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Abstract: The aim of our work is to obtain the analytic solutions for a new nonlinear anharmonic
oscillator by means of the Optimal Homotopy Asymptotic Method (OHAM), using only one iter-
ation. The accuracy of the obtained results comes from the comparison with the corresponding
numerical ones for specified physical parameters. Moreover, the OHAM method has a greater degree
of flexibility than an iterative method as is presented in this paper. Based on these results, the
analytically solutions of the Chen system were obtained for a special case (just one analytic first
integral). The chaotic behaviors were excluded here. The provided solutions are usefully for many
engineering applications.
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approximate solution
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1. Introduction

Many applications in electrical engineering, medicine, outdoor weather control ap-
plication, secure communication techniques, and so on are based by the study of chaotic
dynamic systems. Therefore, many techniques have been developed to study the perturba-
tion of this simple periodic motion.

Even if the one dimensional harmonic oscillator potential is a suitable model for a series
of physical problems, in many cases the concordance with the experimental values is not
sufficient. A typical example is the diatomic molecule whose motions, especially vibrations,
cannot be described sufficiently by using the one dimensional harmonic oscillator potential.
Among many models of anharmonic potentials a privileged position for the potential
energy of a diatomic molecule is occupied by the Morse oscillator potential due to its
applications in quantum mechanics [1] to diatomic or polyatomic molecules, spectroscopy,
and so on. This is a convenient model because it explicitly includes the effects of bond
breaking, as well as the existence of unbound states, the anharmonicity of real bonds
and bond dissociation. A modified version of anharmonic potential is used in different
applications in nonlinear dynamical systems to solve the inverse scatting problem to derive
so called soliton solutions [2].

Recently, He et al. [3] adopted a generalized Duffing oscillator using the homotopy
perturbation method (HPM). Bel et al. [4] analyzed the synchronization and stability of
coupled driven-damped Helmholtz-Duffing oscillators in bi-stability regimes. Synchroniza-
tion of a nonlinear oscillator was explored by Vieira et al. [5]. Mariano et al. [6] considered
a general class of nonlinear dynamical systems with memory. Furthermore, nonlinear
oscillators equipped with fast varying periodic time delay feedback were developed by
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Liu et al. [7] using an analytical criterion. The mathematical techniques as periodic per-
turbations, stability, chaotic and asymptotic behaviors, and geometrical properties were
developed in [8–19].

The Chen system [20] proposed in 1999, appears in a variety of studies, such as:
Toda Lattice [21], Kowalevski top dynamics [22], Lotka–Volterra system [23], the battery
model [24], Lagrange system [25], and others [26].

The relevance of the Chen chaotic system results from several approaches. For instance,
an output feedback control algorithm for a single-input single-output variant was proposed
in [27], the influence of the time delay was investigated in [28] showing that the single-scroll
attractor is indeed chaotic, the global boundedness was explored in [29] using a suitable
Lyapunov function, the equilibrium point stabilization problem by employing a simple
linear feedback controller was discusses in [30], and others [31–39].

The aim of this work is to obtain the approximate closed-form solutions of the Chen
system for a special case: just one analytic first integral known. For this case the Chen
system could be reduced to an anharmonic oscillator which characterizes the behaviour of
more physical systems of interest.

This paper is organized as follows. We focus on the analytical approaches of the
approximate closed-form solutions for a special case of the Chen chaotic system in Section 2.
In Section 3 we firstly proposed the differential equation which describes the nonlinear
anharmonic oscillator. The OHAM method developed in [40–42] is applied for obtaining an
approximate analytic solutions. Here, the study of the Chen chaotic system is reduced to a
nonlinear anharmonic oscillator. Section 4 is devoted to the numerical simulations. There is
an excellent agreement between the analytic approximate solution and the corresponding
numerical solution which proved the validity of all obtained results. The last Section 5 is
dedicated to some concluding remarks.

2. Approximate Closed-Form Solutions to the Chen’s System

The Chen system was analytically solved by mathematical techniques as the multistage
homotopy–perturbation method in [33], the multistage homotopy analysis method [34],
the differential transformation method (DTM) [36], the Adomian decomposition method
(ADM), [37], the mechanical analysis [43], and the geometrical frame [44].

The Chen’s system has the form:
.
x = a(y− x)
.
y = (c− a)x− xz + cy ,
.
z = −bz + xy

(1)

where a, b, c are real parameters. The system is chaotic when a = 35, b = 3, c = 28 ([45]).

