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Abstract: Fuzzy portfolio models have received many researchers’ focus on the issue of risk pref-
erences. The portfolio based on guaranteed return rates has been developing and considering the
dimension of excess investment for the investors in different risk preferences. However, not only
excess investment but also shortage investment to the selected portfolio should be considered for risk
preferences, including risk-seeking, risk-neutral, and risk-averse, by different degrees of dimensions
in excess investment and shortage investment. A comparison to the degree of dimensions for the
excess investment and shortage investment indicates that a risk-seeker would like to have excess
investment for securities whose return rates are bigger than the guaranteed return rates and shortage
investment for securities whose return rates are smaller than the guaranteed return rates. Finally, we
present three experiments to illustrate the proposed model. The results show that the different risk
preferences derive different fuzzy portfolio selections under s and t dimensions, where a lower value
of s is suggested for a risk-seeker as t > s, and we suggest the values of s and t to be smaller than or
equal to 3. By contrast, for the risk-neutral investor, we suggest s = t; t < s is suggested to the investor
who is risk-averse.

Keywords: fuzzy portfolio selection; dimension of shortage investment; dimension of excess investment;
guaranteed return rate; adjustable security proportion

MSC: 90B50; 90B60

1. Introduction

Portfolio selection is used to find the combinations of assets, which are used to optimize
the objectives of an investor with respect to maximizing the expected return under the
constrained risk. The foundation of portfolio selection was laid by Markowitz [1] who
proposed the mean-variance model and considered asset returns as random variables in the
multi-variate normal distribution. Most of the researchers have devoted themselves to solve
some criticisms of the original portfolio models, and then some of the rigid assumptions
of Markowitz’s model are relaxed to deal with different investment environments or
challenges, including the models in mean-absolute deviation, value at risk, conditional
value at risk, or semi-variance, which are with respect to portfolio selections [2–8].

In most of the asset markets, we cannot just assume the factors affecting the market are
random variables. In order to solve the portfolio selection, the factors which are other than
randomness are usually applied in the possibility theory. Then, fuzzy portfolio selection
is proposed to consider the knowledge of experts, investors’ subjective opinions, or a
quantitative and qualitative analysis in portfolio selection problems. For example, the
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perceived risk of an investor can be shown in different degrees of linguistic descriptions,
and then the constrained risk for the portfolio selection cannot be performed by probability
distribution. In addition, the investment behaviors to new economy events cannot be
precisely evaluated by the previous return rates for the selected securities, because a lot of
factors cannot be considered in the portfolio selection, and thus fuzzy portfolio models are
another kind of possible method for solving non-probabilistic portfolio selection. Numerous
researchers have the objective of maximization of the fuzzy return rates and constrained
the upper investment risk using possibility theory, which were modelled and studied
for portfolio selection [9–12]. Thereafter, most researchers have focused on the multi-
period fuzzy optimization problems for solving the multi-objective problems by genetic
algorithm and neural networks [13–15]. Without the self-dual property in the possibility
measures, some researchers extended the credibility measures for the uncertain portfolio
selection [16–18].

The major studies in fuzzy portfolio models are summarized as possibility or credibility
theories to optimal decisions in a single-period or multi-period fuzzy portfolio selection.
With respect to portfolio selection, the habitual behaviors of an investor in the field of risk
analysis are also important in the vagueness environment. For example, Mehlawat et al. [19]
proposed multi-objective risk measures and evaluate the fuzzy portfolio selection. Yue
and Wang [20] used the entropy method to formulate a weighted possibility fuzzy multi-
objective and higher order moment portfolio model with the efficiency and effectiveness
portfolio selections. Guo et al. [21] considered the capital gain tax to fuzzy portfolio
selection and formulated a bi-objective mean-variance model solving by an algorithm in
time-varying numerical integral-based particle swarm optimization. Li et al. [22] used a
skewness fuzzy variable to formulate a mean-variance-skewness fuzzy portfolio selection,
by designing the genetic algorithm and fuzzy simulation technique to show the effective
algorithm. Zhou and Xu [23] proposed fuzzy portfolio selection for solving qualitative
information represented as hesitant fuzzy elements where both the max-score rule and
score-deviation trade-off rule were used to distinguish three types of risk behaviors for
the investors. It is important to notice that the risk behavior analysis for an investor is an
interesting topic in the research field of fuzzy portfolio selections [24].

In fuzzy portfolio selection, we cannot only use a mean-variance model to reflect the
measure of risk; by contrast, we also need to consider the will and behavior of an investor
with different risk types in the portfolio selection. Lower returns are equivalent to lower
risks, in which investors seldom make significant profits from those securities, and thus
most investment behaviors intend to make shortage investment for these securities. By
contrast, higher risks are equivalent to higher returns where most investors can realize
unexpected returns from those securities, and thus most investors would like to make
excess investment to those higher risk securities. Based on the concept of risk behavior
of an investor, Tsaur et al. [25] proposed the guaranteed return rate to be the threshold
of excess investment for each security in portfolio selection, and then Chen et al. [26]
revised the model [25] based on the risk behavior of an investor in a different dimension
distance between the guaranteed return rate and return rate for each security. However,
models [25,26] just consider the risk behavior of an investor in the excess investment. Not
only excess investment but also shortage investment should be considered to the securities.
Huang et al. [27] proposed the adjustable security proportion for excess investment and
shortage investment based on the selected guaranteed return rates for profitable returns,
where the mean-variance model was applied for portfolio selection, whereas the risk
behavior of an investor in a different dimension distance for shortage investment and
excess investment was still not considered. Therefore, we suppose that if an investor
prefers to risk, then his degree of intention in excess investment is higher than the degree
of shortage investment; if an investor is averse to risk, then his degree of intention in
excess investment is lower than the degree of shortage investment; if an investor is neutral
to risk, then his degree of intention in excess investment is equivalent to the degree of
shortage investment. The research gap of this study is planned to overcome the degree
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of risk preference investment in the adjustable security proportion, and then we can
consider the dimensions of excess investment and shortage investment by the risk attitudes
of an investor.

