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Abstract: A fourth-order energy preserving composition scheme for multi-symplectic structure partial
differential equations have been proposed. The accuracy and energy conservation properties of the
new scheme were verified. The new scheme is applied to solve the multi-symplectic sine-Gordon
equation with periodic boundary conditions and compared with the corresponding second-order
average vector field scheme and the second-order Preissmann scheme. The numerical experiments
show that the new scheme has fourth-order accuracy and can preserve the energy conservation
properties well.
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1. Introduction

The symplectic geometric algorithm for the Hamiltonian system can accurately simu-
late the evolution of the system over a long period, which preserves the energy conservation
of the system [1–6]. Marsden et al. [7–9] proposed the multi-symplectic method of the
partial differential equations (PDE) with the multi-symplectic structure, which can also
calculate the equations accurately for a long time and approximately preserve the energy
conservation property. Multi-symplectic algorithm has been successfully applied to solve
several important equations [10–13]. Recently, energy-preserving methods for Hamiltonian
systems and multi-symplectic structure PDE have received much attention. Celledoni et al.
proposed the second-order and higher-order average vector field (AVF) method to the
Hamiltonian system, which can preserve the energy conservation of the Hamiltonian
system exactly [14–16]. At the same time, the second order AVF method has also been
proposed to solve the multi-symplectic structure PDE, which can also preserve the energy
conservation [17]. However, few people study the high order energy preserving method of
the multi-symplectic PDE structures.

Composition method is a class of important method to construct high order scheme of
the differential equation. The method of forming multi-level high order schemes with the
combination of low order invertible schemes was proposed by Ruth and Yoshida [18,19].
Ruth constructed three order three level composition schemes for the separate Hamilto-
nian system. Yoshida constructed the high order explicit difference scheme of separable
Hamiltonian system. Qin extended the Yoshida’s composition method to the general
non-Hamiltonian systems [20,21]. In this paper, we propose a fourth order energy preserv-
ing scheme of the multi-symplectic structure PDE by the composition method based on
the second order energy preserving average vector field scheme of the multi-symplectic
PDE. The new fourth order energy preserving composition scheme is applied to solve the
sine-Gordon equation.

Mathematics 2023, 11, 1105. https://doi.org/10.3390/math11051105 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051105
https://doi.org/10.3390/math11051105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1497-9809
https://doi.org/10.3390/math11051105
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051105?type=check_update&version=2


Mathematics 2023, 11, 1105 2 of 19

This paper is organized as following. In Section 2, the second order multi-symplectic
energy-preserving scheme and the fourth order multi-symplectic energy preserving com-
position scheme are proposed. In Section 3, the sine-Gordon equation is discretizated in
spacial direction by the pseudo-spectral method. Then the two energy preserving schemes
for the multi-symplectic sine-Gordon equation are proposed by applying the second order
AVF method and the fourth order composition AVF method, respectively. In Section 4,
the numerical experiments are reported. The accuracy and energy conservation property
of the second order AVF scheme and the fourth order composition AVF scheme of the
multi-symplectic sine-Gordon equations are investigated compared with the corresponding
second order multi-symplectic scheme. At last, we finish the paper with conclusive remarks
in Section 5.

2. Multi-Symplectic Discretization for the Partial Differential Equations

Many partial differential equations can be written as the following multi-symplectic
structure

M1zt + K1zx = ∇zS1(z), z ∈ Rd, (x, t) ∈ R2, (1)

where M1 and K1 are skew symmetric matrices, S1 : Rd → R is a scalar smooth function
and d ≥ 1, ∇ is the gradient of a function [7,8].

2.1. Spatial Discretization for the Partial Differential Equations

Equation (1) can be discretizated in spatial direction by the Fourier pseudo-spectral
method [22]. Suppose u(x, t) is a function with x ∈ [a, b], the interval Ω = [a, b] is divided
into N equal subintervals, where the integer N is an even number. Denoting L = b− a,
the spatial collocation nodes are given by xj = a + (j− 1)h, j = 1, · · · , N, where h = L/N
is the space step. Let uj be the approximation of u(xj, t).

Let S
′
= {gj(x); 1 ≤ j ≤ N} be the interpolation space. The function gj(x) is the

trigonometric polynomial explicitly given by

gj(x) =
1
N

N/2

∑
k=−N/2

1
ck

expikµ(x−xj), (2)

where ck = 1 (|k| 6= N/2), c−N/2 = cN/2 = 2 and µ = 2π
L . The interpolation operator

IN : L2(Ω)→ S
′
N is defined as

INu(x, t) =
N

∑
m=1

umgm(x). (3)

Therefore, we have

INu(xj, t) =
N

∑
m=1

umgm(xj) = u(xj), (4)

where j = 1, · · · , N.
By differentiating (3), the k order derivative of the operator INu(x, t) at nodes xj reads

∂k

∂xk INu(x, t)|x=xj =
N

∑
m=1

um
dkgm(xj)

dxk = (Dku)j, j = 1, · · · , N. (5)

where Dk ∈ RN×N is a spectral differential matrix with elements

(Dk)j,n =
dkgn(xj)

dxk , (6)
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and u = (u1, u2, · · · , uN)
T .

We can obtain explicitly D1

(D1)i,j =


1
2

µ(−1)i+j cot
(

µ
xi − xj

2

)
, i 6= j,

0, i = j.
(7)

In particular, Dk = (D1)
k, if k is an odd number.

Applying the Fourier pseudo-spectral method to Equation (1) in spatial direction, we
can obtain

MZt + KDZ = ∇ZS(Z), (8)

where M, K ∈ RNd are skew symmetric matrices, Z = (z1,1, . . . , zN,1, . . . , z1,d, . . . , zN,d)
T ,

S : RNd → R is a scalar smooth function. D is a matrix with D1. Equation (8) can be
written as

M
dZ
dt

= ∇ZE(Z) = f (Z), (9)

where E(Z) = S(Z)− 1
2 ZTKDZ.

2.2. Second Order Energy-Preserving Scheme for Multi-Symplectic PDE

Applying the second order AVF method to Equation (9), we can obtain that

M
Zn+1 − Zn

τ
=
∫ 1

0
∇ZE((1− ξ)Zn + ξZn+1)dξ =

∫ 1

0
f ((1− ξ)Zn + ξZn+1)dξ, (10)

where τ is the time step. It can also be written as

M
Zn+1 − Zn

τ
+ KD

Zn + Zn+1

2
=
∫ 1

0
∇ZS((1− ξ)Zn + ξZn+1)dξ. (11)

The scheme (11) is consistent with the second order global energy preserving scheme [17].
However, the accuracy of the scheme has not been proved. We prove the accuracy and
energy conservation property of the scheme in a new way.