Remark 1. (a) If a = 0 and b = c the system (1) has the Hamilton–Poisson realization. The func-
tional H(x, y, z) = x is the Hamiltonian and the C(x, y, z) = 1

2 (−2cxz + 2yz + xy2 + xz2)
is functionally independent Casimir. Thus, the exact solution is written as an intersection
between the surfaces H = cst and C = cst.

(b) For a ∈ R∗, b = c = 0, the Hamiltonian function is H(x, y, z) = y2 + z2 + 2az, but finding
the Casimir functions remains an open problem. Therefore, it is impossible to write the exact
solution as an intersection between the surfaces H = cst and C = cst.

(c) Otherwise, the Chen’s system is chaotic.

In the following we focus just on the case a ∈ R∗, b = c = 0.
The system (1) becomes: 

ẋ = a(y− x)
ẏ = −ax− xz
ż = xy

. (2)
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Remark 2. The considered system admits a symmetry with respect to Oz- axis, for a ∈ R∗,
b = c = 0.

Considering the following representation:{
y = R · 2·w

1+w2

z = −a + R · 1−w2

1+w2

, (3)

for the system (2) with R2 = [y(0)]2 + (z(0) + a)2, Equation (23) gives

x = − 2·ẇ
1+w2 . (4)

Equation (22) identically satisfies, and Equation (21) yields:

ẅ(t) + a · ẇ(t) + a · R · w(t) = 2 · w(t)
1 + w2(t)

· (ẇ(t))2, t > 0 , (5)

which describes the a nonlinear anharmonic oscillator presented in details in the follow-
ing section.

For the unknown function w the initial conditions are:

w(0) =
y(0)

R + z(0) + a
, ẇ(0) = − x(0)

2
·
(

1 + w(0)2
)

. (6)

For the nonlinear differential problem (5) and (6), the first-order approximate solutions,
taking account of the following section and Equations (3) and (4), become:

x = − 2·ẇ
1+w2

y = R · 2·w
1+w2

z = −a + R · 1−w2

1+w2

. (7)

3. Application to the Nonlinear Anharmonic Oscillator

The nonlinear anharmonic oscillator given by Equation (5) in our approach could be
described by the following equation:

ẅ(t)(1 + w2(t)) + a · ẇ(t)(1 + w2(t)) + a · R · w(t)(1 + w2(t))− 2 · w(t) · (ẇ(t))2 = 0, t > 0, (8)

subject to the initial conditions:

w(0) = A1 , ẇ(0) = B1, (9)

with A1 = y(0)
R+z(0)+a 6= 0, B1 = − x(0)

2 ·
(

1+w(0)2
)
6= 0, R =

√
[y(0)]2 + (z(0) + a)2, a ∈ R

given real numbers.
Taking into account of the initial conditions given by Equation (9), the approximate

solutions, denoted w(t), of Equation (8) are deducted for the unknown function w(t).
By using OHAM method (Marinca and Herisanu [40–42], for more details) to

Equations (8) and (9) an analytic approximate solution, denoted wOHAM(t), is obtained
using only one iteration.

For an embedding parameter p ∈ [0, 1], the first-order approximate solution w for
nonlinear differential problem given by Equations (8) and (9) could be written as:

w(t) = w0(t) + p · w1(t, Cj), (10)
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with w0(t) the initial approximation and w1(t, Cj) the first approximation depending on the
variable t and the several unknown optimal parameters C1, C2, C3, . . . , CNmax , with Nmax an
arbitrary integer number.

The homotopic relation is given by [41]:

H
[
L
(

w(t)
)

, H(t, Ci, p), N
(

w(t)
)]

=

= (1− p) ·L
(

w(t)
)
− H(t, Ci, p) ·

[
L
(

w(t, Ci)
)
+N

(
w(t)

)]
= 0,

(11)

where the nonlinear operator N
(

w(t)
)

has the form

N
(

w(t)
)
= N0(w0(t)) + ∑

m≥1
Nm(w0, w1, . . . , wm) · pm

(12)

and H(t, Ci, p) = p h1(t, Ci) + p2 h2(t, Ci) + p3 h3(t, Ci) + . . . is a known auxiliary function.
Taking into account Equations (10) and (12) the homotopic relation from Equation (11)
becomes:

H
[
L
(

w(t)
)

, H(t, Ci), N
(

w(t)
)]

= L
(

w0(t)
)
+ p

[
L
(

w1(t, Ci)
)
− H(t, Ci)N

(
w0(t)

)]
= 0, (13)

where H(t, Ci) 6= 0 is an auxiliary convergence-control function depending of the variable

t and of the parameters C1, C2, . . . , CNmax . The linear operator L
(

w
)

has the form:

L
(

w
)
(t) = ẅ + 2K · ẇ + (K2 −ω2

0)w , (14)

where K, ω0 > 0 are unknown parameters at this moment.