The organization of this article is as follows. In Section 2, we introduce the definition
of fuzzy numbers and their operations. Section 3 proposes the dimensional analysis to the
adjustable security proportion in the fuzzy portfolio model. In Section 4, an illustration is
presented by the proposed model. Finally, conclusions are discussed in Section 5.

2. Preliminaries

In this section, the fuzzy numbers with fundamental algebraic operations and their
defuzzification, fuzzy expected values, and fuzzy variances are introduced and defined,
and then Section 3 can be easily understood. A fuzzy set Ã is characterized by a member-
ship function defined as uÃ(x) : X → [0, 1] , which maps the elements of the universe of
discourse X to the interval [0, 1]. Therefore, we define a fuzzy number as follows.

Definition 1 ([28]). Let Ã be a fuzzy number as any fuzzy subset of the real line R with a
membership function uÃ(x) : R→ [0, 1] satisfying the following conditions:

(1) The fuzzy number Ã is normal, if there exists an x ∈ R with uÃ(x) = 1;
(2) uÃ(x) is convex, i.e., uÃ(λx + (1 − λ)y) ≥ min{uÃ(x), uÃ(y)}, ∀ x, y ∈ R and λ ∈ [0, 1];
(3) uÃ(x) is upper semicontinuous, i.e., { x ∈ R: uÃ (x) ≥ α} = Ãα is a closed subset of U for

each α ∈ (0, 1];
(4) The closure of the set {x ∈ R: uÃ (x) ≥ 0} is a compact subset of R.

Definition 2 ([28]). A fuzzy number Ã is defined as LR-type fuzzy number as Ã = (a, c1, c2)LR,
then the membership function of Ã = (a, c1, c2)LR has the following form:

uÃ(x) =


L
(

a−x
c1

)
, i f x < a

1, i f x = a
R
(

x−a
c2

)
, i f x > a

where a is the central value, and c1 and c2 are the left and right spread values.

Let Ã and B̃ be fuzzy numbers of the LR-type defined as Ã = (a, c1, c2)LR and
B̃ = (b, d1, d2)LR, where a and b are the central values, c1 and d1 are the left spread values,
and c2 and d2 are the right spread values of Ã and B̃, respectively. Then,

Ã + B̃ = (a, c1, c2)LR + (b, d1, d2)LR = (a + b, c1 + d1, c2 + d2)LR

Ã− B̃ = (a, c1, c2)LR − (b, d1, d2)LR = (a− b, c1 + d2, c2 + d1)LR

Next, the multiplication of both positive fuzzy numbers Ã and B̃ can be derived as

Ã
⊗

B̃ = (a, c1, c2)LR

⊗
(b, d1, d2)LR = (ab, ad1 + bc1, ad2 + bc2)LR

Theorem 1 ([29]). Let Ã be a fuzzy number with differentiable membership function with α-level
set Ãα =

{
x R : uÃ (x) ≥ α

}
= [a1(α), a2(α)], 0 ≤ α ≤ 1 The lower possibilistic mean value

of fuzzy number is defined as M∗
(

Ã
)
= 2

∫ 1
0 α·a1(α)dα, and the upper possibilistic mean value of

fuzzy number is defined as M∗
(

Ã
)
= 2

∫ 1
0 α·a2(α)dα. Then, the expected value of a fuzzy number

Ã is expressed as M
(

Ã
)
=
∫ 1

0 α·[a1(α) + a2(α)]dα.
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By Theorem 1, the lower possibilistic mean and upper possibilistic mean values for
Ã + B̃ can be obtained as Equations (1) and (2) as follows:

M∗
(

Ã + B̃
)
= M∗

(
Ã
)
+ M∗

(
B̃
)

(1)

M∗
(

Ã + B̃
)
= M∗

(
Ã
)
+ M∗

(
B̃
)

(2)

Then, the sum of possibilistic mean value of Ã and B̃ are obtained as follows:

M
(

Ã + B̃
)
=

M∗
(

Ã + B̃
)
+ M∗

(
Ã + B̃

)
2

(3)

Next, the lower and upper possibilistic variances of Ã are defined as Equations (4) and (5),
respectively [29].

Var∗
(

Ã
)
= 2

∫ 1

0
α
[

M∗
(

Ã
)
− a1(α)

]2
dα (4)

Var∗
(

Ã
)
= 2

∫ 1

0
α
[

M∗
(

Ã
)
− a2(α)

]2
dα (5)

In addition, for ranking the return rate of each security to the guarantee return rate,
we use a popular ranking method for fuzzy numbers described as follows:

Theorem 2 ([30]). Let Ã = (a, c1, c2) and B̃ = (b, d1, d2) be triangular fuzzy numbers, the
central values be a and b, and the left and right spread values be c1, c2, and d1, d2; then, we define
the circumcenter of Ã as SÃ = (x0, y0) =

(
6a+(c2−c1)

6 , 5−c2c1
12

)
. The ranking function R

(
Ã
)

which maps Ã to a real number can be derived as R
(

Ã
)
=
√
(x0)

2 + (y0)
2. If the ranking value

R
(

Ã
)

is bigger than R
(

B̃
)

, then the fuzzy number Ã is bigger than fuzzy number B̃.