Theorem 1. Scheme (10) has second order accuracy.

Proof. Let s = Nd, Z ∈ Rs, the skew symmetric matrix M can be transformed into a diago-
nal matrix G with diagonal element 1 and 0 on diagonal line by a similar transformation [23].
We can get PTMP = G, P is a invertible matrix. Equation (9) is equivalent to

PTMP
dP−1Z

dt
= PT∇ZE(Z) = PT∇ZE(PP−1Z). (12)

Let P−1Z = Y, PT∇ZE(Z) = h(Z) = g(Y), so Equation (12) is equivalent to

G
dY
dt

= g(Y), (13)

where g(Y) = (g1, g2, · · · , gs). Equation (13) is equivalent to Equation (9). So Equation (10)
can be written as

G
Yn+1 − Yn

τ
=
∫ 1

0
PT∇ZE((1− ξ)Zn + ξZn+1)dξ (14)

=
∫ 1

0
g((1− ξ)Yn + ξYn+1)dξ.
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Equations (10) and (14) have the same accuracy. So we can only prove Equation (14)
has the second order accuracy.

We give the following partial derivatives definition

[gi
kgk] = (g1

k gk, · · · , gi
kgk, · · · , gs

kgk)T ,

[gi
kgk

mgm] = (g1
k gk

mgm, · · · , gi
kgk

mgm, · · · , gs
kgk

mgm)T ,

[gi
kjg

kgj] = (g1
kjg

kgj, · · · , gi
kjg

kgj, · · · , gs
kjg

kgj)T ,

[gi
kjmgkgjgm] = (g1

kjmgkgjgm, · · · , gi
kjmgkgjgm, · · · , gs

kjmgkgjgm)T , (15)

[gi
kjg

k
mgjgm] = (g1

kjg
k
mgjgm, · · · , gi

kjg
k
mgjgm, · · · , gs

kjg
k
mgjgm)T ,

[gi
kgk

mjg
jgm] = (g1

k gk
mjg

jgm, · · · , gi
kgk

mjg
jgm, · · · , gs

kgk
mjg

jgm)T ,

[gi
kgk

mgm
j gj] = (g1

k gk
mgm

j gj, · · · , gi
kgk

mgm
j gj, · · · , gs

kgk
mgm

j gj)T ,

where

gi
kgk =

s

∑
k=1

∂gi

∂yk
gk,

gi
kgk

mgm =
s

∑
k=1

s

∑
m=1

∂gi

∂yk

∂gk

∂ym
gm,

gi
kjg

kgj =
s

∑
k=1

s

∑
j=1

∂

∂yk
(

∂gi

∂yj
)gkgj,

gi
kjmgkgjgm =

s

∑
k=1

s

∑
m=1

s

∑
j=1

∂

∂yk
(

∂

∂yj
(

∂gi

∂ym
))gkgmgj, (16)

gi
kjg

k
mgjgm =

s

∑
k=1

s

∑
j=1

s

∑
m=1

∂

∂yk
(

∂gi

∂yj
)

∂gk

∂ym
gmgj,

gi
kgk

mjg
jgm =

s

∑
k=1

s

∑
j=1

s

∑
m=1

∂gi

∂yk

∂

∂yj
(

∂gk

∂ym
)gmgj,

gi
kgk

mgm
j gj =

s

∑
k=1

s

∑
m=1

s

∑
j=1

∂gi

∂yk

∂gk

∂ym

∂gm

∂yj
gj.

The corresponding Taylor expansion of Y(tn+1) can be written as

Y(tn+1) = Y(tn) +
dY(tn)

dt
τ +

1
2

d2Y(tn)

dt2 τ2 + O(τ3). (17)

Multiplying G2 to both side of Equation (17), we can obtain that

G2Y(tn+1) = G2Y(tn) + G2 dY(tn)

dt
τ + G2 1

2
d2Y(tn)

dt2 τ2 + O(τ3)

= G2Y(tn) + Gg(Y(tn))τ +
1
2

G
d
dt
(g(Y(tn)))τ

2 + O(τ3), (18)

where

G
d
dt
(g(Y(tn))) =

∂g(Y(tn))

∂Y
G

dY
dt

=
∂g(Y(tn))

∂Y
g(Y) = [gi

kgk], (19)

so Equation (18) can be written as

G2Y(tn+1) = G2Y(tn) + Gg(Y(tn))τ +
1
2
[gi

kgk]τ2 + O(τ3). (20)
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Equation (14) can be written as

GYn+1 = GYn + τ
∫ 1

0
g((1− ξ)Yn + ξYn+1)dξ, (21)

multiplying G to both side of the equal sign and expanding
∫ 1

0 g((1− ξ)Yn + ξYn+1)dξ.
We will obtain that

G2Yn+1 = G2Yn + τG
∫ 1

0
g((1− ξ)Yn + ξYn+1)dξ

= G2Yn + τG
∫ 1

0
(g(Yn) + ξ

∂g(Yn)

∂Y
(Yn+1 − Yn) + O(τ2))dξ

= G2Yn + τGg(Yn) +
τ2

2
[gi

kgk] + O(τ3), (22)

where ∂g(Yn)
∂Y = ∂g(Y)

∂Y |Y=Yn , suppose Y(tn) = Yn, we can get G2(Y(tn+1)− Yn+1) = O(τ3),
that is Y(tn+1)− Yn+1 = O(τ3). Scheme (14) has the second order accuracy, so scheme (10)
has the second order accuracy.

Theorem 2. Equation (10) can preserve the energy conservation property.

Proof. Since M is a skew symmetric matrix, it is obvious that

E(Zn+1)− E(Zn)

τ
=

1
τ

∫ 1

0

d
dξ

E((1− ξ)Zn + ξZn+1)dξ

= (
∫ 1

0
(∇ZE((1− ξ)Zn + ξZn+1)dξ)T Zn+1 − Zn

τ
(23)

= −(Zn+1 − Zn

τ
)TM

Zn+1 − Zn

τ

= 0.

So Equation (10) can preserve the energy conservation property.

2.3. Fourth Order Energy Preserving Schemes for Multi-Symplectic PDE

To the ordinary differential equations

dZ
dt

= f (Z), Z ∈ Rs, s ≥ 1, (24)

the trapezoidal scheme of Equation (24) can be written as

Zn+1 − Zn

τ
=

f (Zn) + f (Zn+1)

2
. (25)

The scheme (25) has second order accuracy.
Qin et al. [20] proposed the following composition scheme

Z1 = Z0 + c1τ( f (Z0) + f (Z1)),

Z2 = Z1 + c2τ( f (Z1) + f (Z2)), (26)

Z3 = Z2 + c3τ( f (Z2) + f (Z3)).

