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Abstract: Farmers have an essential role in maintaining food security. One of the food crops that
occupies a high position in Indonesia is rice. However, farmers often experience problems when
cultivating rice plants, one of which is affected by the tungro virus disease in rice plants. The spread
of the disease can be controlled by the roguing process and applying pesticides. In this study, an
analysis of the model of the spread of tungro virus disease in rice plants took into account the
characteristics of the rice tungro spherical virus (RTSV) and rice tungro bacilliform virus (RTBV), as
well as control in the form of roguing processes and application of pesticides. The analysis carried out
was in the form of dynamic analysis, sensitivity analysis, and optimal control. In addition, numerical
simulations were also carried out to describe the results of the analysis. The results showed that the
roguing process and the application of pesticides could control the spread of the tungro virus disease.
The application is sufficient, at as much as 75%.

Keywords: tungro disease; roguing; pesticides; virus characteristics; dynamic analysis; sensitivity
analysis; optimal control

MSC: 92D30

1. Introduction

The Sustainable Development Goals (SDGs) are plans for a better world, and the effects
can be felt by humans and the Earth. The second goal of the SDGs is to end hunger, achieve
food security, improve nutrition, and promote sustainable agriculture [1,2]. Farmers play
an essential role in this achievement, and they are often called food fighters [3]. This is
because agriculture is the sector with the highest income and is the basis of the livelihoods
of Indonesian people in rural areas [4]. Additionally, agriculture supports the development
of other sectors and improves people’s welfare by creating jobs and increasing purchasing
power [5,6].

Rice (Oryza sativa L.) is a food crop commodity that plays an essential role in Indone-
sia’s economic life. However, the challenges experienced by the agricultural sector in rice
cultivation are very complex, including fluctuating production with very low productiv-
ity [7-10].

The low productivity of rice cultivation is caused by various factors, such as exposure
to pests and plant diseases [11,12]. These problems have various causes, including tungro
virus disease, which is spread by the green leafhopper vector [13]. The disease is also
caused by different viruses, namely rice tungro spherical virus (RTSV) and rice tungro
bacilliform virus (RTBV), which are spread by the green leathopper vector (Nephotettix
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virescens) after sucking infected plants [14-19]. Symptoms include changes in leaf color,
specifically on young orange-yellow leaves starting from the tip, and then the young leaves
are slightly curled, the number of tillers is reduced, and growth is stunted. These symptoms
usually appear 6-15 days after infection [20]. These problems can be controlled in various
ways, including roguing and applying pesticides. However, to see the effectiveness of
roguing and pesticide application, a more detailed analysis is needed, such as by using a
mathematical model [21].

Many researchers have studied tungro virus disease in rice plants, as seen from the
results of literature searches from 2014 to 2023 that discuss tungro disease in rice plants;
129 papers were recorded in the Dimensions database, 5000 papers in the Google Scholar
database, and 374 in the Scopus database. Among these, seven discuss the mathematical
model of the spread of tungro disease. Among the seven papers, Blas [22] discusses a
mathematical model for the spread of tungro disease by taking into account the charac-
teristics of the two viruses it spreads [22], and then the model is redeveloped by adding
roguing factors and simulating it [23], while Anggriani [24] made a mathematical model by
considering the use of insecticides to control the spread of tungro disease in rice plants that
were then analyzed dynamically. In contrast to Anggriani, Suryaningrat [25] considered
biological agents and analyzed them dynamically, looking for optimal control. Then the
model was reworked to become spatiotemporal [26]. Unlike previous researchers, Mary-
ati [27] developed a mathematical model by dividing the rice plant compartment into two
phases: vegetative and generative. The interrelationships of the seven papers can be seen
in Figure 1.
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Figure 1. The relationship between the seven reference papers.

The parameter values used in mathematical models are generally based only on
assumptions. This is because of the unavailability of data or data that are incomplete.
Therefore, conducting a sensitivity analysis is very important to identify the parameters
that are very influential in the model that has been developed. This study follows research
conducted by Bokil et al. [28], who performed a numerical sensitivity analysis to describe
healthy and infected populations with varying parameter values, such as what percentage
of pesticides are used in comparison to the recommended dose if control is also carried
out in the form of roguing to control the spread of tungro virus disease in rice plants and
minimize expenses, namely by determining the optimal dynamic model for controlling
tungro virus disease in rice plants involving the application of pesticides. This follows the
research conducted by several researchers who have studied optimal control of disease
spread [28-36] using the Maximum Pontryagin principle but not in the case of spreading
tungro virus disease in rice plants [28,33-36].