3. The Dimension Risk Analysis in Adjustable Security Proportions

Under the vagueness environment, the fuzzy portfolio model is used to solve the
optimal investment proportion for each asset under the maximizing expected return with
constrained risk. By considering the s dimension of excess investment and t dimension
of shortage investment, we can formulate the fuzzy portfolio model as follows. First, for
security j with investment proportion xj, we define its return rate to be the triangular
fuzzy number as r̃j =

(
rj, cj, dj

)
, where rj is the central value; and cj, dj are left and right

spreads, j = 1, . . . , n, respectively; and then the expected fuzzy return rate is defined as
R̃ = ∑n

j=1 xj r̃j. In this study, considering the adjustable security proportion in the fuzzy
portfolio selection, the degrees of risk preference for the dimension of excess investment
and shortage investment between the selected guaranteed return rates and the security
return rates are different to different investors. Second, we rank the n securities to their
fuzzy return rates and they are assumed as the ordering of the fuzzy return rates as
r̃1 < r̃2 < . . . < r̃n, in which excess investment for the m securities (m ≤ n) and the
other securities are made a shortage investment based on the selected guaranteed return
rate defined as p̃k = (pk, ek, fk), where pk is its central value, and ek, fk are its left and
right spread values, respectively. By considering the risk preference of the investor with s
dimension of excess investment and t dimension of shortage investment in the expected
fuzzy return rate, the following is proposed:

R̃ =
n

∑
j=1

xj r̃j −
n1

∑
j=1

m

∑
k=1

xj
∣∣r̃j − p̃k

∣∣t + n

∑
j=n1+1

m

∑
k=1

xj
∣∣r̃j − p̃k

∣∣s, s, t ≥ 1 (6)
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If the fuzzy return rate r̃j, j = 1, . . . , n, is larger than p̃k and R
(
r̃j
)
> R( p̃k) [30], then we

can make an excess investment on security j; otherwise, we can make a shortage investment.
The s dimension of excess investment and the t dimension of shortage investment can be
formulated as follows:

∣∣r̃j − p̃k
∣∣t = {( p̃k − r̃j

)t i f R( p̃k) > R
(
r̃j
)

0 otherwise
(7)

∣∣r̃j − p̃k
∣∣s = {(r̃j − p̃k

)s i f R
(
r̃j
)
> R( p̃k)

0 otherwise
(8)

Next, the lower and upper possibilistic mean values for the s dimension excess invest-
ment

(
r̃j − p̃k

)s and t dimension shortage investment
(

p̃k − r̃j
)t are derived as M∗

(
r̃j − p̃k

)s,

M∗
(
r̃j − p̃k

)s, and M∗
(

p̃k − r̃j
)t, M∗

(
p̃k − r̃j

)t, ∀ k = 1, 2, . . . , m, as follows:

M∗
(

p̃k − r̃j
)t

=
(

pk − rj
)t − 1

3
s
(

pk − rj
)t−1(cj + fk

)
(9)

M∗
(

p̃k − r̃j
)t

=
(

pk − rj
)s

+
1
3

s
(

pk − rj
)s−1(dj + ek

)
(10)

M∗
(
r̃j − p̃k

)s
=
(
rj − pk

)s − 1
3

s
(
rj − pk

)s−1(cj + fk
)

(11)

M∗
(
r̃j − p̃k

)s
=
(
rj − pk

)s
+

1
3

s
(
rj − pk

)s−1(dj + ek
)

(12)

where
(

p̃k − r̃j
)t

=
[(

pk − rj
)t, t
(

pk − rj
)t−1(cj + fk

)
, t
(

pk − rj
)t−1(dj + ek

)]
whose α-level

set is defined as
[(

p̃k − r̃j
)t
]α

=
[(

p̃k − r̃j
)t

j1(α),
(

p̃k − r̃j
)t

j2(α)
]

for all α ∈ [0, 1].(
r̃j − p̃k

)s
=
[(

rj − pk
)s, s

(
rj − pk

)s−1(cj + fk
)
, s
(
rj − pk

)s−1(dj + ek
)]

whose α-level set is

defined as
[(

r̃j − p̃k
)s
]α

=
[(

r̃j − p̃k
)s

j1(α),
(
r̃j − p̃k

)s
j2(α)

]
, α ∈ [0, 1]. Then, the expected

possibilistic mean values M
(

p̃k − r̃j
)t and M

(
r̃j − p̃k

)s are obtained as follows:

M
(

p̃k − r̃j
)t

=
(

pk − rj
)t
+

1
6

t
(

pk − rj
)t−1[(dj + ek

)
−
(
cj + fk

)]
(13)

M
(
r̃j − p̃k

)s
=
(
rj − pk

)s
+

1
6

s
(
rj − pk

)s−1[(dj + ek
)
−
(
cj + fk

)]
(14)

On the other hand, the expected possibilistic mean value for the proposed fuzzy return
rate in Equation (6) can be obtained as follows:

M

[
n
∑

j=1
xj r̃j −

n1
∑

j=1

m
∑

k=1
xj
(

p̃k − r̃j
)t
+

n
∑

j= n1+1

m
∑

k=1
xj
(
r̃j − p̃k

)s
]

=
n
∑

j=1
xj M

(
r̃j
)
−

n
∑

j=1

m
∑

k=1
xj M

(
p̃k − r̃j

)t
+

n
∑

j=1

m
∑

k=1
xj M

(
r̃j − p̃k

)s

=
n
∑

j=1
xj

[
rj +

1
6
(
dj − cj

)]
−

n1
∑

j=1

m
∑

k=1
xj

[(
pk − rj

)t
+ 1

6 t
(

pk − rj
)t−1[(dj + ek

)
−
(
cj + fk

)]]
+

n
∑

j=n1+1

m
∑

k=1
xj

[(
rj − pk

)s
+ 1

6 s
(
rj − pk

)s−1[(dj + ek
)
−
(
cj + fk

)]]
(15)

