĉ1, Ŵr, B̂2, Ĉ2, Ŵro)

+ ∂Φ2
∂B∗1

∣∣∣
B∗1=B̂1

(B∗1 − B̂1) +
∂Φ2
∂C∗1

∣∣∣
C∗1=Ĉ1

(C∗1 − Ĉ1)

+ ∂Φ2
∂W∗r

∣∣∣
W∗r =Ŵr

(W∗r − Ŵr) +
∂Φ2
∂B∗2

∣∣∣
B∗2=B̂2

(B∗2 − B̂2)

+ ∂Φ2
∂C∗2

∣∣∣
C∗2=Ĉ2

(C∗2 − Ĉ2) +
∂Φ2
∂W∗ro

∣∣∣
W∗ro=Ŵro

(W∗ro − Ŵro) + Oh

(25)

Φ̃2(B̃1, C̃1, W̃r, B̃2, C̃2, W̃ro) = Φ2B1 · B̃1 + Φ2C1 · C̃1
+Φ2Wr · W̃r + Φ2B2 · B̃2 + Φ2C2 · C̃2 + Φ2Wro · W̃ro + Oh

(26)

where Oh is a high−order term of expansion; Φ2B1 , Φ2C1 , Φ2Wr , Φ2B2 , Φ2C2 , and Φ2Wro

are first−order partial derivatives of Φ2 to B∗1 , C∗1 , W∗r , B∗2 , C∗2 , and W∗ro, respectively.
These partial derivatives conform to the arrangement of the Jacobian matrix, which can be
expressed, respectively, as the following forms:

Φ2B1 =


∂φ21
∂b11

· · · ∂φ21
∂b1n

...
. . .

...
∂φ2l
∂b11

· · · ∂φ2l
∂b1n


l×n

(27)

Φ2C1 =


∂φ21
∂c11

· · · ∂φ21
∂c1n

...
. . .

...
∂φ2l
∂c11

· · · ∂φ2l
∂c1n


l×n

(28)

Φ2Wr =


∂φ21
∂Wr1

· · · ∂φ21
∂Wrn

...
. . .

...
∂φ2l
∂Wr1

· · · ∂φ2l
∂Wrn


l×n

(29)

Φ2B2 =


∂φ21
∂b21

· · · ∂φ21
∂b2l

...
. . .

...
∂φ2l
∂b21

· · · ∂φ2l
∂b2l


l×l

(30)

Φ2C2 =


∂φ21
∂c21

· · · ∂φ21
∂c2l

...
. . .

...
∂φ2l
∂c21

· · · ∂φ2l
∂c2l


l×l

(31)

Φ2Wro =


∂φ21

∂Wro1
· · · ∂φ21

∂Wrom
...

. . .
...

∂φ2l
∂Wro1

· · · ∂φ2l
∂Wrom


l×m

(32)

Substituting partial derivatives (27)–(32) into (24), the approximation error can be
further expressed as

f (X)− f̂ (X) = W̃TΦ̂2 + ŴTΦ̃2 + ε0
= W̃TΦ̂2 + ŴTΦ2C1 C̃1 + ŴTΦ2C2 C̃2
+ŴTΦ2B1 B̃1 + ŴTΦ2B2 B̃2 + ŴTΦ2Wr W̃r

+ŴTΦ2Wro W̃ro + ∆0

(33)

where ∆0 = ŴTOh + εo denotes the lumped high−order approximation error.
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Assumption 1. Due to the approximation capability of the DHLRNN, the lumped high−order
approximation error of the DHLRNN, i.e., ∆o, is much smaller than the function being estimated,
i.e., f (X). ∆o is bounded and satisfies |∆o| ≤ ∆d, where ∆d is a positive constant.

3.3. Stability Analysis

The block diagram of ABTSMC based on the proposed DHLRNN is shown in Figure 2.
The neural network parameters are updated online through the adaptive laws, so the
output of the neural network can adaptively adjust to the optimal value. The flowchart of
the learning algorithm of the proposed controller is provided in Figure 3, which comprises
the detailed algorithm description. Furthermore, an additional parameter adaptive law is
adopted to estimate the control coefficient b for guaranteeing the stability of the control law
u, and the corresponding estimated value is denoted as b̂.
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As the DHLRNN and parameter adaptive law introduce the estimated information
of the system into the controller, the control system can maintain robustness in rejecting
uncertainties and disturbances. The proposed control method no longer depends on the
accurate mathematical model, which is more suitable for an actual nonlinear system.