From Figure 1, it can be seen that there is no relationship between the tungro disease
spread model that considers the virus’s characteristics, control in the form of the roguing
process, and application of pesticides, with dynamic analysis, sensitivity analysis, and
optimal control. This is following the results of research conducted by Amelia [37]. There-
fore, in this paper, dynamic analysis, sensitivity analysis, and optimal control of the tungro
virus disease spread model developed by Blas [23] were carried out using the Maximum
Pontryagin principle. This discussion is considered very important for understanding the
dynamic behavior of the model, the effect of one of the parameters if it changes, and the
optimal control to see the effectiveness of roguing and pesticide application. Meanwhile,
the numerical simulation provides an overview and confirms the analysis results.
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2. Mathematical Models

The mathematical model analyzed in this study is the Blas model [23] as in the

Equations (1)—(8), with parameter and variable descriptions as shown in Table 1.

% _ B —I\fl}Povl Lo _I\ZBPO% _Ad —1\231’1"3 —q(1—p)P,—pP;  (2)
% _a _A¢:POV3 + o1 _I\ZJ)POVZ _aa _A‘;P)PzVB —q2(1—p)P, — pP, 3)
dbs _ a(l _A‘;P)PO% + Ad _I\ZD)PWB’ + de _1513sz3 —q3(1 —p)Ps — pPs 4)
% =cVs—fVh—uWy @)

dVs  aP3Vy | gPV; R ®)

At~ Np Np

Table 1. Description of parameters and variables.

Variable/ Description
Parameter
Vo Susceptible green leafthoppers
% Green leathopper infected with RTSV
V Green leafthopper infected with RTBV
V3 Green leathopper infected with RTSV + RTBV
Py Susceptible rice plants
P RTSV-Infected Rice Plants
Py RTBV-Infected Rice Plants
Py RTSV + RTBV-Infected Rice Plants
Transmission rate of RTSV + RTBV by green leafhoppers infected with RTSV +
“ RTBV in susceptible rice plants
RTSV transmission rate by green leafhoppers infected with RTSV in susceptible
p rice plants
Transmission rate of RTSV by green leafhoppers infected with RTSV + RTBV in
7 susceptible rice plants
v Transmission rate of RTBV by green leafhoppers infected with RTBV in susceptible
rice plants
. Transmission rate of RTBV by green leafhoppers infected with RTSV + RTBV in
susceptible rice plants
A Transmission rate of RTSV + RTBV by green leafhoppers infected with RTSV +
RTBV on rice plants infected with RTSV + RTBV
5 Transmission rate of RTSV + RTBV by green leafhoppers infected with RTSV +
RTBV on RTBV-infected rice plants
. The acquisition rate of RTSV + RTBV-infected rice plants by susceptible vectors to
RTSV + RTBV-infected green leafhoppers.
b The acquisition rate of RTSV-infected rice plants by susceptible vectors to
RTSV-infected green leafhoppers.
g The rate of acquisition of RTBV-infected rice plants by RTSV-infected green

leafhoppers to RTSV + RTBV-infected green leathoppers
Roguing effectiveness rate
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3. Dynamic Analysis
3.1. Positivity

Theorem 1. Theregion Z givenby Z = {Py(t), Py (t), Pa(t), Ps(t), Vo(t), Vi(t), Va(t), V5(t) € R8 }
is positively moariant and attracting to the model system (I)8).