Then, we can obtain the lower and upper possibilistic variances of the proposed fuzzy
return rates shown in Equation (6) as follows:
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Var∗

[
n
∑

j=1
xj r̃j−

n1
∑

j=1

m
∑

k=1
xj
(

p̃k − r̃j
)t
+

n
∑

j=n1+1

m
∑

k=1
xj
(
r̃j − p̃k

)s
]

= 1
18

[
n
∑

j=1
cjxj − t

n1
∑

j=1

m
∑

k=1
xj
(

pk − rj
)t−1(cj + fk

)
+ s

n
∑

j=n1+1

m
∑

k=1
xj
(
rj − pk

)s−1(cj + fk
)]2 (16)

Var∗
[

n
∑

j=1
xj r̃j−

n1
∑

j=1

m
∑

k=1
xj
(

p̃k − r̃j
)t
+

n
∑

j= n1+1

m
∑

k=1
xj
(
r̃j − p̃k

)s
]

= 1
18

[
n
∑

j=1
djxj − t

n1
∑

j=1

m
∑

k=1
xj
(

pk − rj
)t−1(dj + ek

)
+ s

n
∑

j=n1+1

m
∑

k=1
xj
(
rj − pk

)s−1(dj + ek
)]2 (17)

The standard deviation of the proposed fuzzy return rates shown in Equation (6) can
be obtained as follows:

SD

[
n
∑

j=1
xj r̃j−

n1
∑

j=1

m
∑

k=1
xj
(

p̃k − r̃j
)t
+

n
∑

j= n1+1

m
∑

k=1
xj
(
r̃j − p̃k

)s
]

= 1
2


{

Var∗

[
n
∑

j=1
xj r̃j −

n1
∑

j=1

m
∑

k=1
xj
(

p̃k − r̃j
)t
+

n
∑

j= n1+1

m
∑

k=1
xj
(
r̃j − p̃k

)s
]}1/2

+

{
Var∗

[
n
∑

j=1
xj r̃j −

n1
∑

j=1

m
∑

k=1
xj
(

p̃k − r̃j
)t
+

n
∑

j= n1+1

m
∑

k=1
xj
(
r̃j − p̃k

)s
]}1/2


= 1

6
√

2

[
n
∑

j=1

(
cj + dj

)
xj − t

n1
∑

j=1

m
∑

k=1
xj
(

pk − rj
)t−1(cj + fk + dj + ek

)
+s

n
∑

j=n1+1

m
∑

k=1
xj
(
rj − pk

)s−1(cj + fk + dj + ek
)]

(18)

The fuzzy portfolio model with s dimension in the excess investment and t dimension
in the shortage investment can be formulated as a linear programming model whose objec-
tive function is shown in Equation (15), and the constrained risk by the upper bound of
an investor’s desired value is shown as in Equation (18). Therefore, the proposed possi-
bilistic mean-standard deviation model of portfolio selection in considering the concept
of s dimension excess investment and t dimension in shortage investment is obtained
as follows:

Max
n
∑

j=1
xj

[
rj +

1
6
(
dj − cj

)]
−

n1
∑

j=1

m
∑

k=1
xj

[(
pk − rj

)t
+ 1

6 t
(

pk − rj
)t−1[(dj + ek

)
−
(
cj + fk

)]]
+

n
∑

j=n1+1

m
∑

k=1
xj

[(
rj − pk

)s
+ 1

6 s
(
rj − pk

)s−1[(dj + ek
)
−
(
cj + fk

)]]
s.t. 1

6
√

2

[
n
∑

j=1

(
cj + dj

)
xj − t

n1
∑

j=1

m
∑

k=1
xj
(

pk − rj
)t−1(cj + fk + dj + ek

)
+s

n
∑

j=n1+1

m
∑

k=1
xj
(
rj − pk

)s−1(cj + fk + dj + ek
)]
≤ σ

n
∑

j=1
xj = 1

lj ≤ xj ≤ uj, j = 1, 2, . . . , n

(19)

where the lower and upper bounds on the proportion of security j are defined as lj and uj,
respectively. In addition, rj < pk when jth security is the shortage investment; therefore, a

bigger dimension of t implies a smaller value of
(

pk − rj
)t. Furthermore, rj > pk when jth

security is the excess investment; therefore, a bigger dimension of s implies a smaller value
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of
(
rj − pk

)s. Therefore, the bigger value of s or smaller value of t will derive a smaller
objective value of the model (19).

4. Illustrations
4.1. Data Description and Model Explanation

In this study, we use the collected data from April 2002 to January 2004 in
Shanghai Stock Exchange, which are the closed prices for each week [31]. By the
companies’ information offered in the financial reports, there are five securities cho-
sen to formulate the proposed model. The fuzzy return rates for the securities are es-
timated as r̃1 = (0.073, 0.054, 0.087), r̃2 = (0. 105, 0.075, 0.102), r̃3 = (0.138, 0.096, 0.123),
r̃4 = (0.168, 0.126, 0.162), and r̃5 = (0.208, 0.168, 0.213), where the first values in the fuzzy re-
turn rates are central values, and the second and third values are left and right spread values.
In order to range the investment proportion for each security, the lower and upper bounds
of investment proportion for security j are derived as (l1, l2, l3, l4, l5) = (0.1, 0.1, 0.1, 0.1, 0.1),
and (u1, u2, u3, u4, u5) = (0.4, 0.4, 0.4, 0.5, 0.6), respectively.