Based on the designed feedforward compensation technology, the new control law is
designed as

u = 1
b̂
[−c(−kn−1zn−1 − zn−2 + zn)− zn−1 − f̂ (X)

+x(n)r + p(n) +
.
αn−1 − ρs− λsign(s)]

(34)

Theorem 2. For SISO nonlinear system (1), when the external disturbance d(t) and control
coefficient b are both bounded, if the control law of system is chosen as (34), then it guarantees that
all signals of the closed−loop system will asymptotically converge to zero.

Proof. The new Lyapunov function is selected as

V = 1
2

n−1
∑

i=1
z2

i +
1
2 s2 + 1

2η1
W̃TW̃ + 1

2η2
B̃T

1 B̃1 +
1

2η3
C̃T

1 C̃1

+ 1
2η4

W̃T
r W̃r +

1
2η5

B̃T
2 B̃2 +

1
2η6

C̃T
2 C̃2 +

1
2η7

W̃T
roW̃ro +

1
2η8

b̃2
(35)

where b̃ = b− b̂ is the approximation error of the control coefficient; η1, η2, η3, η4, η5, η6,
η7, and η8 are the learning rates parameters. �

Remark 3. According to the main control objective, in order to ensure that the state signal can
track the reference trajectory, the convergence of backstepping intermediate variables, the sliding
surface, and the estimated term must be guaranteed. Specially, the seven adaptive parameters of
the DHLRNN including center vectors, base widths, output weight, and feedback weight should
converge to the optimal value so that the neural network can approximate the real−time variation in
the nonlinear function accurately. Motivated by the abovementioned ideas, the Lyapunov function
should contain three parts: backstepping intermediate variables zi(i = 1, 2, · · · , n− 1), sliding
surface s, and estimation error of all parameters. Moreover, according to the Lyapunov stability
theory, we must guarantee that the designed Lyapunov function is positive definite and its derivative
is semi−negative definite. Therefore, the new Lyapunov function is constructed as provided in (35).

Taking the first derivative of the Lyapunov function (35), and then substituting the
relationship between zi(i = 1, 2, · · · , n) and sliding surface s into the derivative, yields

.
V =

n−1
∑

i=1
zi

.
zi + s

.
s + H = −

n−1
∑

i=1
kiz2

i + zn−1zn + s
.
s + H

= −
n−1
∑

i=1
kiz2

i + zn−1zn + s[c(−kn−1zn−1 − zn−2 + zn)

+ f (X) + bu + d(t)− x(n)r − p(n) − .
αn−1] + H

(36)

where

H = 1
η1

W̃T
.

W̃ + 1
η2

.
B̃

T

1 B̃1 +
1
η3

.
C̃

T

1 C̃1 +
1
η4

.
W̃

T

r W̃r

+ 1
η5

.
B̃

T

2 B̃2 +
1
η6

.
C̃

T

2 C̃2 +
1
η7

.
W̃

T

roW̃ro − 1
η8

b̃
.
b̂

(37)

Substituting the proposed control law (34) into (37) obtains

.
V = −

n−1
∑

i=1
kiz2

i + zn−1(s− czn−1) + s(−zn−1 + f (X)

− f̂ (X) + b̃u− ρs− λsign(s) + d(t)) + H
(38)
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Because (38) contains the approximation error of the function being estimated, bringing
expression (33) into (38),

.
V can be further derived as

.
V = −

n−1
∑

i=1
kiz2

i − cz2
n−1 + b̃su + W̃TΦ̂2s + ŴTΦ2B1 B̃1s

+ŴTΦ2C1 C̃1s + ŴTΦ2Wr W̃rs + ŴTΦ2B2 B̃2s
+ŴTΦ2C2 C̃2s + ŴTΦ2WroW̃ros− ρs2 − λ|s|
+s(∆o + d(t)) + H

(39)

The following adaptive laws of the DHLRNN are designed:

Defining W̃TΦ̂2s + 1
η1

W̃T
.