Proof of Theorem 1. Assume that Np is constant, suppose {Py(t), P;(t), P.(t), P3(f),
Vo(t), Vi(t), Va(t), V5(t)} is any solution of the system with initial conditions not nega-
tive Py(f) > 0, Py (f) > 0, P>(t) > 0, P3(t) > 0, Vp(t) > 0, Vi(t) > 0,V,(t) > 0, V3(¢t) > 0.

apy _ (K — Np) — aP)V3 PV _ TRV _ BRVA _ oRVs

dt Np Np Np Np Np _qOPO

by . (aVs Vs Vs PVYi dVa o \p

dt Np Np Np Np Np qo 0
By _ _(aVa Vs B Vs

o Np  Np  Np  Np _ Np 40

by _ _(aVa _aVs _ V5 _ PVi _ dVp _
fP _f Np p Np P Np 0 at
dP()__ (XV3_’)/V3_TV3_ﬁV1_0’V2_
="/ -5 %~ N —)dt

11’1|P0|
Vs Vs TVs _ BVi _ oV,
Pol = exp(— S (5 — K3 — W5 — &b~ 5 o)t
Vs yVs _ TVs _ BVi _ oV
Po:exp(—f(”;\,—;—WN—;—TN—;—ﬁN—;—UN—;—qO)dt) >0

In the same way obtained Py, P>, P53, Vo, Vy, Vo, V3 > 0.0

_ f ('XVs Vs _ Vs _ BV Vs

3.2. Non-Endemic Equilibrium Point

dP1 _dp, _dps _ dVy _ dVy _ dVs ~
By setting = = 32 = 32 = 3 = 3 = 7 = 0, anon-endemic equilibrium point

is obtained as in the Equation (9).

N
r(K — Np) BNy (1 -V

Eo = {Py, P.P,.P3, Vi, Vi, Vi, V3} = ,0,0,0, ) ,0,0,0% (9

3.3. Basic Reproduction Numbers

The basic reproduction number (Rp) estimates the ability of new infections to spread.
In determining Rp, we used the next-generation matrix method [38]. Because in the model
of the spread of tungro virus disease in rice plants by considering the characteristics
of the virus and carrying out control by roguing (Equations (1)—(8)) there are no latent
compartments, the calculation can be performed by using only the infected compartments.

B (1—-p)V1 +7(1 0)PoV3 1

(A2 4+ q1(1— )Py + Py ]

T(1 PyV- 1 Py V5
(P)03+ Pgoz

“(1—P)P0V3_: Al I\“;)P1V3+ 0(1-p)P V3

‘”;\%/3 +q2(1—p)P
q3(1 —p)P; — pPs

f P b‘li?zjl P and v gK}:Z v
cVs sz +uVs
B VO i

So, obtained

Viuqo((cqs+pqs) (1—p)+(c+p)p) N3’

N bBNy Br((K—Np)(V—Np)(1—p))
Roo = C(FV™) = \/ Vaoari-p)-pyeng - and Ro =

Ro = {(FV1) = \/ aBNyar(K—Np)(V—Ny)(1—p)

max{ROl, Roz}

f and v are the newly infected matrices and exit matrices, respectively. Moreover, F
and V are the Jacobian matrices of f and v calculated at non-endemic equilibrium points.
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3.4. Stability Analysis

Theorem 2. Model of the spread of tungro disease in the system of Equations (1)—(8) is locally
asymptotically stable when Ry < 1.

Proof of Theorem 2. To prove the local stability of the system of Equations (1)—(8), an
evaluation of the Jacobian matrix of the tungro disease distribution model was carried out
in the system of Equations (1)—(8) at the non-endemic equilibrium point, which was then
determined based on the signs of the eigenvalues of the resulting characteristic equation.
The characteristic equation resulting from this model was as in Equation (10).

W(()\ + a2+ 9201 —p))(A+q0) (A + ) (f + A+ u)(p(A))) =0 (10)
with p(A) = agA* + a1 A3 + aA? + a3\ + ay, when a; > 0;i = 0, ..., 4 (for each coefficient
see Appendix A).

From Equation (10), it can be seen that A; < 0; i = 1,...,8if Ry < 1. So, it can be
concluded that the model of the spread of tungro virus disease in rice plants will be stable
if Ry < 1.

3.5. Numerical Simulation

To illustrate the population dynamics of the spread of tungro virus disease in rice
plants, taking into account the characteristics of the virus and the roguing treatment, we
used the parameter and initial values as in Table 2.

Table 2. Parameter and initial values.