4.2. Results and Discussions

To clearly describe the proposed model, we select the guaranteed return rates to
group the fuzzy return rate of the securities. In the first group, we select fuzzy number
p̃1 = (0.1, 0.05, 0.05) which is bigger than r̃1; p̃2 = (0.15, 0.1, 0.1) is bigger than r̃1, r̃2, and
r̃3, and p̃3 = (0.2, 0.1, 0.15) is just smaller than r̃5, which are all derived by Theorem 2.
Therefore, we can define the first scenario when we select the guaranteed return rate as
p̃1, where security 1 is set for the shortage investment because its fuzzy return rates are
lower than the guaranteed return rate p̃1, whereas the other securities 2, 3, 4, and 5 are for
excess investment. In the second scenario, securities 1, 2, 3 are the shortage investment
because their fuzzy return rates are lower than the guaranteed rate of return p̃2; by contrast,
the fuzzy return rates of securities 4 and 5 are more p̃2 for excess investment. The third
scenario shows the securities 1, 2, 3, and 4 to be the shortage investments because their
fuzzy return rates are less than the guaranteed return rate p̃3, and then we judge security 5
to be the excess investment. In order to clearly state the proposed model, three experiments
are conducted for illustration.

4.2.1. Experiment 1

In this experiment, we suppose the risk behavior of an investor is risk-seeking, and
he prefers excess investment to shortage investment. The fuzzy portfolio model shown in
model (19) assumed the dimensions of shortage to be bigger than excess investments as
t > s. The fuzzy portfolio selection is proceeded by the following steps.

Step 1: Formulate a linear programming model for the proposed fuzzy portfolio model
First, the guaranteed return rate p̃1 = (0.1, 0.05, 0.05) is used to group the securities

to be shortage or excess investments. Second, the dimension for the shortage investment is
set as t = 2, and the dimension for excess investment is set as s = 1. Third, we formulate
model (19) by the collected data, and security 1 is adopted as the shortage investment, and
thus the lowermost investment proportion is relaxed from 0.1 to 0. Therefore, the fuzzy
portfolio model with t = 2 and s = 1 can be obtained as follows:

Max 0.077474x1 + 0.119x2 + 0.185x3 + 0.248x4 + 0.331x5

s.t. 0.127986x1 + 0.454x2 + 0.538x3 + 0.676x4 + 0.862x5 ≤ 6
√

2σ

x1 + x2 + x3 + x4 + x5 = 1

0 ≤ x1 ≤ 0.4 , 0.1 ≤ x2, x3 ≤ 0.4; 0.1 ≤ x4 ≤ 0.5; 0.1 ≤ x5 ≤ 0.6

(20)

Step 2: Discussion and analysis
After solving model (20), with the constrained risks from 5% to 9%, we can solve the

portfolio selections as shown in Table 1. If the constrained risk is smaller than 5%, then the
portfolio is infeasible. On the other hand, if the constrained risk is bigger than 9%, then its
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optimal portfolio remains the same with the optimal portfolio as x1 = 0, x2 = 0.1, x3 = 0.1,
x4 = 0.2, and x5 = 0.6, and the expected return rate is 27.86%. With the constrained risk
from 5% to 9%, we can find that the investment proportion of security 1 is from its upper
bound 0.4 to the shortage investment proportion 0 because the return rate of security 1 is
lower than the guaranteed return rate p̃1; the investment proportions for securities 2 and 3
are almost the same between the constrained risk from 5% to 9%, and the investment
proportion for security 4 finally reaches 0.2 in the increasing process when the proportion
of security 5 reaches 0.6. Next, we change the selected guaranteed return rates to p̃2 and p̃3,
respectively. In Table 2, with t = 2, s = 1, and the guaranteed return rate p̃2, the risk of the
investment is constrained from 2% to 5%. The optimal portfolio is obtained as x1 = 0, x2 = 0,
x3 = 0, x4 = 0.4, and x5 = 0.6 and the expected return rate is 24.78% under the constrained risk
of 5%. With the constrained risk from 2% to 5%, we can find that the investment proportion
of securities 1, 2, and 3 reach at their lower bounds as 0 in shortage investment because
their return rates are less than the guaranteed return rate p̃2. In addition, we can find that
investment proportions for securities 4 and 5 are increasing between 2% and 5%, because
the return rates are higher than the guaranteed return rate p̃2. Furthermore, in Table 3, by
the constrained risk from 1.5% to 4.5%, we can obtain the optimal portfolio. The optimal
portfolio in the maximal expected returns is obtained as x1 = 0, x2 = 0, x3 = 0, x4 = 0.4, and
x5 = 0.6, in which the expected return rate is 20.285% under the constrained risk of 4.5%.
By the constrained risk from 1.5% to 4.5%, the investment proportions of securities 1, 2,
and 3 reach to their lower bounds as 0 in the shortage investment because their return
rates are less than the guaranteed return rate p̃2. In addition, the investment proportion for
security 4 is also relaxed to the shortage investment but reaches the investment proportion
of 0.4, since the expected return rate of security 4 is bigger than securities 1, 2, and 3. By
contrast, security 5 is in the increasing process between 1.5% and 4.5%, because its return
rate is bigger than the guaranteed return rate p̃3.

Next, we solve the proposed model with t = 3, and s = 2, and the results are shown in
Tables 4–6 under the guaranteed return rate p̃1, p̃2, and p̃3. Since we add one dimension
to the shortage investment and excess investment, by comparing Tables 1–3 to Tables 4–6,
we can find that the pattern to obtain the portfolio selection under the constrained risk is
similar. However, we can observe two differences in the changed dimension. First, with the
increase in the dimension, the maximal expected return rate in the largest constrained risk is
lower than the lower dimension results in different guaranteed return rates p̃1, p̃2, and p̃3.
Second, the proportion for each security in the shortage investment can be found to be 0
quickly; by contrast, the proportion for each security in the excess investment can be found
quickly under the maximum constrained risk.