W̃ = 0, it can be obtained that

.
W̃ = −η1sΦ̂2 (40)

Defining ŴTΦ2B1 B̃1s + 1
η2

.
B̃

T

1 B̃1 = 0, it can be obtained that

.
B̃

T

1 = −η2sŴTΦ2B1 (41)

Defining ŴTΦ2C1 C̃1s + 1
η3

.
C̃

T

1 C̃1 = 0, it can be obtained that

.
C̃

T

1 = −η3sŴTΦ2C1 (42)

Defining ŴTΦ2Wr W̃rs + 1
η4

.
W̃

T

r W̃r = 0, it can be obtained that

.
W̃

T

r = −η4sŴTΦ2Wr (43)

Defining ŴTΦ2B2 B̃2s + 1
η5

.
B̃

T

2 B̃2 = 0, it can be obtained that

.
B̃

T

2 = −η5sŴTΦ2B2 (44)

Defining ŴTΦ2C2 C̃2s + 1
η6

.
C̃

T

2 C̃2 = 0, it can be obtained that

.
C̃

T

2 = −η6sŴTΦ2C2 (45)

Defining ŴTΦ2Wro W̃ros + 1
η7

.
W̃

T

roW̃ro = 0, it can be obtained that

.
W̃

T

ro = −η7sŴTΦ2Wro (46)

The parameter adaptive law of the control coefficient is designed as follows, which
utilizes the calculation form of the adaptive projection algorithm

.
b̂ = Projb̂(η8su) (47)
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Remark 4. The adaptive projection algorithm [20] can be defined as follows:

Projb̂(·) =


0 b̂ ≥ bl and · > 0
0 b̂ ≤ bo and · < 0
· otherwise

(48)

When b̂ exceeds the maximum bl and continues to increase, then
.
b̂ = 0, which means that b̂ will

remain unchanged. When b̂ is less than the minimum bo and continues to decrease, b̂ will remain
unchanged. In other cases, the adaptive law acts normally. To sum up, this algorithm can ensure the
boundedness of the estimated term and avoid the sudden variation in b̂ with different disturbances
so that the control signal of the system can achieve stable control performance.

Substituting the above adaptive laws (40)–(47) into (39),
.

V is simplified as

.
V ≤ −

n−1

∑
i=1

kiz2
i − cz2

n−1 − ρs2 − λ|s|+ s(∆o + d(t)) (49)

Because |d(t)| ≤ D and |∆o| ≤ ∆d, then Equation (49) can be further expressed as

.
V ≤ −

n−1

∑
i=1

kiz2
i − cz2

n−1 − ρs2 − λ|s|+ s(D + ∆d) (50)

By selecting the switching term gain, as long as λ satisfies the condition of λ > D + ∆d,
the following result can be concluded:

.
V ≤ −

n−1
∑

i=1
kiz2

i − cz2
n−1 − ρs2 − (λ− D− ∆d)|s|

≤ −
n−1
∑

i=1
kiz2

i − cz2
n−1 − ρs2

≤ 0

(51)

Because
.

V ≤ 0 guarantees that
.

V is semi−negative definite, according to the LaSalle
invariance principle, when t→ ∞ , zi = 0(i = 1, 2, · · · , n) and s = 0.

Meanwhile, the finite−time convergence of tracking error E is illustrated in Remark 5.

Remark 5. According to Remark 1 and the expression of p(t), when t = 0, e(i)(0) = p(i)(0) (i =
1, 2, · · · , n− 1). Therefore, it can be obtained that

z1(0) = e(0)− p(0) = 0
z2(0) =

.
e(0)− .

p(0)− α1(0) = 0
z3(0) =

..
e(0)− ..

p(0)− α2(0) = 0
...
zn(0) = e(n−1)(0)− p(n−1)(0)− αn−1(0) = 0
s(0) = czn−1(0) + zn(0) = 0

(52)

It can be seen from (52) that all initial states of the system are already equal to zero, and it has
been proven that lim

t→∞
zi = 0 and lim

t→∞
s = 0, so the reaching condition of the BTSMC is eliminated.

This means that the condition of zi = 0 (i = 1, 2, · · · , n), s = 0 always holds; thus, it is deduced
that αi = 0 (i = 1, 2, · · · , n− 1) is always satisfied, and the global robustness of closed−loop
system is guaranteed.

