New Versions of Some Results on Fixed Points in b-Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (1)
- if and only if ;
- (2)
- ;
- (3)
- (a)
- is convergent in and converges to , if for each there exists where for all , we denote this as or where
- (b)
- is the Cauchy sequence in , if for each there exists such that for all .
- (c)
- is a if every Cauchy sequence in Y converges to some .
- (i)
- (See [7]) The set is called the orbit of at . A map is said to be orbitally continuous if and such that for some , then , where is a subsequence of the sequence ;
- (ii)
- (See [27]) A mapping is called weakly orbitally continuous if the set is nonempty, whenever the set is nonempty;
- (iii)
- (See [26]) A mapping is called k-continuous, if whenever is a sequence in Y such that .
- (i)
- is weakly orbitally continuous;
- (ii)
- is orbitally continuous;
- (iii)
- is k-continuous.
2. Main Results
2.1. A New Version of the Theorem by Caristi
2.2. Light Version of Caristi’s Theorem
2.3. On the Result of Pant et al. [25]
- (i)
- is weakly orbitally continuous;
- (ii)
- is orbitally continuous;
- (iii)
- is k-continuous.
2.4. On the Result of Karapınar et al. [15]
- (a)
- ;
- (b)
- , for all
- (c)
- the range of contains the range of ;
- (d)
- is continuous;
- (e)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleksić, S.; Mitrović, Z.D.; Radenović, S. A fixed point theorem of Jungck in bv(s)-metric spaces. Period. Math. Hung. 2018, 77, 224–231. [Google Scholar] [CrossRef]
- Aleksić, S.; Mitrović, Z.D.; Radenović, S. Picard sequences in b-metric spaces. Fixed Point Theory 2020, 21, 35–46. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in almost metric space. (Russ.) Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215, 241–251. [Google Scholar] [CrossRef]
- Carić, B.; Došenović, T.; George, R.; Mitrović, Z.D.; Radenović, S. On Jungck-Branciari-Wardowski type fixed point results. Mathematics 2021, 9, 161. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Ćirić, L.B. Generalised contractions and fixed point theorems. Publ. Inst. Math. 1971, 12, 19–26. [Google Scholar]
- Dung, N.V.; Hang, V.T.L. On relaxations of contraction constants and Caristi’s theorem in b-metric spaces. J. Fixed Point Theory Appl. 2016, 18, 267–284. [Google Scholar] [CrossRef]
- Fisher, B. Four mappings with a common fixed point. Kuwait J. Sci. 1981, 8, 131–139. [Google Scholar]
- George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Hussain, N.; Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Fisher in b-metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 949–956. [Google Scholar] [CrossRef]
- Jovanović, M.; Kadelburg, Z.; Radenović, S. Common Fixed Point Results in Metric-Type Spaces. Fixed Point Theory Appl. 2010, 2010, 978121. [Google Scholar] [CrossRef] [Green Version]
- Jungck, G. Commuting mappings and fixed points. Am. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
- Jungck, G. Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 1986, 9, 771–779. [Google Scholar] [CrossRef]
- Karapınar, E.; Khojasteh, F.; Mitrović, Z.D. A proposal for revisiting Banach and Caristi type theorems in b-metric spaces. Mathematics 2019, 7, 308. [Google Scholar] [CrossRef] [Green Version]
- Khojasteh, F.; Karapınar, E.; Khandani, H. Some applications of Caristi’s fixed point theorem in metric spaces. Fixed Point Theory Appl. 2016, 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. Caristi-Kirk type and Boyd-Wong-Browder-Matkowski-Rus type fixed point results in b-metric spaces. Filomat 2017, 31, 4331–4340. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Radenović, S.; Reich, S.; Zaslavski, A. Iterating nonlinear contractive mappings in Banach spaces. Carpathian J. Math. 2020, 36, 286–293. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Radenović, S. The Banach and Reich contractions in bv(s)-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3087–3095. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Jungck in rectangular b-metric spaces. Acta Math. Hungar. 2017, 153, 401–407. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A note on a Banach’s fixed point theorem in b-rectangular metric space and b-metric space. Math. Slovaca 2018, 68, 1113–1116. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Hussain, N. On results of Hardy-Rogers and Reich in cone b-metric space over Banach algebra and applications. U.P.B. Sci. Bull. Ser. A 2019, 81, 147–154. [Google Scholar]
- Pant, R.P.; Rakočević, V.; Gopal, D.; Pant, A.; Ram, M. A General Fixed Point Theorem. Filomat 2021, 35, 4061–4072. [Google Scholar] [CrossRef]
- Pant, A.; Pant, R.P. Fixed points and continuity of contractive maps. Filomat 2017, 31, 3501–3506. [Google Scholar] [CrossRef]
- Pant, A.; Pant, R.P.; Joshi, M.C. Caristi type and Meir-Keeler type fixed point theorems. Filomat 2019, 33, 3711–3721. [Google Scholar] [CrossRef]
- Hutchinson, J. Fractals and Self-Similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Gardašević-Filipović, M.; Kukić, K.; Gardašević, D.; Mitrović, Z.D. Some best proximity point results in the orthogonal 0-complete b-metric like spaces. J. Contemp. Math. Anal. Armen. Acad. 2023, 58, 1–14, in press. [Google Scholar]
- Nakano, H. Modular Semi-Ordered Spaces; Tokyo Math. Book Series; Maruzen. I: Tokyo, Japan, 1950; Volume 1, p. 288. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrović, Z.D.; Bodaghi, A.; Aloqaily, A.; Mlaiki, N.; George, R. New Versions of Some Results on Fixed Points in b-Metric Spaces. Mathematics 2023, 11, 1118. https://doi.org/10.3390/math11051118
Mitrović ZD, Bodaghi A, Aloqaily A, Mlaiki N, George R. New Versions of Some Results on Fixed Points in b-Metric Spaces. Mathematics. 2023; 11(5):1118. https://doi.org/10.3390/math11051118
Chicago/Turabian StyleMitrović, Zoran D., Abasalt Bodaghi, Ahmad Aloqaily, Nabil Mlaiki, and Reny George. 2023. "New Versions of Some Results on Fixed Points in b-Metric Spaces" Mathematics 11, no. 5: 1118. https://doi.org/10.3390/math11051118
APA StyleMitrović, Z. D., Bodaghi, A., Aloqaily, A., Mlaiki, N., & George, R. (2023). New Versions of Some Results on Fixed Points in b-Metric Spaces. Mathematics, 11(5), 1118. https://doi.org/10.3390/math11051118