Table 1. The dimension with t = 2, and s = 1 with a guaranteed return rate p̃1 in the proposed model.

Security Proportions
Constrained Risk

4.5% 5% 5.5% 6% 6.5% 7% 7.5% 8% 8.5% 9%

x1

Infeasible
Solution

0.4 0.4 0.3557 0.2979 0.2401 0.1823 0.1245 0.1245 0

x2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

x3 0.2096 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

x4 0.1904 0.1532 0.1 0.1 0.1 0.1 0.1 0.1 0.2

x5 0.1 0.2468 0.3443 0.4021 0.4599 0.5177 0.5755 0.5755 0.6

Expected Return Rates 0.16198 0.18107 0.19672 0.21138 0.22603 0.4069 0.25534 0.25534 0.27860
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Table 2. The dimension with t = 2, and s = 1 with a guaranteed return rate p̃2 in the proposed model.

Security Proportions
Constrained Risk

1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

x1

Infeasible
Solution

0.3963 0.2718 0.1474 0.0229 0 0 0

x2 0.4 0.4 0.4 0.4 0.2093 0 0

x3 0 0 0 0 0.0907 0.0608 0

x4 0.1 0.1 0.1 0. 1 0.1 0.3392 0.4

x5 0.1037 0.2282 0.3526 0.4771 0.6 0.6 0.6

Expected Return Rates 0.12020 0.14624 0.17229 0.19833 0.22371 0.24441 0.24780

Table 3. The dimension with t = 2, and s = 1 with a guaranteed return rate p̃3 in the proposed model.

Security Proportions
Constrained Risk

1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5%

x1

Infeasible
Solution

0.2925 0.008 0 0 0 0 0

x2 0.4 0.4 0.1417 0 0 0 0

x3 0.2075 0.4 0.4 0.3264 0.1708 0.0153 0

x4 0 0.092 0.3583 0.5 0.5 0.5 0.4

x5 0.1 0.1 0.1 0.1736 0.3292 0.4847 0.6

Expected Return Rates 0.11008 0.13483 0.15429 0.17063 0.18363 0.19662 0.20285

Table 4. The dimension with t = 3 and s = 2 with a guaranteed return rate p̃1 in the proposed model.

Security Proportions
Constrained Risk

2.5% 3% 3.5% 4% 4.5% 5%

x1

Infeasible
Solution

0 0 0 0 0

x2 0.3827 0.1192 0.1 0.1 0.1

x3 0.4 0.4 0.1776 0.1 0.1

x4 0.1173 0.3808 0.5 0.3357 0.2

x5 0.1 0.1 0.2224 0.4643 0.6

Expected Return Rates 0.14357 0.16199 0.17719 0.19185 0.19854

Table 5. The dimension with t = 3 and s = 2 with a guaranteed return rate p̃2 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4% 4.5% 5%

x1

Infeasible
Solution

0.2465 0 0 0 0 0

x2 0.4 0.2338 0 0 0 0

x3 0.1535 0.4 0.3485 0.1637 0 0

x4 0.1 0.2662 0.5 0.5 0.4660 0.4

x5 0.1 0.1 0.1515 0.3363 0.5340 0.6

Expected Return Rates 0.12427 0.15101 0.17022 0.18450 0.19867 0.20166

4.2.2. Experiment 2

In this experiment, the testing focuses on t = s for risk-neutral. We first solve the pro-
posed model with t = s = 2, and the results are shown in Tables 7–9 under the guaranteed
return rate p̃1, p̃2, and p̃3. By comparing Tables 1–3 to Tables 7–9, we can find that the



Mathematics 2023, 11, 1143 10 of 16

expected return rate under the constrained risk is lower when we add one dimension to
the excess investment. By increasing the dimension in excess investment, the investment
proportions in higher return rate securities 4 and 5 offer more stable results in each con-
strained risk. Next, by comparing Tables 4–6 to Tables 7–9, we can find that the major
difference between (Tables 4 and 5) and (Tables 7 and 8) are Tables 7 and 8 can solve the
portfolio under lower constrained risks 2.5% and 2%, respectively. That is, we can solve
the portfolio under a lower constrained risk when the dimension of shortage investment
is lower. By contrast, compared to Tables 6 and 9, we can find that when we have more
securities in shortage investment, a higher dimension in shortage investment enlarges
the feasible region of model (19); therefore, we derive portfolio selections under a higher
constrained risk than the lower dimension in the shortage investment. On the other hand,
we solve the proposed model with t = s = 3, and the results are shown in Tables 10–12 under
the guaranteed return rate p̃1, p̃2, and p̃3. By comparing Tables 7–9 to Tables 10–12, we can
find that higher dimensions to t and s contribute to the narrower feasible region for the
portfolio selection, and we can solve the portfolio under smaller constrained risks.