Because the terminal function has ensured that p(t) = 0,
.
p(t) = 0, · · · , p(n−1)(t) = 0 for

t ≥ T, the tracking error E can be guaranteed to converge to zero in finite time.
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Remark 6. The unknown function f (X) possesses a strong nonlinear characteristic; when faced
with the inevitable system uncertainties and disturbances, its value will experience unexpected
variation. Thus, the ideal control law (5) with the uncertainty term has a high−frequency fluctuation.
In order to weaken the chattering phenomenon, the proposed controller utilizes the DHLRNN to
estimate f (X) for accurate feedforward compensation to observe the real−time variation in f (X).
The signum function sign(·) is adopted to compensate the approximation error. As long as an
accurate approximation of the uncertainty term is obtained, the switching term gain is set to be
small. Therefore, the discontinuous behavior of the controller can be effectively suppressed and the
chattering is reduced.

4. Simulation Study

In this section, a DC–DC buck converter model is built to verify the effectiveness of the
proposed control method (ABTSMC−DHLRNN). The basic circuit framework of the model
is shown in Figure 4, which comprises a load resistance R0, a LC filter, a diode D, a PWM
gate drive−controlled switch (insulated gate bipolar transistor) Q, and DC voltage Vin. The
controlled switch ON and OFF cases are depicted with dashed lines 1 and 2, respectively.
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The Kirchhoff law and state space method are utilized here to analyze the circuit
model. The dynamic model can be built along the following steps, where vo and iL denote
output voltage and inductor current, respectively.

When controlled switch Q is turned on, vo and iL satisfy
C

dvo

dt
= iL − vo

R0

L
diL
dt

= Vin − vo

(53)

When controlled switch Q is turned off, vo and iL satisfy
C

dvo

dt
= iL − vo

R0

L
diL
dt

= −vo

(54)

Therefore, the dynamic model of the DC–DC buck converter can be written as
diL
dt

= − 1
L vo +

Vin
L u

dvo

dt
= 1

C iL − 1
R0C vo

(55)
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Then, the following second−order state equation is designed{ .
x1 = x2.
x2 = f (x) + bu + d(t)

(56)

where x1 = vo and x2 =
.
vo represent state variables, f (x) = − x1

LC −
x2

R0C , and b = Vin
LC .

Based on the design in Section 3, the control law (34) is applied to the simulation model.
The reference voltage is denoted as vre f . The control objective of the buck converter is

to design a control law, allowing the output voltage to quickly track the reference voltage
trajectory. According to the state equation of the buck converter system, the ABTSMC with
the DHLRNN is designed as

u = 1
b̂
(−c(−k1z1 + z2)− z1 − f̂ (x)

+
..
vre f +

..
p− k1

.
z1 − ρs− λsgn(s))

(57)

The nominal parameter values of the main circuit are summarized in Table 1. The
switching frequency for IGBT is chosen as 10 kHz and the simulation sampling period is
chosen as 10 µs.

Table 1. Model nominal parameters.

Description Parameter Value Units

Input voltage Vin 25 V
Reference voltage vre f 12 V

Inductor L 6 mH
Capacitor C 2200 µF

Load resistance R0 30 Ω
Switching frequency fsw 10 kHz

Sampling period Ts 10 µs

To illustrate the superiority of the proposed control method, the ABTSMC control
method without neural network approximation (ABTSMC) and BSMC based on the RBFNN
(BSMC−RBFNN) are investigated here for comparison. The above controllers are simulated
on a digital simulation platform using Matlab/Simulink software.

For fair comparison, the three control strategies are carried out under identical condi-
tions to the simulation study, and the selection of the sliding mode gain is the same. The
parameters of the above controllers are selected as listed in Table 2.

Table 2. Controller parameters.

Controllers Parameters and Values

ABTSMC c = 4000, k1 = 2× 105, ρ = 2000, λ = 1200, T = 0.01
BSMC−RBFNN c = 4000, k1 = 2× 105, ρ = 100, λ = 120

ABTSMC−DHLRNN c = 4000, k1 = 2× 105, ρ = 2000, λ = 1200, T = 0.01

Remark 7. The switching term gain existing in SMC affects the steady−state performance of the
system. Due to the discontinuity of the signum function, too large a switching gain often brings
the system chattering problem. Therefore, in order to highlight the neural network approximation,
the switching gain is set to be small. The relevant sliding gain is set to be large for obtaining fast
convergence. Moreover, with regard to the learning rates of the neural network, each parameter can
be observed according to the response curve; thus, we can judge whether these parameters converge.
Among them, output weight determines the output signal amplitude of the neural network; in order
to cope with the high amplitude of the nonlinear function, the learning rate of the weight is set larger
than the other parameters. When all the learning rates are set to the appropriate order of magnitude,
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the output signal can roughly track the reference trajectory. Then, they can be fine−tuned until the
control objective is achieved.