Therefore, the form of the nonlinear operator N
(

w
)

corresponding to the unknown
function w is obtained from Equation (8) by:

N
(

w
)
(t) = −2K · ẇ− (K2 −ω2

0)w + ẅ(t) · w2(t)− 2 · w(t) · (ẇ(t))2+

+a · ẇ(t) ·
(
1 + w2(t)

)
+ a · R ·

(
1 + w2(t)

)
· w(t) .

(15)

The deformations problems are obtained by identifying the coefficients p0 and p1,
respectively.

Some possibilities to choose the auxiliary function H(t, Ci) could be:

H(t, Ci) =
Nmax

∑
k=1

a(2)k · cos(2k + 1)ω0t + b(2)k · sin(2k + 1)ω0t , (16)

where Ci ∈ {a
(2)
k

∣∣∣ k = 1, Nmax} ∪ {b(2)k

∣∣∣ k = 1, Nmax}, or

H(t, Ci) = C1 cos(ω0t) + B1 sin(ω0t),

or
H(t, Ci) = C1 cos(ω0t) + B1 sin(ω0t) + C2 cos(3ω0t) + B2 sin(3ω0t),

or
H(t, Ci) = C1 cos(ω0t) + B1 sin(ω0t) + C2 cos(3ω0t) + B2 sin(3ω0t)+
+C3 cos(5ω0t) + B3 sin(5ω0t),

and so on.
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3.1. The Zeroth-Order Deformation Problem

For the initial approximation w0, Equation (14) becomes:

ẅ + 2K · ẇ + (K2 −ω2
0)w = 0, w(0) = A1 , ẇ(0) = B1 (17)

with the solution

w0(t) = w(0) e−K t cos(ω0t) +
ẇ(0)
ω0

e−K t sin(ω0t). (18)

3.2. The First-Order Deformation Problem

The nonlinear operator Equation (15) for the initial approximation w0(t) given by
Equation (18), using Equation (15) becomes:

N(w0)(t) = M1 · e−K t · cos(ω0t) + M2 · e−3K t · cos(ω0t) + M3 · e−3K t · cos(3ω0t)+
+P1 · e−K t · sin(ω0t) + P2 · e−3K t · sin(ω0t) + P3 · e−3K t · sin(3ω0t) ,

(19)