Initial Value/

Initial Value/

Value Unit Citation Value Unit Citation
Parameter Parameter
Vo 0 Vector [23] a 0.996 Vecor ey [22]
14 0 Vector [23] b 0.996 Verant__ day [22]
Vi 0 Vector [23] c 05 Vecor ey [22]
V3 4,000 Vector [23] f 0.33 Vechor iy [22]
Py 20,000 Plant [23] g 0.996 Verant__ iy [22]
P 0 Plant [23] 0 0.008 A [22]
q day
P, 0 Plant [23] 1 0.009 A [22]
q day
P3 0 Plant [23] » 0.0125 A [22]
q day
Plant 1
w 0.035 W [22] 73 0.0125 iy [22]
Plant 1
B 0.09 W [22] r 0.001 iy [22]
Plant 1
¥ 0.01 Vet ey [22] B 0.033 iy [22]
o 0.08 Vet qay [22] 1% 100,000 Vector [22]
T 0.06 W};;ﬂ'y iy [22] K 30,000 Pllant Assumption
Plant Plant
o 0.07 Vectorm; day [22] A 0.03 Vectoraz day [22]
o 0.40 [22] i 0.033 oLlant__ [22]

Vector x day

By using the parameter and initial values as shown in Table 2, Figures 2 and 3 were
obtained for the dynamics of the rice plant and the green leathopper vector when Ry < 1,
respectively. Figures 4 and 5 illustrate the dynamics of rice plant populations and the green
leafhopper vector when Ry > 1.
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Figure 2. Population dynamics when . Ry < 1: (a) rice plant; (b) green leafhopper.
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Figure 3. Population dynamics when Ry > 1: (a) rice plant; (b) green leafthopper.
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Figure 4. The population when roguing parameters varied (different p): (a) susceptible rice plants;
(b) RTSV-infected rice plants; (c) RTBV-infected rice plants; (d) RTSV + RTBV-infected rice plants;
(e) susceptible green leafhopper; (f) RTSV-infected green leafhopper; (g) RTBV-infected green leathop-
per; (h) RTSV + RTBV-infected green leafhopper.
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t t
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Figure 5. The population with and without pesticides: (a) susceptible rice plant; (b) RTSV-infected
rice plants; (c) RTBV-infected rice plants; (d) RTSV + RTBV-infected rice plants; (e) susceptible green
leafthopper; (f) RTSV-infected green leathopper; (g) RTBV-infected green leathopper; (h) RTSV +
RTBV-infected green leafhopper.

From Figure 2a, it can be seen that there is no infected rice plant population (infected
with only RTSV, only RTBV, or both). This means that Ry < 1 there is no endemic. Figure 2b
shows that the green leathopper population infected by RTSV + RTBV will continue to
decrease until it is destroyed, and the only green leathoppers that are left are susceptible.
This susceptible green leafhopper vector will always exist but will not cause infection
because neither the green leathopper nor the infected plants are there, so no virus can be
spread (endemic does not occur).

Unlike the previous figure, Figure 3a,b shows the occurrence of endemic when Ry > 1.
This can be seen in Figure 3a, which shows an increase in the number of plant populations
affected by RTBV and RTSV + RTBV. Both of these plant populations can become a source
of the spread of tungro virus disease in rice plants. Likewise, Figure 3b shows that the
infected green leafhopper population will always occur. This causes a significant potential
for endemic occurrence because the green leafhopper population can spread the virus, both
RTSV, RTBV, and RTSV + RTBV.

4. Sensitivity Analysis

A numerical sensitivity analysis was conducted by presenting a graph where one of
the parameters was changed. In this case, the value of the parameter p is changing, as seen
in Figure 4a through 4h, while the values of the parameters and other variables are taken
from Table 2.

Figure 4a,b show that the more roguing we do, the faster the spread of tungro virus
disease in rice plants can be controlled. This can be seen from the populations of infected
plants and green leathoppers (both affected by RTSV, RTBV, and RTSV + RTBV), which
have decreased rapidly and led to disease extinction.

5. Optimal Control
5.1. Optimal Control Model

The aim of developing an optimal control model in this study was to minimize the
population of rice plants affected by RTSV, RTBV, and RTSV + RTBV. Roguing is performed
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to minimize the potential for the spread of tungro disease. The objective function used is as
in Equation (11).

J(u) = min " A1Py(t) + APy (t) + AsPs(t) + Cu(t)dt (11)

fo

With the constraint function as in Equations (12)—(19).