To compare the performance of the above controllers under different uncertainties and
disturbances, the buck converter is subjected to the following four situations: (1) start−up
phase analysis, (2) load resistance variations, (3) reference voltage variations, and (4) input
voltage variations.

In addition, the structure of the DHLRNN is selected as 2−4−3−1, and the learning
rates in (40)–(47) are η1 = 2.6× 105, η2 = 0.02, η3 = 0.13, η4 = 0.1, η5 = 0.01, η6 = 2× 10−5,
η7 = 1× 10−10, and η8 = 16000.

4.1. Start−Up Phase Analysis

The reference voltage is set to 12 V, and the load resistance remains unchanged at 30 Ω.
The response curves obtained for the output voltage and inductor current are shown in
Figure 5a,b, respectively. As shown in Figure 5a, due to the low compensation accuracy
of the RBFNN, a satisfactory dynamic response is difficult to obtain. The BSMC−RBFNN
method produces a larger output voltage overshoot during the start−up phase. Further-
more, due to the lack of terminal function, the tracking error will not converge in finite time.
Therefore, the corresponding startup time is longer than those of other control strategies,
which takes about 260 ms. Although the ABTSMC method can reduce the convergence
time via introducing the terminal function, the problem of large output voltage overshoot
also exists due to the lack of an estimation item of the nonlinear function in the controller.
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On the contrary, the proposed control method tracks the reference voltage in 10 ms
without overshoot. The behavior of inductor current as shown in Figure 5b also further
illustrates the superiority of the proposed control method.

4.2. Load Resistance Variations

To verify the robustness of the above controllers toward load uncertainty, the reference
voltage remains unchanged at 12 V, and the load resistance is changed from 30 Ω to 20 Ω at
t = 2s. The load resistance variations are along the following settings:

R =

{
30 Ω (= R0), t ∈ [0, 2)

20 Ω (= 2
3 R0), t ∈ [2, 5]

(58)

The responses of vo and iL under such a variation are depicted in Figure 6a,b. It can be
seen from Figure 6a that the proposed control method ensures faster settling time, with
only a slight drop in output voltage waveform around the desired trajectory. The main
reason is that the DHLRNN has accurately compensated the model uncertainty owing to
load variations, whereas the ABTSMC method yields about a 0.02 V voltage drop due to
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the inability to eliminate the undesirable impact of the external disturbances. Although
the BSMC−RBFNN method produces a lower voltage drop during the load during the
occurrence of load variations, the RBFNN takes a longer time to tune neural network
parameters. As a result, it takes 50 ms to stabilize the output voltage and there exists an
adverse overshoot, which may damage the performance of the buck converter.
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4.3. Reference Voltage Variations

The tracking performance of the above controllers is evaluated by changing the refer-
ence voltage from 12 V to 15 V at t = 2 s, and the load resistance remains unchanged at
30 Ω. The reference voltage variations are along the following settings:

vre f =

{
12 V, t ∈ [0, 2)
15 V, t ∈ [2, 5]

(59)

The performance of the above controllers during the reference variations can be found
in Figure 7a,b. Figure 7a illustrates that the ABTSMC and the BSMC−RBFNN methods are
found to track the new reference trajectory in 600 ms and 180 ms, respectively. Compared
with the neural network control method, the ABTSMC method fails to obtain satisfactory
dynamic performance and reveals a slower response in rejecting reference value uncertainty,
while the proposed control method successfully tracks the new reference voltage in 10 ms
without an obvious voltage rise. Moreover, the corresponding inductor current as plotted
in Figure 7b also achieves a faster response and smaller peak current under the proposed
method. Hence, because of the combination of the DHLRNN and adaptive algorithm, the
proposed control method has superior tracking performance.
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4.4. Input Voltage Variations

Due to the long−term operation of the power source and external disturbance in-
fluences, the input voltage is difficult to maintain at the nominal value in the practical
converter system, and the input voltage will fluctuate around the nominal value. In order
to further investigate the steady−state performance of the above controllers toward the
input voltage variations, a sawtooth disturbance with a period of 300 ms and amplitude of
2 V is introduced to simulate the input voltage fluctuations. The reference voltage remains
unchanged at 12 V, and the load resistance remains unchanged at 30 Ω. Figure 8 shows the
actual input voltage waveform in the presence of sawtooth disturbance.
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Figure 8. Waveform of real input voltage Vin with triangle disturbance.