where

M1 = aB1 − aKA1 − 2KB1 + A1K2 + aRA1 + A1ω2
0 ,

M2 = 1
4 aA2

1B1 − 5
4 A1B2

1 −
3
4 aKA3

1 +
1
2 KA2

1B1 − 3
4 K2 A3

1 +
3
4 aRA3

1+

+
aB3

1
4ω2

0
− 3aKA1B2

1
4ω2

0
+

KB3
1

2ω2
0
− 3K2 A1B2

1
4ω2

0
+

3aRA1B2
1

4ω2
0
− 5

4 A3
1ω2

0 ,

M3 = 3
4 aA2

1B1 − 3
4 A1B2

1 −
1
4 aKA3

1 +
3
2 KA2

1B1 − 1
4 K2 A3

1 +
1
4 aRA3

1−
− aB3

1
4ω2

0
+

3aKA1B2
1

4ω2
0
− KB3

1
2ω2

0
+

3K2 A1B2
1

4ω2
0
− 3aRA1B2

1
4ω2

0
+ 1

4 ω2
0 A3

1

P1 = − aKB1
ω0

+ K2B1
ω0

+ aRB1
ω0
− aω0 A1 + B1ω0 + 2Kω0 A1 ,

P2 = − 3aKB3
1

4ω3
0
− 3K2B3

1
4ω3

0
+

3aRB3
1

4ω3
0
− aA1B2

1
4ω0
− 5B3

1
4ω0
− 3aKA2

1B1
4ω0

− KA1B2
1

2ω0
−

− 3K2 A2
1B1

4ω0
+

3aRA2
1B1

4ω0
− 1

4 aω0 A3
1 −

5
4 ω0 A2

1B1 − 1
2 Kω0 A3

1

P3 =
aKB3

1
4ω3

0
+

K2B3
1

4ω3
0
− aRB3

1
4ω3

0
+

3aA1B2
1

4ω0
− B3

1
4ω0
− 3aKA2

1B1
4ω0

+
3KA1B2

1
2ω0

−

− 3K2 A2
1B1

4ω0
+

3aRA2
1B1

4ω0
− 1

4 aω0 A3
1 +

3
4 ω0 A2

1B1 − 1
2 KA3

1

It depends on the elementary functions e−K t · cos(ω0t), e−3K t · cos(ω0t), e−3K t ·
cos(3ω0t), e−K t · sin(ω0t), e−3K t · sin(ω0t), e−3K t · sin(3ω0t). For p = 1, from Equation (13)
the first-order deformation problem becomes:

L
(

w1(t, Ci)
)
= H(t, Ci)N

(
w0(t)

)
(20)

By integration of the first approximation w1(t, Ci), from Equation (20) and considering
for H(t, Ci) the expression given by Equation (16) yields:

w1(t, Ci) =
Nmax

∑
k=1

Ck · e−3K t · cos((2k + 1)ω0t) + Bk · e−3K t · sin((2k + 1)ω0t), (21)

where Ci, Bi are unknown parameters, with
Nmax

∑
k=1

Ck = 0 and
Nmax

∑
k=1

(2k + 1) · Bk = 0,

respectively.
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3.3. The First-Order Analytical Approximate Solution w

Taking into account of Equations (18) and (21) was obtained the first-order approximate
solution given by Equation (10), when p = 1 in the form:

w(t) = w0(t) + w1(t, Ci) = w(0) e−K t cos(ω0t) +
ẇ(0)
ω0

e−K t sin(ω0t)+

+
Nmax

∑
k=1

Ck · e−3K t · cos((2k + 1)ω0t) + Bk · e−3K t · sin((2k + 1)ω0t) ,
(22)

where the unknown parameters Ci, Bi, i = 1, 2, 3, · · · , are optimally identified.

4. Numerical Simulation

In order to demonstrate the accuracy and validity of the OHAM technique, a compari-
son between our approximate solutions with corresponding numerical results obtained via
the fourth-order Runge–Kutta method is highlighted.

We consider the initial value problem given by (2) with initial conditions x(0) = 1,
y(0) = 1, z(0) = 1, a = 0.25 and b = c = 0. The convergence-control parameters K, ω0,

{Bi}
∣∣∣
i=1, Nmax

, {Ci}
∣∣∣
i=1, Nmax

are optimally determined by means of the least-square method.

Tables 1–4 emphasizes the accuracy of the OHAM technique by comparing the approx-
imate analytic solutions w, x̄, ȳ, and z̄, presented above with the corresponding numerical
integration values (via the fourth-order Runge–Kutta method). These comparisons show
the effectiveness, reliability, applicability, and efficiency of the OHAM.

Table 1. Comparison between the analytical approximate solution wOHAM of Equation (22) and the
corresponding numerical values for different values of the index number Nmax.

t Nmax = 10 Nmax = 15 Nmax = 20 Nmax = 25

wnumerical

0 0.35078105
1.7 −0.40330489
3.4 −0.63904518
5.1 −0.29126219
6.8 0.12552955
8.5 0.29643558
10.2 0.16028326
11.9 −0.05820289
13.6 −0.15188552
15.3 −0.08407041
17 0.03107464

wOHAM obtained from Equation (22) and
Equation (A1) Equation (A2) Equation (A3) Equation (A4)

0 0.35078105 0.35078105 0.35078105 0.35078105
1.7 −0.40841782 −0.40330994 −0.40330493 −0.40330493
3.4 −0.64462314 −0.63904979 −0.63904521 −0.63904521
5.1 −0.29646094 −0.29126751 −0.29126222 −0.29126223
6.8 0.12060783 0.12552535 0.12552950 0.12552951
8.5 0.28751514 0.29643084 0.29643554 0.29643554
10.2 0.14938850 0.16027866 0.16028322 0.16028322
11.9 −0.06828322 −0.05819707 −0.05820297 −0.05820293
13.6 −0.16709523 −0.15188883 −0.15188558 −0.15188556
15.3 −0.09821857 −0.08408416 −0.08407045 −0.08407044
17 0.01573297 0.03106425 0.03107455 0.03107461
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Table 1. Cont.