4.2.3. Experiment 3

In this experiment, the testing focuses on t < s for the risk-averse. First, we solve
the proposed model with t = 2 and s = 3, and the results are shown in Tables 13–15
under the guaranteed return rate p̃1, p̃2, and p̃3. It shows that our proposed model can
be used to solve model (19) and obtain the efficient portfolio under different constrained
risks. Furthermore, by comparing Tables 7–9 to Tables 13–15, we can find three major
differences when we add one dimension to the excess investment. First, by increasing
the dimension in the excess investment, the maximal expected return rate obtained in the
largest constrained risk is lower than the lower dimension results in different guaranteed
return rates p̃1, p̃2, and p̃3. From experiments 1 to 3, we can find that the higher dimensions
in excess investments derive a lower expected return rate than lower dimensions in excess
investments. Second, the lower guaranteed return rate p̃i can obtain a higher expected
return rate than the higher guaranteed return rate p̃j, i, j = 1, 2, 3, 4, 5. Third, through the
higher dimension in excess investment, we can find that the higher return rate securities
can be quick to reach their maximal investment proportion. On the other hand, we solve the
proposed model with t = 3 and s = 5, and the results are shown in Tables 16–18 under the
guaranteed return rate p̃1, p̃2, and p̃3. By comparing Tables 16–18 to Tables 4–6 (t = 3, s = 2)
and Tables 10–12, (t = 3, s = 3), we can find that too big of an s dimension for excess
investment does not make a significant difference to the portfolio selection. That is, too big
of a dimension of s in excess investment makes almost no change to the objective function
and the constrained risk, and thus, we suggest the values of t and s are, at most, 3.

Table 6. The dimension with t = 3 and s = 2 with a guaranteed return rate p̃3 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4% 4.5%

x1

Infeasible
Solution

0.044 0 0 0 0

x2 0.4 0.1089 0 0 0

x3 0.4 0.4 0.2351 0 0

x4 0.056 0.3911 0.5 0.4934 0.4

x5 0.1 0.1 0.2649 0.5066 0.6

Expected Return Rates 0.13509 0.15836 0.17754 0.19504 0.19892
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Table 7. The dimension with t = 2 and s = 2 with a guaranteed return rate p̃1 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4% 4.5% 5%

x1

Infeasible
Solution

0.3978 0 0 0 0 0

x2 0.3022 0.3827 0.1192 0.1 0.1 0.1

x3 0.1 0.4 0.4 0.1776 0.1 0.1

x4 0.1 0.1173 0.3808 0.5 0.3357 0.2

x5 0.1 0.1 0.1 0.2224 0.4643 0.6

Expected Return Rates 0.11918 0.14357 0.16199 0.17719 0.19185 0.19854

Table 8. The dimension with t = 2 and s = 2 with a guaranteed return rate p̃2 in the proposed model.

Security Proportions
Constrained Risk

1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

x1

Infeasible
Solution

0.3228 0.1273 0 0 0 0 0

x2 0.4 0.4 0.3569 0.2332 0.1095 0 0

x3 0 0 0.1 0 0 0 0

x4 0.1772 0.3727 0.5 0.5 0.5 0.466 0.4

x5 0.1 0.1 0.1431 0.2668 0.3905 0.5340 0.6

Expected Return Rates 0.11889 0.13898 0.15693 0.17086 0.18480 0.19867 0.20166

Table 9. The dimension with t = 2 and s = 2 with a guaranteed return rate p̃3 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4% 4.5% 5%

x1

Infeasible
Solution

0.4 0.3924 0.2931 0.1938 0.0944 0

x2 0.315 0 0 0 0 0

x3 0 0 0 0 0 0

x4 0 0.0076 0.1069 0.2062 0.3056 0.4

x5 0.285 0.6 0.6 0.6 0.6 0.6

Expected Return Rates 0.11854 0.15540 0.16633 0.17726 0.18819 0.19858

Table 10. The dimension with t = 3 and s = 3 with a guaranteed return rate p̃1 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4%

x1

Infeasible
Solution

0.1996 0 0 0

x2 0.4 0.1725 0.1 0.1

x3 0.2004 0.4 0.1496 0.1

x4 0.1 0.3275 0.5 0.2

x5 0.1 0.1 0.2504 0.6

Expected Return Rates 0.127134 0.154601 0.173614 0.190217
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Table 11. The dimension with t = 3 and s = 3 with a guaranteed return rate p̃2 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4% 4.5%

x1

Infeasible
Solution

0.0045 0 0 0 0

x2 0.3955 0.0525 0 0 0

x3 0.4 0.4 0.4 0.0867 0

x4 0.1 0.4475 0.1337 0.3133 0.4

x5 0.1 0.1 0.4663 0.6 0.6

Expected Return Rates 0.139588 0.162187 0.180877 0.196336 0.199067

Table 12. The dimension with t = 3 and s = 3 with a guaranteed return rate p̃3 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4%

x1

Infeasible
Solution

0.2001 0 0 0

x2 0 0 0 0

x3 0.4 0.3029 0.0783 0

x4 0.2990 0.5 0.5 0.4

x5 0.1 0.1971 0.4217 0.6

Expected Return Rates 0.145973 0.172565 0.189003 0.19889

Table 13. The dimension with t = 2 and s = 3 with a guaranteed return rate p̃1 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4%

x1

Infeasible
Solution

0.3155 0 0 0

x2 0.1 0.1741 0.1 0.1

x3 0.3845 0.4 0.1523 0.1

x4 0.1 0.3259 0.5 0.2

x5 0.1 0.1 0.2477 0.6

Expected Return Rates 0.12935 0.15463 0.17362 0.19030

Table 14. The dimension with t = 2 and s = 3 with a guaranteed return rate p̃2 in the proposed model.