When the coefficients c1 = c3 = 1

2−2
1
3

, c2 = −2
1
3

2−2
1
3

is satisfied, it is proved that the

scheme (26) has the fourth order accuracy [20].
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We propose a new fourth order energy preserving scheme of Equation (9) based on
the second order scheme (10) by the composition method

M
Zn,1 − Zn

τ
= c1

∫ 1

0
∇ZE((1− ξ)Zn + ξZn,1)dξ = c1

∫ 1

0
f ((1− ξ)Zn + ξZn,1)dξ, (27)

M
Zn,2 − Zn,1

τ
= c2

∫ 1

0
∇ZE((1− ξ)Zn,1 + ξZn,2)dξ = c2

∫ 1

0
f ((1− ξ)Zn,1 + ξZn,2)dξ,

M
Zn+1 − Zn,2

τ
= c3

∫ 1

0
∇ZE((1− ξ)Zn,2 + ξZn+1)dξ = c3

∫ 1

0
f ((1− ξ)Zn,2 + ξZn+1)dξ,

where c1 = c3 = 1

2−2
1
3

, c2 = −2
1
3

2−2
1
3

.

According to Equation (21), Equation (27) can be transformed into the same form. We
can obtain that

GYn,1 = GYn + τc1

∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ,

GYn,2 = GYn,1 + τc2

∫ 1

0
g((1− ξ)Yn,1 + ξYn,2)dξ, (28)

GYn+1 = GYn,2 + τc3

∫ 1

0
g((1− ξ)Yn,2 + ξYn+1)dξ,

The function Y(tn+1) is expanded at Y(tn), the Taylor expansion is obtained,

Y(tn+1) = Y(tn) +
dY(tn)

dt
τ +

τ2

2
d2Y(tn)

dt2 +
τ3

3!
d3Y(tn)

dt3 +
τ4

4!
d4Y(tn)

dt4 + O(τ5). (29)

Multiplying G4 to both side of the Equation (29), we can obtain that

G4Y(tn+1) = G4Y(tn) + G4 dY(tn)

dt
τ +

τ2

2
G4 d2Y(tn)

dt2 +
τ3

3!
G4 d3Y(tn)

dt3

+
τ4

4!
G4 d4Y(tn)

dt4 + O(τ5) (30)

where

G4 d2Y(tn)

dt2 = G3 d
dt
(g(Y(tn))) = G3 ∂g(Y(tn))

∂Y
dY
dt

= G2[gi
kgk],

G4 d3Y(tn)

dt3 = G2 d
dt
([gi

kgk]) = G([gi
kgk

mgm] + [gi
kjg

kgj])

G4 d4Y(tn)

dt4 = G
d
dt
([gi

kgk
mgm] + [gi

kjg
kgj]) = [gi

kjmgkgjgm] + 3[gi
kjg

k
mgjgm]

+ [gi
kgk

mjg
jgm] + [gi

kgk
mgm

j gj]. (31)

So Equation (30) can be written as

G4Y(tn+1) = G4Y(tn) + G3g(Y(tn))τ +
τ2

2
G2[gi

kgk] +
τ3

3!
G([gi

kgk
mgm]+

[gi
kjg

kgj]) +
τ4

4!
([gi

kjmgkgjgm] + 3[gi
kjg

k
mgjgm] + [gi

kgk
mjg

jgm]

+ [gi
kgk

mgm
j gj]) + O(τ5) (32)

Theorem 3. Scheme (28) has the fourth order accuracy.
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Proof. The composition scheme (28) can be written as

GYn+1 = GYn + (c1τ
∫ 1

0
g(Yn + ξ(Yn,1 − Yn))dξ + c2τ

∫ 1

0
g(Yn,1

+ ξ(Yn,2 − Yn,1))dξ + c3τ
∫ 1

0
g(Yn,2 + ξ(Yn+1 − Yn,2))dξ), (33)

Multiplying G3 to both side of the equation, we will obtain

G4Yn+1 = G4Yn + G3(c1τ
∫ 1

0
g(Yn + ξ(Yn,1 − Yn))dξ + c2τ

∫ 1

0
g(Yn,1

+ ξ(Yn,2 − Yn,1))dξ + c3τ
∫ 1

0
g(Yn,2 + ξ(Yn+1 − Yn,2))dξ), (34)

expand to τs fourth order to calculate their Taylor expansion

G3
∫ 1

0
g(Yn + ξ(Yn,1 − Yn))dξ

=
∫ 1

0
(G3g(Yn) + G3ξ

∂g(Yn)

∂Y
(Yn,1 − Yn) + G3 ξ2

2!
∂

∂Y
(

∂g(Yn)

∂Y
)(Yn,1 − Yn)2

+ G3 ξ3

3!
∂

∂Y
(

∂

∂Y
(

∂g(Yn)

∂Y
))(Yn,1 − Yn)3)dξ + O(τ4)

=
∫ 1

0
(G3g(Yn) + G2 ∂g(Yn)

∂Y
c1τξ

∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ+

1
2!

G
∂

∂Y
(

∂g(Yn)

∂Y
)(ξc1τ

∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ)2 +

1
3!

∂

∂Y
(

∂

∂Y
(

∂g(Yn)

∂Y
))

(ξc1τ
∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ)3)dξ + O(τ4). (35)

The integral
∫ 1

0 g((1− ξ)Yn + ξYn,1)dξ appears on the right part of (35), so it should
be replaced by its Taylor expansion until it does not appear on the right part. So

G3
∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ

=
∫ 1

0
(G3g(Yn) + ξG2 ∂g(Yn)

∂Y
c1τ

∫ 1

0
(g(Yn) + ξ

∂g(Yn)

∂Y
(Yn,1 − Yn)+

ξ2

2!
∂

∂Y
(

∂g(Yn)

∂Y
)(Yn,1 − Yn)2)dξ +

1
2!

G
∂

∂Y
(

∂g(Yn)

∂Y
)(ξc1τ

∫ 1

0
(g(Yn)

+ ξ
∂g(Yn)

∂Y
(Yn,1 − Yn))dξ)2 +

1
3!