t Nmax = 10 Nmax = 15 Nmax = 20 Nmax = 25

Relative errors =
∣∣wnumerical − wOHAM

∣∣
0 5.689 × 10−14 5.551 × 10−17 5.689 × 10−14 2.841 × 10−13

1.7 0.00511292 5.049 × 10−6 3.829 × 10−8 3.423 × 10−8

3.4 0.00557796 4.616 × 10−6 3.491 × 10−8 3.438 × 10−8

5.1 0.00519875 5.321 × 10−6 3.786 × 10−8 4.167 × 10−8

6.8 0.00492171 4.197 × 10−6 4.579 × 10−8 4.043 × 10−8

8.5 0.00892043 4.732 × 10−6 3.524 × 10−8 3.975 × 10−8

10.2 0.01089475 4.599 × 10−6 3.694 × 10−8 4.065 × 10−8

11.9 0.01008032 5.821 × 10−6 7.353 × 10−8 3.995 × 10−8

13.6 0.01520970 3.307 × 10−6 5.836 × 10−8 3.493 × 10−8

15.3 0.01414815 1.374 × 10−5 3.568 × 10−8 2.826 × 10−8

17 0.01534166 1.039 × 10−5 8.433 × 10−8 3.114 × 10−8

Table 2. Comparison between the analytic closed-form approximate solution x̄ given by Equation (7)1

and corresponding numerical solution; the relative errors εx =
∣∣xnumerical − x̄OHAM

∣∣.
t xnumerical x̄OH AM Relative Errors εx

0 1 0.99999998 1.781 × 10−8

1.7 0.57062883 0.57062880 3.337 × 10−8

3.4 −0.10808510 −0.1080850 4.599 × 10−8

5.1 −0.49392956 −0.4939297 1.456 × 10−7

6.8 −0.38333158 −0.3833315 8.265 × 10−8

8.5 0.00446477 0.0044648 3.685 × 10−8

10.2 0.25485018 0.2548503 1.881 × 10−7

11.9 0.20964292 0.2096428 2.959 × 10−8

13.6 0.00265313 0.0026531 2.432 × 10−8

15.3 −0.13494391 −0.1349440 9.170 × 10−8

17 −0.11083968 −0.1108396 2.099 × 10−8

Table 3. Comparison between the analytic closed-form approximate solution ȳ given by Equation (7)2

and corresponding numerical solution; the relative errors εy =
∣∣ynumerical − ȳOHAM

∣∣.
t ynumerical ȳOH AM Relative Errors εy

0 1 1.0000000000006326 6.326 × 10−13

1.7 −1.11056659 −1.11056670 1.180 × 10−7

3.4 −1.45269382 −1.45269367 1.479 × 10−7

5.1 −0.85957282 −0.85957335 5.275 × 10−7

6.8 0.39565568 0.39565592 2.411 × 10−7

8.5 0.87239595 0.87239585 9.511 × 10−8

10.2 0.50030350 0.50030353 3.028 × 10−8

11.9 −0.18571072 −0.18571121 4.917 × 10−7

13.6 −0.47530599 −0.47530611 1.210 × 10−7

15.3 −0.26726775 −0.26726775 8.200 × 10−9

17 0.09939116 0.09939132 1.591 × 10−7
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Table 4. Comparison between the analytic closed-form approximate solution z̄ given by Equation (7)3

and corresponding numerical solution; the relative errors εz =
∣∣znumerical − z̄OHAM

∣∣.
t znumerical z̄OH AM Relative Errors εz

0 1 0.999999999999494 5.060 × 10−13

1.7 0.90288415 0.90288402 1.293 × 10−7

3.4 0.42244420 0.42244411 8.863 × 10−8

5.1 1.10041934 1.10041980 4.580 × 10−7

6.8 1.30111457 1.30111456 1.648 × 10−8

8.5 1.09217208 1.09217192 1.641 × 10−7

10.2 1.27059023 1.27059079 5.585 × 10−7

11.9 1.33997205 1.33997212 6.118 × 10−8

13.6 1.27858895 1.27858892 3.430 × 10−8

15.3 1.32831159 1.32831174 1.498 × 10−7

17 1.34769247 1.34769251 3.643 × 10−8

All the convergence-control parameters, corresponding to the intervals [0, 20] are
presented in Appendix A.