Figure 9a,b show the responses of vo and iL. When dealing with the time−varying
input voltage fluctuations, the BSMC−RBFNN method produces obvious sawtooth fluc-
tuation. However, the output voltage waveforms of the ABTSMC and the proposed
ABTSMC−DHLRNN methods are almost unchanged. The main reason is that both con-
trollers adopt parameter adaptive laws to estimate the control coefficient, and a stable and
accurate control law is obtained to remove the time−varying input effects. It can be seen
that the proposed control method possesses better steady−state tracking performance and
effective compensation for the input disturbances.
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4.5. Comparison Analysis and Summary

In order to analyze and compare the performance of different controllers qualitatively,
the performance indices are very useful, including maximum voltage rise/maximum
voltage drop (MVR/MVD) and settling time (ST). They were widely used for comparison
purposes in [44,45]. Table 3 lists the comparison results of performance indices. It is
observed in Table 3 that the proposed control method ensures optimal indices in tracking
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the reference voltage. Therefore, it can be confirmed that the proposed control method has
better tracking accuracy and faster transient response speed, which improves the dynamic
and steady−state performance of the converter system.

Table 3. Performance indices comparison in above situations.

Test Controllers
Performance Indices

MVR/MVD (V) ST (ms)

1
ABTSMC −/1.2 −/260

BSMC−RBFNN 0.8/− 130/−
ABTSMC−DHLRNN 0/− 10/−

2
ABTSMC −/0.02 −/1.5

BSMC−RBFNN −/0.01 −/50
ABTSMC−DHLRNN −/0.01 −/1

3
ABTSMC −/1.2 −/600

BSMC−RBFNN 0.6/− 180/−
ABTSMC−DHLRNN 0.06/− 20/−

4
ABTSMC 0.001/0.001 −/−

BSMC−RBFNN 0.006/0.004 −/−
ABTSMC−DHLRNN 0.001/0.001 −/−

5. Conclusions

In this paper, an ABTSMC−DHLRNN method is designed for a class of SISO nonlinear
system. To counteract and compensate for the system unknown uncertainty, the DHLRNN
and parameter adaptive laws are utilized to estimate the nonlinear function and control
coefficient, respectively. Based on the adaptive control theory, Lyapunov theorem, and
finite−time convergence, the proposed ABTSMC−DHLRNN algorithm is designed. Al-
though the nonlinear system operates under the presence of uncertainty and disturbances,
the higher tracking accuracy and faster dynamic responses can be ensured. Furthermore,
the proposed control method can guarantee the finite time convergence of the closed−loop
system rigorously. The DHLRNN combines the merits of FNN, RNN, and MLNN, which
obtains fewer neurons training and stronger approximation capacity. All the parameters of
the network can adjust to optimal values through the adaptive learning algorithm, and the
additional parameter adaptive laws adopt the expression form of the projection algorithm
to ensure the boundedness of control coefficient estimates to obtain a stable control signal.
Moreover, on the one hand, the backstepping design simplifies the control design steps;
on the other hand, TSMC is introduced to guarantee that the tracking error can converge
to zero in finite time. The proposed control method is applied to a second−order DC–DC
buck converter system. The simulation result fully demonstrates its effectiveness and
superiority in tracking the reference voltage. Considering other disturbed power systems,
the proposed control method is designed for universal nonlinear systems, which can be
directly applied without major modifications. The chattering problem still exists in SMC.
Therefore, in future work, we will concentrate on how to further deal with the chattering
problem of the control signal by using more advanced algorithms.
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Nomenclature

PID Proportional−Integral−Derivative
SMC Sliding mode control
TSMC Terminal sliding mode control
BSMC Backstepping sliding mode control
ABTSMC Adaptive backstepping terminal sliding mode control
RBFNN Radial basis function neural network
FNN Fuzzy neural network
RNN Recurrent neural network
DHLRNN Double hidden recurrent neural network
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