∂

∂Y
(

∂

∂Y
(

∂g(Yn)

∂Y
))(ξc1τ

∫ 1

0
g(Yn)dξ)3)dξ

+ O(τ4)

= G3g(Yn) +
c1

2
τG2[gi

kgk] + (c1τ)2(
1
4

G[gi
kgk

mgm] +
1
6

G[gi
kjg

kgj])+

(c1τ)3(
1
8
[gi

kgk
mgm

j gj] +
1

12
[gi

kgk
mjg

jgm] +
1
6
[gi

kjg
k
mgjgm] +

1
24

[gi
kjmgkgjgm]) + O(τ4). (36)
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The integral
∫ 1

0 g((1− ξ)Yn,1 + ξYn,2)dξ and
∫ 1

0 g((1− ξ)Yn,2 + ξYn+1)dξ can be ex-
panded by the same method. So

G3
∫ 1

0
g((1− ξ)Yn,1 + ξYn,2)dξ

=
∫ 1

0
(G3g(Yn) + G3 ∂g(Yn)

∂Y
((Yn,1 − Yn) + ξ(Yn,2 − Yn,1)) +

1
2!

G3 ∂

∂Y
(

∂g(Yn)

∂Y
)

((Yn,1 − Zn) + ξ(Yn,2 − Yn,1))2 +
1
3!

G3 ∂

∂Y
(

∂

∂Y
(

∂g(Yn)

∂Y
))((Yn,1 − Yn)+

ξ(Yn,2 − Yn,1))3)dξ + O(τ4)

=
∫ 1

0
(G3g(Yn) + G2 ∂g(Yn)

∂Y
(c1τ

∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ + ξc2τ

∫ 1

0
g((1−

ξ)Yn,1 + ξYn,2)dξ) +
1
2!

G
∂

∂Y
(

∂g(Yn)

∂Y
)(c1τ

∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ

+ ξc2τ
∫ 1

0
g((1− ξ)Yn,1 + ξYn,2)dξ)2 +

1
3!

∂

∂Y
(

∂

∂Y
(

∂g(Yn)

∂Y
))(c1τ

∫ 1

0
g((1−

ξ)Yn + ξYn,1)dξ + ξc2τ
∫ 1

0
g((1− ξ)Yn,1 + ξYn,2)dξ)3)dξ + O(τ4). (37)

The integral
∫ 1

0 g((1− ξ)Yn + ξYn,1)dξ in (37) can be replaced by its Taylor expansion. The final
solution is

G3
∫ 1

0
g((1− ξ)Yn,1 + ξYn,2)dξ

= G3g(Yn) + τ((c1 +
c2
2
)G2[gi

kgk]) + τ2((
c2

1
2
+

c1c2
2

+
c2

2
4
)G[gi

kgk
mgm] + (

c2
1
2
+

c2
2
6
+

c1c2
2

)G[gi
kjg

kgj]) + τ3((
c3

1
4
+

c2
1c2

4
+

c1c2
2

4
+

c3
2
8
)[gi

kgk
mgm

j gj] + (
c3

1
6
+

c2
1c2

4
+

c3
2

12

+
c1c2

2
4

)[gi
kgk

mjg
jgm] + (

c3
1
2
+

3c2
1c2

4
+

c3
2
6
+

7c1c2
2

12
)[gi

kjg
k
mgjgm] + (

c3
1
6
+

c3
2

24
+

c2
1c2

4
+

c1c2
2

6
)[gi

kjmgkgjgm]) + O(τ4). (38)

The integral
∫ 1

0 g((1− ξ)Yn,2 + ξYn+1)dξ can be calculated by the same method, the solution is

G3
∫ 1

0
g((1− ξ)Yn,2 + ξYn+1)dξ

=
∫ 1

0
(G3g(Yn) + G3 ∂g(Yn)

∂Y
((Yn,1 − Yn) + (Yn,2 − Yn,1) + ξ(Yn+1 − Yn,2))

+
1
2!

G3 ∂

∂Y
(

∂g(Yn)

∂Y
)((Yn,1 − Yn) + (Yn,2 − Zn,1) + ξ(Yn+1 − Yn,2))2+

1
3!

G3 ∂

∂Y
(

∂

∂Y
(

∂g(Yn)

∂Y
))((Yn,1 − Yn) + (Yn,2 − Yn,1) + ξ(Yn+1 − Yn,2))3)dξ

+ O(τ4)

=
∫ 1

0
(G3g(Yn) + G2 ∂g(Yn)

∂Y
(c1τ

∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ + c2τ

∫ 1

0
g((1−

ξ)Yn,1 + ξYn,2)dξ + ξc3τ
∫ 1

0
g((1− ξ)Yn,2 + ξYn+1)dξ) +

1
2!

G
∂

∂Y
(

∂g(Yn)

∂Y
)

(c1τ
∫ 1

0
g((1− ξ)Yn + ξYn,1)dξ + c2τ

∫ 1

0
g((1− ξ)Yn,1 + ξYn,2)dξ+

ξc3τ
∫ 1

0
g((1− ξ)Yn,2 + ξYn+1)dξ)2 +

1
3!

∂

∂Y
(

∂

∂Y
(

∂g(Yn)

∂Y
))(Yn)(c1τ

∫ 1

0
g((1−

ξ)Yn + ξYn,1)dξ + c2τ
∫ 1

0
g((1− ξ)Yn,1 + ξYn,2)dξ + ξc3τ

∫ 1

0
g((1− ξ)Yn,2+

ξYn+1)dξ)3)dξ + O(τ4). (39)
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The integral
∫ 1

0 g((1− ξ)Yn + ξYn,1)dξ and
∫ 1

0 g((1− ξ)Yn,1 + ξYn,2)dξ in (39) can be replaced
by its Taylor expansion. The final solution is

G3
∫ 1

0
g((1− ξ)Yn,2 + ξYn+1)dξ

= G3g(Yn) + τ(c1 + c2 +
c3
2
)G2[gi

kgk] + τ2((
c2

1
2
+ c1c2 +

c2
2
2
+

c1c3
2

+
c2c3

2

+
c2

3
4
)G[gi

kgk
mgm] + (

c2
1
2
+

c2
2
2
+

c2
3
6
+ c1c2 +

c1c3
2

+
c2c3

2
)G[gi

kjg
kgj])