Figures 1–3 present the comparisons between the analytical approximate solutions
given by OHAM and numerical results provided by Runge–Kutta fourth steps integrator,
for initial conditions x(0) = 1, y(0) = 1, z(0) = 1, a = 0.25 and for Nmax = 25. From these
figures it follows that the behavior of the analytical approximate solutions and Runge–Kutta
fourth steps integrator’s results are quite the same.

5 10 15 20
t

-0.6

-0.4

-0.2

0.2

wHtL

Figure 1. Comparison between the analytical approximate solution wOHAM of Equation (22) and the
corresponding numerical solution: numerical solution (with lines) and OHAM solution (dashing
lines), respectively.
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xHtL

yHtL
zHtL

5 10 15 20
t

-1.5

-1.0

-0.5

0.5

1.0

Figure 2. Comparison between the approximate closed-form solutions x̄(t), ȳ(t), z̄(t) of the Chen
system given by Equation (7) and corresponding numerical solution: numerical solution (with lines)
and OHAM solution (dashing lines), respectively.

The corresponding relative errors are presented in detail in Appendix A.
Below we highlight the advantages of the OHAM method by comparison with an

iterative method developed in [46]. By integration of the system (2) over the interval [0, t],
the following relations are obtained:

x(t) = x(0) +
t∫

0

a(y(s)− x(s)) ds

y(t) = y(0) +
t∫

0

(−ax(s)− x(s)z(s)) ds

z(t) = z(0) +
t∫

0

x(s)y(s) ds

. (23)
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0.4
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1.2

z

Figure 3. The parametric curve (x̄(t), ȳ(t), z̄(t)) is the 3D-trajectory of the Chen system: numerical
solution (with lines) and OHAM solution (dashing lines), respectively.
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The iterative algorithm is the following:

x0(t) = x(0) , x1(t) = N1(x0, y0, z0) =

t∫
0

a(y0(s)− x0(s)) ds ,

y0(t) = y(0) , y1(t) = N2(x0, y0, z0) =

t∫
0

(−ax0(s)− x0(s)z0(s)) ds ,

z0(t) = z(0) , z1(t) = N3(x0, y0, z0) =

t∫
0

x0(s)y0(s) ds ,

xm(t) = N1(x0 + x1 + · · ·+ xm−1, y0 + y1 + · · ·+ ym−1, z0 + z1 + · · ·+ zm−1)−
−N1(x0 + x1 + · · ·+ xm−2, y0 + y1 + · · ·+ ym−2, z0 + z1 + · · ·+ zm−2) ,
ym(t) = N2(x0 + x1 + · · ·+ xm−1, y0 + y1 + · · ·+ ym−1, z0 + z1 + · · ·+ zm−1)−
−N2(x0 + x1 + · · ·+ xm−2, y0 + y1 + · · ·+ ym−2, z0 + z1 + · · ·+ zm−2) ,
zm(t) = N3(x0 + x1 + · · ·+ xm−1, y0 + y1 + · · ·+ ym−1, z0 + z1 + · · ·+ zm−1)−
−N3(x0 + x1 + · · ·+ xm−2, y0 + y1 + · · ·+ ym−2, z0 + z1 + · · ·+ zm−2) , m ≥ 2 .

(24)

With the iterative method, the solutions of system (2) have the form:

xiter(t) =
∞

∑
m=0

xm(t) , yiter(t) =
∞

∑
m=0

ym(t) , ziter(t) =
∞

∑
m=0

zm(t) .

For the case using seven iterations, with the initial conditions x(0) = 1, y(0) = 1,
z(0) = 1 and the constants a = 0.25, b = c = 0, taking into account of the algorithm (24),
the iterative solutions become:

xiter(t) =
7

∑
m=0

xm(t) = 1− 0.15625t2 − 0.02864583t3 + 0.01888020t4 + 0.00419108t5−

−0.00186326t6 − 0.00066741t7 + 0.00016160t8 + 0.00008497t9 − 9.153078 · 10−6t10−
−8.689161 · 10−6t11 + 6.523628 · 10−8t12 + 7.013146 · 10−7t13 + 5.223197 · 10−8t14 − 4.322356 · 10−8t15 ,