Security Proportions
Constrained Risk

1.5% 2% 2.5% 3% 3.5% 4% 4.5%

x1

Infeasible
Solution

0.2768 0.0647 0 0 0 0

x2 0.4 0.4 0.4 0.2759 0.0442 0

x3 0 0 0 0 0 0

x4 0.2232 0.4353 0.2003 0.1241 0.3558 0.4

x5 0.1 0.1 0.3997 0.6 0.6 0.6

Expected Return Rates 0.12309 0.14480 0.16393 0.18060 0.19611 0.19907
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Table 15. The dimension with t = 2 and s = 3 with a guaranteed return rate p̃3 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4% 4.5% 5%

x1

Infeasible
Solution

0.4 0.3784 0.2791 0.1798 0.0804 0

x2 0.2902 0 0 0 0 0

x3 0 0 0 0 0 0

x4 0 0.0216 0.12 0.2202 0.3196 0.4

x5 0.3098 0.6 0.6 0.6 0.6 0.6

Expected Return Rates 0.12137 0.15691 0.16784 0.17877 0.18970 0.19855

Table 16. The dimension with t = 3 and s = 5 with a guaranteed return rate p̃1 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4%

x1

Infeasible
Solution

0.1682 0 0 0

x2 0.4 0.1369 0.1 0.1

x3 0.2318 0.4 0.1064 0.1

x4 0.1 0.3631 0.5 0.2

x5 0.1 0.1 0.2936 0.6

Expected Return Rates 0.128984 0.156726 0.176392 0.189312

Table 17. The dimension with t = 3 and s = 5 with a guaranteed return rate p̃2 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4% 4.5%

x1

Infeasible
Solution

0 0 0 0 0

x2 0.3960 0.0460 0 0 0

x3 0.4 0.4 0.4 0.0474 0

x4 0.104 0.4540 0.1038 0.3526 0.4

x5 0.1 0.1 0.4962 0.6 0.6

Expected Return Rates 0.139961 0.162579 0.18199 0.197406 0.198901

Table 18. The dimension with t = 3 and s = 5 with a guaranteed return rate p̃3 in the proposed model.

Security Proportions
Constrained Risk

2% 2.5% 3% 3.5% 4%

x1

Infeasible
Solution

0.2 0 0 0

x2 0 0 0 0

x3 0.4 0.3028 0.0781 0

x4 0.3 0.5 0.5 0.4

x5 0.1 0.1972 0.4219 0.6

Expected Return Rates 0.145982 0.172575 0.189023 0.19889

Finally, we list two figures under the guaranteed return rate p̃2 in different dimensions
of s and t. In Figure 1, we find that when t = 2 is fixed, the increasing dimension of excess
investment forms 1 to 3, where s = 1 implies under the same risk, and t = 2, s = 1 have the
biggest expected return rate. Therefore, the risk-seeker should select lower dimension s.
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Next, in Figure 2, with a guaranteed return rate p̃2, we would like to show that when we
increase t and fix it to 3, the dimension of excess investment is increasing from 2 to 5, and
too big of a value of s cannot offer any useful information for the expected return rate under
the same constrained risk, that is, when we adopt s = 5 whose results are almost the same
as s = 3. Therefore, we suggest the values of s and t be smaller than or equal to 3.
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5. Conclusions

Fuzzy portfolio models have led to a continual increase in the field of single-period
or multi-period topics, indirectly resulting in many researchers focusing on the issue of
the risk preferences of investors. Some investors might have the challenge of evaluating a
better portfolio selection based on the profitable selecting security. Therefore, a method
for selecting the most appropriate portfolio based on the guaranteed return rate would
be extremely beneficial to these investors, in which any security whose expected return is
bigger than the guaranteed return rate will be assumed for excess investment to this security.
On the other hand, any security whose expected return is smaller than the guaranteed
return rate will be assumed for shortage investment to this security. The present study
included different degrees of dimensions to the securities in excess investment or shortage
investment that investors expect of maximization of expected return rate and developed a
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novel decision-making procedure for portfolio selection under the constrained risk. Based
on risk preferences, including risk-seeking, risk-neutral, and risk-averse, three kinds of
fuzzy portfolio selections comprising different degrees of dimensions in excess investment
and shortage investment were established for most of investors. Analysis results indicated
that, when using the proposed model, a defuzzy method is required for the ranking
between the expected return of each security and the guaranteed return rates. Subsequently,
we can decide some securities are for excess investments, and the other securities are for
shortage investments. A comparison of the degree of dimensions for the excess investment
and shortage investment indicates that a risk-seeker would like to have excess investment
for securities whose return rates are bigger than the guaranteed return rates; therefore,
a lower value of s is suggested. Then he reduces the security investments whose return
rates are lower than the guaranteed return rates; therefore, a bigger value of t is suggested.
Next, a risk-seeker will adopt t > s, and we suggest the values of s and t to be smaller
than or equal to 3. By contrast, for the risk-neutral investor, we suggest s = t; and t < s
is suggested to the investor who is risk-averse. Lower dimensions in s and t indicate
a bigger objective value and feasible region in the linear programming model from the
proposed fuzzy portfolio model, and thus we can derive bigger expected return rates
from the invested securities. The results suggest that the proposed fuzzy portfolio model
can clearly distinguish the relative importance from the ranking results compared to the
guaranteed return rate. Finally, using the proposed model, investors could individually
select the portfolio for the subjective risk preference, and easily evaluate and analyze the
optimized portfolio with ease and convenience, without having to query the experts.

In this study, we expect more investors can be recruited to participate in evaluating and
comparing the effects for the dimensions of excess investments and shortage in-vestments.
Because risk preferences and standards may differ depending on the perceived risk in the
investment, a collaborative discussion involving numerous experts is required to include in
the evaluation and selection process for establishing the guaranteed return rate. Therefore,
future research should focus on (1) expanding the number of investors, and (2) establishing
comprehensive guaranteed return rates according to various experts’ opinions on economy
trends and business cycling. Furthermore, (3) an investor has a different risk attitude to
select a portfolio in a different time period; therefore, multi-period fuzzy portfolio selection
in different time periods should be considered with our proposed model.
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