+ τ3((
c3

1
4
+

c2
1c2

2
+

c1c2
2

2
+

c3
2
4
+

c2
1c3

4
+

c1c2c3
2

+
c2

2c3

4
+

c1c2
3

4
+

c2c2
3

4

+
c3

3
8
)[gi

kgk
mgm

j gj] + (
c3

1
6
+

c2
1c2

2
+

c3
2
6
+

c1c2
2

2
+

c2
1c3

4
+

c2
2c3

4
+

c3
3

12
+

c1c2c3
2

+
c1c2

3
4

+
c2c2

3
4

)[gi
kgk

mjg
jgm] + (

c3
1
2
+

3c2
1c2

2
+

c3
2
2
+

3c1c2
2

2
+

3c2
1c3

4

+
3c2

2c3

4
+

c3
3
6
+

3c1c2c3
2

+
7c1c2

3
12

+
7c2c2

3
12

)[gi
kjg

k
mgjgm] + (

c3
1
6
+

c3
2
6
+

c3
3

24
+

c2
1c2

2
+

c2
1c3

4
+

c2
2c3

4
+

c1c2
2

2
+

c1c2
3

6
+

c2c2
3

6
+

c1c2c3
2

)[gi
kjmgkgjgm])

+ O(τ4). (40)

Let Equations (36), (38) and (40) replace G3 ∫ 1
0 g((1− ξ)Yn + ξYn,1)dξ, G3 ∫ 1

0 g((1− ξ)Yn,1 +

ξYn,2)dξ and G3 ∫ 1
0 g((1− ξ)Yn,2 + ξYn+1)dξ in Equation (34).

Suppose Y(tn) = Yn and Equation (33) is compared with Equation (32), if the following
equations are satisfied, Equation (33) can have the fourth order accuracy.

τG3g(Yn) : c1 + c2 + c3 = 1,

τ2G2[gi
kgk] :

c2
1
2
+ c1c2 +

c2
2
2
+ c1c3 + c2c3 +

c2
3
2

=
1
2

,

τ3G[gi
kgk

mgm] :
c3

1
4
+

c2
1c2

2
+

c1c2
2

2
+

c3
2
4
+

c2
1c3

2
+ c1c2c3 +

c2
2c3

2
+

c3
3
4

+
c1c2

3
2

+
c2c2

3
2

=
1
6

,

τ3G[gi
kjg

kgj] :
c3

1
6
+

c2
1c2

2
+

c3
2
6
+

c1c2
2

2
+

c2
2c3

2
+

c3
3
6
+ c1c2c3 +

c1c2
3

2

+
c2c2

3
2

+
c2

1c3

2
=

1
6

,

τ4[gi
kgk

mgm
j gj] :

c4
1
8
+

c3
1c2

4
+

c2
1c2

2
4

+
c1c3

2
4

+
c4

2
8
+

c2
1c2c3

2
+

c1c2
2c3

2
+

c3
2c3

4

+
c2

1c2
3

4
+

c1c2c2
3

2
+

c2
2c2

3
4

+
c1c3

3
4

+
c2c3

3
4

+
c3

1c3

4
+

c4
3
8

=
1
24

, (41)

τ4[gi
kgk

mjg
jgm] :

c4
1

12
+

c3
1c2

6
+

c2
1c2

2
4

+
c4

2
12

+
c1c3

2
4

+
c3

1c3

6
+

c2
1c2c3

2
+

c3
2c3

6

+
c4

3
12

+
c1c2

2c3

2
+

c2
1c2

3
4

+
c2

2c2
3

4
+

c1c2c2
3

2
+

c1c3
3

4
+

c2c3
3

4
=

1
24

,

τ4[gi
kjg

k
mgjgm] :

c4
1
6
+

c3
1c2

2
+

3c2
1c2

2
4

+
c4

2
6
+

7c1c3
2

12
+

c3
1c3

2
+

3c2
1c2c3

2
+

c3
2c3

2

+
c4

3
6
+

3c1c2
2c3

2
+

3c2
1c2

3
4

+
3c2

2c2
3

4
+

3c1c2c2
3

2
+

7c1c3
3

12
+

7c2c3
3

12
=

1
8

,

τ4[gi
kjmgkgjgm] :

c4
1

24
+

c3
1c2

6
+

c4
2

24
+

c2
1c2

2
4

+
c1c3

2
6

+
c3

1c3

6
+

c3
2c3

6
+

c4
3

24
+

c2
1c2c3

2

+
c2

1c2
3

4
+

c2
2c2

3
4

+
c1c2

2c3

2
+

c1c3
3

6
+

c2c3
3

6
+

c1c2c2
3

2
=

1
24

.
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When c1 = c3, the above Equations (41) are equivalent to

2c1 + c2 = 1,

− 2c3
1 + 4c2

1 − 2c1 +
1
3
= 0. (42)

We can obtain that c1 = c3 = 1
2−2

1
3

, c2 = −2
1
3

2−2
1
3

.

The coefficients are the same as the coefficients of the Qin composition method. So

G4Yn+1 = G4Yn + G3g(Yn)τ +
τ2

2
G2[gi

kgk] +
τ3

3!
G([gi

kgk
mgm]+

[gi
kjg

kgj]) +
τ4

4!
([gi

kjmgkgjgm] + 3[gi
kjg

k
mgjgm] + [gi

kgk
mjg

jgm]

+ [gi
kgk

mgm
j gj]) + O(τ5). (43)

We can get G4(Y(tn+1)− Yn+1) = O(τ5), that is Y(tn+1)− Yn+1 = O(τ5).
Scheme (28) has the fourth order accuracy. So Scheme (27) has the fourth order accuracy.

Theorem 4. Scheme (27) can preserve the energy conservation property.

Proof. We only consider the first equation of scheme (27). Since M is a skew symmetric
matrix, it is obvious that

E(Zn,1)− E(Zn)

τ
=

1
τ

∫ 1

0

d
dξ

E((1− ξ)Zn + ξZn,1)dξ

= (
∫ 1

0
(∇ZE((1− ξ)Zn + ξZn,1)dξ)T Zn,1 − Zn

τ
(44)

= −(Zn,1 − Zn

c1τ
)TM

Zn,1 − Zn

τ

= 0.

So the first equation of scheme (27) can have the energy conservation property
E(Zn,1) = E(Zn). In the same way, we can obtain that E(Zn,1) = E(Zn,2) = E(Zn+1). Thus,
the new composition scheme (27) satisfy the energy conservation E(Zn) = E(Zn+1).