yiter(t) =
7

∑
m=0

ym(t) = 1− 1.25t− 0.5t2 + 0.2734375t3 + 0.10270182t4 − 0.04052734t5−

−0.0205508t6 + 0.00508378t7 + 0.0034984t8 − 0.00048158t9 − 0.0005136t10 + 0.00002626t11+
+0.0000650t12 + 1.353350 · 10−6t13 − 7.134374 · 10−6t14 − 6.095126 · 10−7t15 + 6.773822 · 10−7t16+
+1.007179 · 10−7t17 − 5.542185 · 10−8t18 − 1.201667 · 10−8t19 ,

ziter(t) =
7

∑
m=0

zm(t) = 1 + t− 0.625t2 − 0.21874999t3 + 0.11002604t4 + 0.04710286t5−

−0.01472303t6 − 0.00871044t7 + 0.00159948t8 + 0.00138481t9 − 0.00011177t10 − 0.00018913t11−
−7.689201 · 10−7t12 + 0.00002208t13 + 1.751434 · 10−6t14 − 2.202022 · 10−6t15 − 3.375254 · 10−7t16+
+1.858551 · 10−7t17 + 4.383605 · 10−8t18 − 1.298323 · 10−8t19 − 4.480401 · 10−9t20 .

(25)

A comparison between approximate closed-form solutions x̄OHAM, ȳOHAM, z̄OHAM
and the corresponding iterative solutions xiter, yiter, ziter given in (25) is shown in the
Appendix A both graphically in Figure 4 and tabularly in Table 5, respectively.
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Figure 4. Comparison between the approximate closed-form solution x̄(t), of the Chen system
given by Equation (7), corresponding numerical solution and the iterative solution xiter(t) given by
Equation (25): numerical solution (with lines), OHAM solution (dashing lines), and iterative solution
(dotted curve), respectively.

This comparison shows the precision and efficiency of the OHAM method (using just
one iteration) against to the iterative method described in [46] (using seven iterations).

Table 5. Comparison between the approximate closed-form solution x̄ given by Equation (7)1,
corresponding numerical solution and the iterative solution xiter given by Equation (25).

t xnumerical x̄OH AM xiter

0 1 0.99999998 1
1/2 0.95863428 0.95863428 0.95863421

1 0.83589390 0.83589396 0.83587428
3/2 0.65318706 0.65318710 0.65280614

2 0.44281996 0.44281983 0.44040998
5/2 0.23134451 0.23134437 0.22345920

3 0.03418218 0.03418216 0.01748463
7/2 −0.14118335 −0.14118327 −0.16734859

4 −0.28999110 −0.28999104 −0.32509324
9/2 −0.40661666 −0.40661673 −0.48802039

5 −0.48384683 −0.48384691 0.22295502

5. Conclusions

For a special case of the Chen system (just one analytic first integral) is shown that this
system could be reduced to a nonlinear anharmonic oscillator. An analytic approximate
solution for the anharmonic oscillator problem was been obtained by means of the Optimal
Homotopy Asymptotic Method. The numerical outcomes contribute to a better knowledge
of the accuracy and validity of the OHAM technique. The flexibility of this method results
from the comparison with the corresponding iterative procedure. The results of our present
study are useful in understanding of the behavior for the dynamical systems as complete
synchronization or optimization of nonlinear system performance.
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Appendix A

In the following we will present just the values of the convergence-control parameters
that appear in Equation (22); for a = 0.25, the initial conditions are x0 = 1, y0 = 1, z0 = 1,
and different values of the index number Nmax.

Example A1. Nmax = 10:

K = 0.125 , ω0 = 0.09341358 , B1 = −474.05746504 , B2 = −83.66952872 ,
B3 = 983.93349991 , B4 = 93.11707785 , B5 = −613.37703852 ,
B6 = −92.46381246 , B7 = 185.13599744 , B8 = 22.90934052 ,
B9 = −21.15973503 , B10 = −0.36833594 , C1 = −105.19741270 ,
C2 = 864.84740763 , C3 = 73.00030471 , C4 = −852.78114752 ,
C5 = −110.08737855 , C6 = 370.62105410 , C7 = 55.55687516 ,
C8 = −73.53898242 , C9 = −5.45522779 , C10 = 3.29519765;

(A1)

Example A2. Nmax = 15:

K = 0.125 , ω0 = 0.09341358 , B1 = −535.73029486 , B2 = −225.66684894 ,
B3 = 1247.98395161 , B4 = 448.29476171 , B5 = −949.41747655 ,
B6 = −520.95990410 , B7 = 388.66581563 , B8 = 298.76728809 ,
B9 = −79.92299107 , B10 = −90.33265095 , B11 = 5.37514330 ,
B12 = 13.37723677 , B13 = 0.27233992 , B14 = −0.69635773 ,
B15 = −0.01001282 , C1 = −158.38311092 , C2 = 1027.07825300 ,
C3 = 324.06915822 , C4 = −1182.48969116 , C5 = −532.36755526 ,
C6 = 656.26210797 , C7 = 427.80899081 , C8 = −194.45446761 ,
C9 = −178.15216326 , C10 = 25.41293181 , C11 = 38.43418910 ,
C12 = −0.27099978 , C13 = −3.63274094 , C14 = −0.09466754 ,
C15 = 0.07144867;

(A2)

Example A3. Nmax = 20:

K = 0.125 , ω0 = 0.09341358 , B1 = −572.08992817 , B2 = −363.49072823 ,
B3 = 1381.88608368 , B4 = 835.02442901 , B5 = −1066.96252972 ,
B6 = −1047.38729501 , B7 = 366.92483166 , B8 = 718.19317811 ,
B9 = 34.69590962 , B10 = −288.65895012 , B11 = −85.27528612 ,
B12 = 65.37007538 , B13 = 34.29919136 , B14 = −6.61520810 ,
B15 = −6.39869616 , B16 = −0.08142131 , B17 = 0.53154862 ,
B18 = 0.04883938 , B19 = −0.01315662 , B20 = −0.00088725 ,
C1 = −204.77267749 , C2 = 1116.51695688 , C3 = 584.18123914 ,
C4 = −1329.27601259 , C5 = −1017.12141826 , C6 = 710.13206838 ,
C7 = 928.81089412 , C8 = −110.98469772 , C9 = −486.67750378 ,
C10 = −88.11599375 , C11 = 148.66520536 , C12 = 60.17614458 ,
C13 = −23.74134196 , C14 = −16.23938481 , C15 = 1.10909390 ,
C16 = 2.06863981 , C17 = 0.13314723 , C18 = −0.10234454 ,
C19 = −0.00970849 , C20 = 0.00085215;

(A3)
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Example A4. Nmax = 25:

K = 0.125 , ω0 = 0.09341358 , B1 = −843.44077781 , B2 = −2283.08793538 ,
B3 = 963.47493402 , B4 = 5265.50493093 , B5 = 2381.34084725 ,
B6 = −4904.15706502 , B7 = −5195.34441243 , B8 = 1560.49523602 ,
B9 = 4556.65455444 , B10 = 945.30628765 , B11 = −2149.41196346 ,
B12 = −1226.18931187 , B13 = 489.36452965 , B14 = 588.62871016 ,
B15 = 11.77859750 , B16 = −151.42839682 , B17 = −36.81760967 ,
B18 = 20.19657690 , B19 = 9.01179313 , B20 = −0.96835111 ,
B21 = −0.91332857 , B22 = −0.03411510 , B23 = 0.03395935 ,
B24 = 0.00251461 , B25 = −0.00020438 , C1 = −854.03834610 ,
C2 = 1379.75774496 , C3 = 3964.31358727 , C4 = 452.62887014 ,
C5 = −5635.41300047 , C6 = −4149.93476429 , C7 = 3363.41705866 ,
C8 = 5285.44980443 , C9 = −22.27424250 , C10 = −3377.83070642 ,
C11 = −1308.19072093 , C12 = 1150.99851855 , C13 = 924.29822101 ,
C14 = −133.76608326 , C15 = −321.94225580 , C16 = −45.68283663 ,
C17 = 60.64935784 , C18 = 20.54843020 , C19 = −5.31528345 ,
C20 = −3.19668710 , C21 = 0.05591426 , C22 = 0.20456572 ,
C23 = 0.01371534 , C24 = −0.00373301 , C25 = −0.00020577.

(A4)

Now, for the initial conditions x0 = −1, y0 = −1, z0 = 1, and Nmax = 25, the convergence-
control parameters for the symmetric solution (with respect to the Oz-axis) given by
Equation (22) are given in Equation (A4).
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