% _ B0 I\,;P)Povl L I\,;;)Png M- u)glp OPVE 0 op—ppy (1)
% _a —Z\ZJ)POVe, Lo _I\ZJ)POVZ _aa —Z\,;P)szg, (PP gy (1)

% _ a1 _z\fljpm LA u)ﬁp_ pIPVs , 8(1 —I\,?P)sz3 s(l—p)Ps— P (15)
dcx‘) — BNy (1 - A{;) - ””fév“ bl;\llvo +fVa— Vg (16)

% = bll)\l,fo - gl;?;;l —uVi (17)

% =cV3— fVo—uVy (18)

% _ uaZI\JTj)Vo n gl;zjﬁ eV Vs 19

With boundary conditions:

o <t < t,0 <L M(f) < 1,P0(0) > 0,P1(0) > O,Pz(()) > 0,P3(0) >0, Vo(O) >
0, V1(0) > 0, V2(0) > 0, V3(0) > 0.

The optimal control theory method was used to solve the optimal control model
with the principle used, namely the Pontryagin minimum principle, where u is the level
of roguing. The quadratic objective function was used to measure control costs, which
assume that, in reality, there is no linear relationship between the impact of the intervention
and the intervention costs of the infected population (the inversion forms a non-linear
function) [39].

From the objective function and constraints in Equations (11)-(19), the Hamiltonian
function was obtained as in Equation (20) [40].

H = AyPy + AgPs + AsPs + Cu + A4 4 2, (‘“’1) A S‘”’z 0

+ (%) + 25 (G) + 26 (%) + A7 (%) +2s (%)

with A; wherei = 1,..., 8, are co-state variables, then the Hamiltonian function must fulfill:

Py M
P Ay
P, A3
() = Ps JA() = As , and stationary conditions.
Vo s
14 As
Vz K7
V3] [As |
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Necessary conditions:

OPy(t) _ 9H _ PyV- PVs TRV RV, Py V-
P i = M rl(K;xZ/\]P) _fl\%’;; 71\?1/:\31_ TII?PS p_VﬁIg”l ~ "N~ qobo
t _u)(1s
51;13 :gTz:ﬁ( I? 011)‘_1_'7( NI)JO;V_ (5;’)%]13;3/1 3—q1(1—p)P1—pP1
t —
a gt( :aaT (15)034—(13)02—(1@,23—112(1—{?)132—(?132
P53 (t 1 Py V- 1—u)(1—p)P; V; d(1—p)P, V-
gt():g%:“( 181)303+( u)%} )13+(£1),23—¢73(1—P>P3—PP3
d
o = 3= o (1 ) - e i s
oVi(t) _ 9H _ b Vo 8P2V1 _ V
A P
5() _gTH—CV3—fV2—}lV2
ant(t) — a7H — MHP3V0 + ngVl CV3 7]4‘/3
Co-state
o oH __ V- )% V. V V. 1-p)V;
A= f=— (IR - - R ) - A
1—p)V- T(1—p0) V- o(1—p)V: Aga(1—p) V-
42 Ng) 3)_)\3( (Nlrz) 5 4 (N,p») 2) _ 406(NPP) 3
. A
My=—Gl=— A1 —M(- % 1(1—p)—p)
_ A(-uw)A(1- )V3 + /\sto _ MW
Np Np
. S(1—p)V:
M= g = Aax (U5 —qa(1—p) —p) — Aad(1—p)Va/Np
+AegV1/Np — 281
oH )\5M(1V0 AguﬁlVO
M= =2 = Ay~ Ag(—g3(1—p) — .
4= "35p, 2= Ag(—q3(1—p) —p) + Np Np
)L' - _aﬁH _ _uaP3 _ bﬂ _ . /\6bP1 . /\guan
T, PU N N Np Np
G O _MBR MO gP Y\ Jugm
6 oV Np Np °\ " Np Np
. oH )\10’P0 /\3(7(1 - p)PQ
:—7:—A _— —_— J— — J—
A7 1A 3+ Np Np Asf—A7(—f — )
o oH __ P P 1%
=B a-m(-B-R-

) 1(1—p)Py _ (1—u))zx\](1—p)P1

P
1—p)P, 5(1—p)P. 1-p)P,
i 7( le) o O( Ng) 2) _/\4(06( N;’) o
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Stationary condition