3. Discrete Schemes of Multi-Symplectic Sine-Gordon Equation

The sine-Gordon equation is an important nonlinear equation of mathematical physics
discovered in the 19th century. It has multiple soliton solutions and preserves the energy
conservation of the system. The sine-Gordon solitary wave equation is widely used in
scientific and engineering problems, such as the motion of a rapid pendulum attached to a
stretched wire, nonlinear optics, and can be used to describe many physical phenomena in
fields of fluid mechanics, meteorology, and field theory [24,25]. Many scholars applied the
numerical methods to solve sine-Gordon equation [26]. Vu-Quoc et al. [27,28] proposed the
finite difference scheme of energy momentum conservation of wave equations. McLach-
lan et al. simulated the evolution of wave equations by symplectic geometry algorithm [29].
We consider the sine-Gordon equation

utt − uxx + sin(u) = 0. (45)

Let v = ut, w = ux, the equation satisfies the following energy conservation law [26]

I =
∫ b

a
(

1
2
(v2 − w2)− cos(u))dx = c, (46)
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where I stands for energy, c is a constant. Additionally, the equation is equivalent to

− vt + wx = sin(u),

ut = v,

− ux = −w.

(47)

Equation (47) can be written as a multi-symplectic structure

M1zt + K1zx = ∇zS1(z), (48)

where z = (u, v, w)T ∈ R3, S1 = 1
2 (v

2 − w2)− cos(u),

M1 =

 0 −1 0
1 0 0
0 0 0

, K1 =

 0 0 1
0 0 0
−1 0 0

. (49)

M1 and K1 are skew symmetric matrices, S : R3 → R is a scalar smooth function.
Equation (45) satisfies the following multi-symplectic conservation law

∂

∂t
ω +

∂

∂x
κ = 0, (50)

where ω = du ∧ dψ + δdv ∧ du, κ = dp ∧ dψ + δdw ∧ du, and ∧ is the exterior product.
Suppose two functions u1 and u2 ∈

∧1(Rn), the exterior product of u1 and u2 is
defined as

(u1 ∧ u2)(η1, η2) ==

∣∣∣∣ u1(η1) u2(η1)
u1(η2) u2(η2)

∣∣∣∣, η1, η2 ∈ Rn,

which is the orient area of the image of the parallelogram with sides u(η1) and u(η2) on
the u1, u2 plane. The exterior product of the differential form is defined in the same way.
The detailed property of the exterior product can be found in [30].

Applying the Fourier pseudo-spectral method to Equation (48) in spatial direction,
the interval [a, b] is divided into N equal subintervals, we can obtain

MZt + KDZ = ∇ZS(Z), (51)

where Z = (U, V, W)T , U = (u1, · · · , uN)
T , V, W are similar as U, S =

N
∑

i=1
( 1

2 (v
2
i − w2

i )−

cos(ui)),

M =

 O −I O
I O O
O O O

, K =

 O O I
O O O
−I O O

, (52)

D =

 D1 O O
O D1 O
O O D1

.

I is a N-th identity matrix, O is a N-th zero matrix, D1 is a N-th spectral differential

matrix, (D1U)j =
N
∑

k=1
(D1)j,kuk.
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3.1. Second Order AVF Scheme for Sine-Gordon Equation

Applying the second order AVF method to Equation (51) in time direction, we can
obtain the discrete scheme of Equation (45), that is

M
Zn+1 − Zn

τ
+ KD

Zn+1 + Zn

2
=
∫ 1

0
∇ZS((1− ξ)Zn + ξZn+1)dξ (53)

where τ is the time step. The scheme (53) can maintain global energy conservation of
Equation (45). Equation (53) produces the following singular integrals in the calculation

∫ 1

0
sin((1− ξ)un + ξun+1)dξ =

cos(un)− cos(un+1)

un+1 − un . (54)

In 2007, Iavernaro et al. [31] proposed Boole discrete line integral method based on
AVF method of the Hamilton system. The AVF scheme can be written as

zn+1 − zn

τ
=
∫ 1

0
f ((1− ξ)zn + ξzn+1)dξ = S

∫ 1

0
∇H((1− ξ)zn + ξzn+1)dξ, (55)

where τ is the time step, z ∈ RN . Suppose the initial value at t = nτ is zn, the numerical
solution at t = (n + 1)τ is zn+1, and the simplest path to connect zn and zn+1 is

σ(cτ) = czn+1 + (1− c)zn, c ∈ [0, 1]. (56)

Applying the Boole integral to the integral term on format (55), let z = cizn+1 + (1−
ci)zn, we can obtain the following Boole discrete line integral scheme

zn+1 = zn + τ
v

∑
i=1

βiS∇H(cizn+1 + (1− ci)zn) ≡ zn + τ
v

∑
i=1

bi f (z), (57)

where ci =
i−1
v−1 , bi =

∫ 1
0

v
∏

j=1,j 6=i

t−cj
ci−cj

dt, i = 1, . . . , v. H ∈ ∏v (∏v is the set of polynomials

whose highest degree is less than v). So the integrand of the format (57) has v− 1 degrees.
It can calculate the format (57) exactly. In this case, it is equivalent to a Newton–Coates
formula based on the equal distance abscissa of v on the interval of [0, 1]. When v = 5,
the Boole discrete line integral format can be obtained that

zn+1 = zn +
τ

90
S(7∇H(zn) + 32∇H(

3zn + zn+1

4
) + 12∇H(

zn + zn+1

2
)

+ 32∇H(
zn + 3zn+1

4
) + 7∇H(zn+1)). (58)

Applying the Bool discrete integral scheme (58) to Equation (51), we can obtain

−
vn+1

j − vn
j

τ
+ (D1

Wn+1 + Wn

2
)j =

1
90

(7 sin(un
j ) + 32 sin(

3un
j + un+1

j

4
)

+ 12 sin(
un

j + un+1
j

2
) + 32 sin(

un
j + 3un+1

j

4
) + 7 sin(un+1

j )),

un+1
j − un

j

τ
=

1
90

(7vn
j + 32

3vn
j + vn+1

j

4
+ 12

vn
j + vn+1

j

2
+ 32

vn
j + 3vn+1

j

4
+ 7vn+1

j ), (59)

− (D1
Un −Un+1

2
)j = −

1
90

(7wn
j + 32

3wn
j + wn+1

j

4
+ 12

wn
j + wn+1

j

2
+

32
wn

j + 3wn+1
j

4
+ 7wn+1

j ).
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The discrete scheme (59) is equivalent to the following scheme

−
vn+1

j

τ
+ (

D1Wn+1

2
)j = −

vn
j

τ
− (

D1Wn

2
)j +

1
90

(7 sin(un
j ) + 32 sin(

3un
j + un+1

j

4
)

+ 12 sin(
un

j + un+1
j

2
) + 32 sin(

un
j + 3un+1

j

4
) + 7 sin(un+1

j )),

un+1
j

τ
−

vn+1
j

2
=

un
j

τ
+

vn
j

2
, (60)

− (
D1Un+1

2
)j +

wn+1
j

2
= (

D1Un

2
)j −

wn
j

2
.