4+ = WBPI(=14p) (A2 — M)A + P Voa(As — As))
2NpC

since0 < u <1,so0:

wt = maxd min (VPr (=1 +p) (A2 — Ag)A + PsVoa(As — As)) 41
2NpC

5.2. Numerical Simulation

From Figure 5a-h, it can be seen that roguing and the use of pesticides can reduce the
rate of spread of the tungro virus in rice plants. This can be seen from the graphs for each
population of rice plants and green leafhoppers infected with RTSV, RTBV, and RTSV +
RTBV, which are controlled using roguing and are consistently below the graph without
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using pesticide control. All infected populations of both rice plants and green leathoppers
have decreased. This indicates that the spread of tungro virus disease in rice plants can
be controlled using pesticides and roguing. Control using pesticides and roguing is faster
than roguing alone. While the population of green leafhoppers infected with RTSV is still
increasing, this is not a problem because green leathoppers cannot spread the RTSV virus
without RTBV (see Figure 5f).

In contrast to the infected population, the susceptible population of rice plants
and green leathoppers increased. This happened because the spread was controlled
(see Figure 5a,e.

Then from Figure 6, it can be seen that the use of pesticides was sufficient until the
tenth day when the highest dose was 75% of the usual dose, because control is not only
assisted by pesticide treatment but also assisted by roguing to minimize the use of pesticides
and reduce costs that farmers incur.

N

P
T TN

0 5 Time (t) 10 15

Figure 6. Pesticides.

6. Conclusions

The spread of tungro virus disease in rice plants by taking into account the differences
in the transmitted virus’s characteristics can be divided into eight compartments, namely
four compartments of rice plants and four compartments of green leafthoppers, which are
denoted by P; and V;, respectively. Index i = 0, .., 3, respectively, indicates a population
susceptible to infection with RTSV, RTBV, and RTSV + RTBV. The numerical analysis and
simulation results show that the nonendemic equilibrium point will be stable if Ry < 1,
while the endemic equilibrium point will be stable if Ry > 1. This can be seen from the
population dynamics graph when Ry < 1, the infected plant population does not exist,
and the infected green leathopper population continues to decline until it finally becomes
extinct. This shows that there is no endemic infection when Ry < 1. Whereas when Ry > 1,
there are still infections with RTSV + RTBV in both the rice plant population and the green
leafthopper population, indicating an endemic presence. In addition, sensitivity analysis
and optimal control results show that pesticides and roguing treatments can control the
spread of tungro virus disease in rice plants more quickly, with the application of 75%
pesticides than usual to reduce farmers' costs.

Author Contributions: Conceptualization, R.A. and N.I.; methodology, R.A.; software, R.A.; valida-
tion, N.A. and A K.S. formal analysis, R.A.; investigation, N.I.; data curation, N.I.; writing—original
draft preparation, R.A.; writing—review and editing, N.A.; visualization, A.K.S.; supervision, A.K.S,;
project administration, N.A.; funding acquisition, N.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is funded by Universitas Padjadjaran.

Institutional Review Board Statement: Not applicable.



Mathematics 2023, 11, 1151 13 of 14

Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Ministry of Education, Culture, Research,
and Technology through the PDUPT 2022 with contract number 2064 /UN6.3.1/PT.00/2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

p(A) = agA* + a1 A% 4+ oA +a3h +ay

With:
ag = NpV?%q5 > 0

a = PP@Np((1+q3)(1—p) +2(u+p) + ) V> > 0,0 < p < 1

ay = Vugqo Np(VuqoNp(cqs + ugs)(1—p) + (c + u)p(qo(q1(1 —p) —p) +1)
+BNV}’(K - Np)(l - p) (HDC + b‘B) (NV — V)) >0

az = (—=VN2ugoB Nyr(Ny —V)(1—p)(K
—Np)((bB(93(0 —1) = (n+p+¢)))
+aa((q1(p—1) —(p+n))))
+ (N3uqoV) ((c +2p) (g3 — 1) (g1 — 1)p?
+ ((—q1 — g3 + 2)p?
+((—493 —c+2)q1 + (—c+2)g3 +2c)u
—c((293 = 1)q1 — g43))p + (41 + 93)p*
+((293 +¢)q1 +q3c)p +q193¢)) > 0

ay = (Vugo((cqs  + pgs) (1—p) + (c+ u)p) N3) (Vao(q1(1 — p) — p)p®N3) (1
—R5;) (1= Rg,) >0
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