Equation (60) can be written as

AZn+1 = BZn + F, (61)

where

A =

 O − I
τ

D1
2

I
τ − I

2 O
−D1

2 O I
2

, B =

 O − I
τ −D1

2
I
τ

I
2 O

D1
2 O − I

2

,

F = ( 1
90 (7 sin(un

1 ) + 32 sin( 3un
1+un+1

1
4 ) + 12 sin( un

1+un+1
1

2 ) + 32 sin( un
1+3un+1

1
4 )+

7 sin(un+1
1 )), · · · , 1

90 (7 sin(un
N) + 32 sin( 3un

N+un+1
N

4 ) + 12 sin( un
N+un+1

N
2 )

+32 sin( un
N+3un+1

N
4 ) + 7 sin(un+1

N )), 0, · · · , 0, 0, · · · , 0)T .

3.2. Fourth Order Composition AVF Scheme for Sine-Gordon Equation

Applying the fourth order composition AVF method to Equation (51) in time direction,
we can obtain the discrete scheme of Equation (45), that is

M
Zn,1 − Zn

τ
+ c1KD

Zn,1 + Zn

2
= c1

∫ 1

0
∇ZS((1− ξ)Zn + ξZn,1)dξ,

M
Zn,2 − Zn,1

τ
+ c2KD

Zn,2 + Zn,1

2
= c2

∫ 1

0
∇ZS((1− ξ)Zn,1 + ξZn,2)dξ, (62)

M
Zn+1 − Zn,2

τ
+ c3KD

Zn+1 + Zn,2

2
= c3

∫ 1

0
∇ZS((1− ξ)Zn,2 + ξZn+1)dξ.

Using the Boole discrete line integral method, the discrete scheme (62) is equivalent to
the following scheme
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−
vn,1

j − vn
j

τ
+ c1(D1

Wn,1 + Wn

2
)j =

c1
90

(7 sin(un
j ) + 32 sin(

3un
j + un,1

j

4
)

+ 12 sin(
un

j + un,1
j

2
) + 32 sin(

un
j + 3un,1

j

4
) + 7 sin(un,1

j )),

un,1
j − un

j

τ
=

c1
90

(7vn
j + 32

3vn
j + vn,1

j

4
+ 12

vn
j + vn,1

j

2
+ 32

vn
j + 3vn,1

j

4
+ 7vn,1

j ),

− c1(D1
Un + Un,1

2
)j = −

c1
90

(7wn
j + 32

3wn
j + wn,1

j

4
+ 12

wn
j + wn,1

j

2
+

32
wn

j + 3wn,1
j

4
+ 7wn,1

j ),

−
vn,2

j − vn,1
j

τ
+ c2(D1

Wn,2 + Wn,1

2
)j =

c2
90

(7 sin(un,1
j ) + 32 sin(

3un,1
j + un,2

j

4
)

+ 12 sin(
un,1

j + un,2
j

2
) + 32 sin(

un,1
j + 3un,2

j

4
) + 7 sin(un,2

j )),

un,2
j − un,1

j

τ
=

c2
90

(7vn,1
j + 32

3vn,1
j + vn,2

j

4
+ 12

vn,1
j + vn,2

j

2
+ 32

vn,1
j + 3vn,2

j

4
+ 7vn,2

j ),

− c2(D1
Un,1 + Un,2

2
)j = −

c2
90

(7wn,1
j + 32

3wn,1
j + wn,2

j

4
+ 12

wn,1
j + wn,2

j

2
+

32
wn,1

j + 3wn,2
j

4
+ 7wn,2

j ), (63)

−
vn+1

j − vn,2
j

τ
+ c3(D1

Wn+1 + Wn,2

2
)j =

c3
90

(7 sin(un,2
j ) + 32 sin(

3un,2
j + un+1

j

4
)

+ 12 sin(
un,2

j + un+1
j

2
) + 32 sin(

un,2
j + 3un+1

j

4
) + 7 sin(un+1

j )),

un+1
j − un,2

j

τ
=

c3
90

(7vn,2
j + 32

3vn,2
j + vn+1

j

4
+ 12

vn,2
j + vn+1

j

2
+ 32

vn,2
j + 3vn+1

j

4
+ 7vn+1

j ),

− c3(D1
Un,2 + Un+1

2
)j = −

c3
90

(7wn,2
j + 32

3wn,2
j + wn+1

j

4
+ 12

wn,2
j + wn+1

j

2
+

32
wn,2

j + 3wn+1
j

4
+ 7wn+1

j ).

Equation (63) can be written as

A1Zn,1 = B1Zn + F1,

A2Zn,2 = B2Zn,1 + F2, (64)

A3Zn+1 = B3Zn,2 + F3,

where

A1 =

 O − I
τ

c1D1
2

I
τ − c1I

2 O
− c1D1

2 O c1I
2

, B1 =

 O − I
τ − c1D1

2
I
τ

c1I
2 O

c1D1
2 O − c1I

2

,

A2 =

 O − I
τ

c2D1
2

I
τ − c2I

2 O
− c2D1

2 O c2I
2

, B2 =

 O − I
τ − c2D1

2
I
τ

c2I
2 O

c2D1
2 O − c2I

2

,

A3 =

 O − I
τ

c3D1
2

I
τ − c3I

2 O
− c3D1

2 O c3I
2

, B3 =

 O − I
τ − c3D1

2
I
τ

c3I
2 O

c3D1
2 O − c3I

2

,
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F1 = ( c1
90 (7 sin(un

1 ) + 32 sin( 3un
1+un+1

1
4 ) + 12 sin( un

1+un+1
1

2 ) + 32 sin( un
1+3un+1

1
4 ) + 7 sin(un+1

1 )), · · · ,
c1
90 (7 sin(un

N) + 32 sin( 3un
N+un+1

N
4 ) + 12 sin( un

N+un+1
N

2 ) + 32 sin( un
N+3un+1

N
4 ) + 7 sin(un+1

N )),
0, · · · , 0, 0, · · · , 0)T . F2, F3 are similar as F1.

The corresponding second order Preissmann scheme of sine-Gordon equation is also given.
That is

−
vn+1

j − vn
j

τ
+ (D1

Wn + Wn+1

2
)j = sin(

un+1
j + un

j

2
),

un+1
j − un

j

τ
=

vn
j + vn+1

j

2
, (65)

− (D1
Un + Un+1

2
)j = −

wn
j + wn+1

j

2
.

4. Numerical Experiments
In this section, numerical experiments for the sine-Gordon equation with periodic boundary

conditions are presented to investigate the relative energy error and accuracy of convergence. The
discrete energy corresponding to (46) can be expressed as Ī.

Ī = ∆x(
N−1

∑
i=0

(
1
2
((vk

i+1)
2 − (wk

i+1)
2)− cos(uk

i+1)). (66)

The energy error at t = nτ is defined as

Error(t) = | Ī(Z
n)− Ī(Z0)

Ī(Z0)
|, (67)

where Ī(Z0) is the initial energy, Ī(Zn) is the energy value at t = nτ. The maximal module error of
numerical solution and exact solution is defined as

Ł∞(τ) = max
1≤j≤N

|un
j − u(xj, tn)|. (68)

The order of convergence is defined as

Ratio =
log( Ł∞(τ)

Ł∞( τ
2 )
)

log(2)
. (69)

4.1. Numerical Experiments for Single Solitary Wave
Firstly, we consider the motion of single solitary wave. Equation (45) has the exact solution [32,33]

u(x, t) = 4tan−1(tsech(x)), (70)

where x ∈ [−20, 20], N = 100, τ = 0.02, the initial condition is obtained when t = 0 in Equation (70).
Table 1 shows the maximal module error of numerical solution and exact solution and the order

of convergence of the different schemes with different time steps at t = 0.25. It is easy to see that the
orders of convergence of fourth order energy preserving composition AVF scheme is almost equal to
4, and the orders of convergence of second order AVF scheme and second order Preissman method
are almost equal to 2. The fourth order energy preserving composition AVF scheme is more accurate
than the second order AVF scheme and second order Preissman method, this result is consistent with
the theory.

Table 1. The L∞ errors and the order of convergence of three different schemes with h = 0.16 and
different time steps at t = 0.25.

t = 0.25 Scheme 1 Order Scheme 2 Order Scheme 3 Order

τ = 0.05 3.5408 × 104 – 3.3818 × 104 – 2.2893 × 106 –
τ = 0.025 8.8508 × 105 2.0003 8.4576 × 105 1.9995 1.4431 × 107 3.9876

τ = 0.0125 2.2126 × 105 2.0002 2.1146 × 105 1.9999 9.0375 × 109 3.9971
τ = 0.00625 5.5315 × 106 2.0001 5.2866 × 106 2.0000 5.6367 × 1010 4.0030
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Scheme 1 is the second order Preissman scheme, Scheme 2 is the second order AVF scheme, and
Scheme 3 is the fourth order composition AVF scheme.

Figure 1 shows the evolution of single solitary waves in t ∈ [0, 100]. The numerical solution
obtained from the fourth order energy-preserving composition AVF scheme can well simulate
the single solitary wave. Figure 2a shows the energy error obtained from the second order AVF
scheme. Figure 2b shows the energy error obtained from the fourth order composition AVF scheme.
Figure 2c shows the energy error obtained from the second order Preissman scheme. It is obvious
that the second order AVF scheme and the fourth order composition AVF scheme can preserve the
energy conservation accurately, the second order Preissman scheme only can preserve the energy
conservation approximatively.
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Figure 1. The numerical solutions from t = 0 to t = 100 with τ = 0.02 and h = 0.4.
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Figure 2. The double solitary wave’s energy error of second order AVF method, fourth order
composition method and second order Preissman method in t ∈ [0, 100] with τ = 0.02, h = 0.4.
(a) AVF method; (b) composition method; and (c) Preissman method.

4.2. Numerical Experiments for Kink and Anti-Kink Solitary Waves
In this section, we consider the collision behavior of kink and anti-kink solitary waves. Equa-

tion (45) has the exact solution

u(x, t) = 4 arctan(exp(
x + x0 − βt√

1− β2
)) + 4 arctan(exp(

−x + x0 − βt√
1− β2

)), (71)

where x ∈ [−30, 30], N = 300, τ = 0.02, x0 = 10, β = 0.5, the initial condition is obtained when t = 0
in Equation (71).

Table 2 shows the maximal module error of numerical solution and exact solution and the order
of convergence of the different schemes with different time steps at t = 0.2. It is easy to see that
the orders of convergence of fourth order energy preserving composition AVF scheme is close to 4,
and the orders of convergence of second order AVF scheme and second order Preissman method are
almost equal to 2. The fourth order energy preserving composition AVF scheme is more accurate
than the second order AVF scheme and second order Preissman method, this result is consistent with
the theory.
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Table 2. The L∞ errors and the order of convergence of three different schemes with h = 0.2 and
different time steps at t = 0.2.

t = 0.2 Scheme 1 Order Scheme 2 Order Scheme 3 Order

τ = 0.04 1.5178 × 105 – 1.0912 × 105 – 7.4527 × 108 –
τ = 0.025 2.8834 × 106 1.9981 2.7312 × 106 1.9983 4.7887 × 109 3.9601

τ = 0.0125 7.2113 × 107 1.9994 6.8304 × 107 1.9995 3.5881 × 1010 3.7383
τ = 0.00625 1.8034 × 107 1.9995 1.7082 × 107 1.9995 2.7656 × 1011 3.6987

Scheme 1 is the second order Preissman scheme. Scheme 2 is the second order AVF scheme.
Scheme 3 is the fourth order composition AVF scheme.

Figure 3 shows the collision behavior of kink and anti-kink solitary waves with time, the fourth
order composition AVF scheme can simulate the waves well. As can be seen from Figure 4a, the error
of energy is very small, almost close to zero, the second order AVF scheme can preserve the energy
conservation well. Figure 4b shows the error of energy from fourth order composition scheme, we
can see that the scheme can preserve the energy accurately. From Figure 4c, the error of energy is
10−4. This shows that the second order Preissman scheme can only approximately maintain the
energy conservation of the equation.
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Figure 3. The numerical solutions from t = 0 to t = 200 with τ = 0.02 and h = 0.2.
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Figure 4. The kink and anti-kink solitary waves energy error of second order AVF method, fourth
order composition method and second order Preissman method in t ∈ [0, 200] with τ = 0.02, h = 0.2.
(a) AVF method; (b) composition method; and (c) Preissman method.

5. Concluding Remarks
In this paper, a new fourth order energy preserving composition scheme for the multi-symplectic

structure PDE is proposed based on the second other AVF method. The new fourth order composition
AVF scheme of sine-Gordon equation is compared with the corresponding second order AVF scheme
and the second order Preissman scheme. Numerical results showed that the fourth order composition
AVF scheme of sine-Gordon equation can have the fourth order accuracy and preserve the energy
conservation property. The fourth order energy preserving scheme of the multi-symplectic structure
PDE can also be applied to other multi-symplectic structure PDE.
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