The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Moisture Uptake Experiment
3. Theory
3.1. Time Fractional Diffusion Equation
3.2. The Two-Stage Time Fractional Diffusion Model
4. Result and Discussion
4.1. The Results of the Time-Fractional Diffusion Equation
4.2. Moisture Uptake of Resin
4.3. Moisture Uptake of 3D Woven Composite
5. Conclusions
- (a)
- when α < 1, the moisture absorptions do not follow Fick’s law, exhibiting nonlinear properties. The moisture uptake rapidly increases at first, then develops slowly compared to Fickian diffusion.
- (b)
- The initial moisture uptake becomes quicker while α is smaller. It is worth noting that the intersection points of the curves (α = 0.25, 0.5 and 0.75) and the Fickian diffusion become larger with the increase of diffusivities D.
- (a)
- For neat resin, since the fast diffusion obeys Fick’s law, thus α = 1. The observed long-term diffusion of resin increases linearly, therefore, γ = 1.
- (b)
- However, for the 3D woven composite, α = 0.83 related to the voids and cracks, is fitted to represent the nonlinear property during non-Fickian diffusion. A linear tendency is found from the experimental observation during long-term hydrothermal aging, leading to γ = 1 for the 3D woven composite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gereke, T.; Cherif, C. A review of numerical models for 3D woven composite reinforcements. Compos. Struct. 2019, 209, 60–66. [Google Scholar] [CrossRef]
- Wielhorski, Y.; Mendoza, A.; Rubino, M.; Roux, S. Numerical modeling of 3D woven composite reinforcements: A review. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106729. [Google Scholar] [CrossRef]
- Pineda, E.J.; Bednarcyk, B.A.; Ricks, T.M.; Farrokh, B.; Jackson, W. Multiscale failure analysis of a 3D woven composite containing manufacturing induced voids and disbonds. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106844. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Apicella, A.; Nicolais, L.; Astarita, G.; Drioli, E. Effect of thermal history on water sorption, elastic properties and the glass transition of epoxy resins. Polymer 1979, 20, 1143–1148. [Google Scholar] [CrossRef]
- Yu, H.; Yao, L.; Ma, Y.; Hou, Z.; Tang, J.; Wang, Y.; Ni, Y. The Moisture Diffusion Equation for Moisture Absorption of Multiphase Symmetrical Sandwich Structures. Mathematics 2022, 10, 2669. [Google Scholar] [CrossRef]
- Mijović, J.; Lin, K.F. The effect of hygrothermal fatigue on physical/mechanical properties and morphology of neat epoxy resin and graphite/epoxy composite. J. Appl. Polym. Sci. 1985, 30, 2527–2549. [Google Scholar] [CrossRef]
- Wong, T.; Broutman, L. Moisture diffusion in epoxy resins Part I. Non-Fickian sorption processes. Polym. Eng. Sci. 1985, 25, 521–528. [Google Scholar] [CrossRef]
- Berens, A.; Hopfenberg, H. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 1978, 19, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Hodge, I.M.; Berens, A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules 1982, 15, 762–770. [Google Scholar] [CrossRef]
- Li, Y.; Miranda, J.; Sue, H.-J. Hygrothermal diffusion behavior in bismaleimide resin. Polymer 2001, 42, 7791–7799. [Google Scholar] [CrossRef]
- Bao, L.-R.; Yee, A.F.; Lee, C.Y.-C. Moisture absorption and hygrothermal aging in a bismaleimide resin. Polymer 2001, 42, 7327–7333. [Google Scholar] [CrossRef]
- Bao, L.-R.; Yee, A.F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites—Part I: Uni-weave composites. Compos. Sci. Technol. 2002, 62, 2099–2110. [Google Scholar] [CrossRef]
- Bao, L.-R.; Yee, A.F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: Part II--woven and hybrid composites. Compos. Sci. Technol. 2002, 62, 2111–2119. [Google Scholar] [CrossRef]
- Tang, X.; Whitcomb, J.D.; Li, Y.; Sue, H.-J. Micromechanics modeling of moisture diffusion in woven composites. Composites Science and Technology 2005, 65, 817–826. [Google Scholar] [CrossRef]
- Gillet, C.; Hassoune-Rhabbour, B.; Poncin-Epaillard, F.; Tchalla, T.; Nassiet, V. Contributions of atmospheric plasma treatment on a hygrothermal aged carbon/epoxy 3D woven composite material. Polym. Degrad. Stab. 2022, 202, 110023. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Chechkin, A.V.; Metzler, R. Ageing and confinement in non-ergodic heterogeneous diffusion processes. J. Phys. A Math. Theor. 2014, 47, 485002. [Google Scholar] [CrossRef] [Green Version]
- Schlichter, J.; Friedrich, J.; Herenyi, L.; Fidy, J. Protein dynamics at low temperatures. J. Chem. Phys. 2000, 112, 3045. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Lau, A.W.; Lubensky, T.C. State-dependent diffusion: Thermodynamic consistency and its path integral formulation. Phys. Rev. E 2007, 76, 011123. [Google Scholar] [CrossRef] [Green Version]
- Jumarie, G. New results on Fokker–Planck equations of fractional order. Chaos Solitons Fractals 2001, 12, 1873–1886. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Inertia triggers nonergodicity of fractional Brownian motion. Phys. Rev. E 2021, 104, 024115. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Seno, F.; Metzler, R.; Sokolov, I.M. Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities. Phys. Rev. X 2017, 7, 021002. [Google Scholar] [CrossRef] [Green Version]
- Bustos, N.A.; Saad-Roy, C.M.; Cherstvy, A.G.; Wagner, C.E. Distributed medium viscosity yields quasi-exponential step-size probability distributions in heterogeneous media. Soft Matter 2022, 18, 8572–8581. [Google Scholar] [CrossRef] [PubMed]
- Chubynsky, M.V.; Slater, G.W. Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett. 2014, 113, 098302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godoy, S.; García-Colín, L. Mesoscopic diffusion as a non-Markov process. Phys. A Stat. Mech. Its Appl. 1998, 258, 414–428. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Vivoli, A. Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 2007, 34, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Balcerek, M.; Burnecki, K.; Thapa, S.; Wyłomańska, A.; Chechkin, A. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 093114. [Google Scholar] [CrossRef] [PubMed]
- Muliana, A. Deformation in viscoelastic sandwich composites subject to moisture diffusion. Compos. Struct. 2010, 92, 254–264. [Google Scholar]
- Dou, F.F.; Hon, Y.C. Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 2012, 36, 1344–1352. [Google Scholar] [CrossRef]
Materials | Length (mm) | Width (mm) | Thickness (mm) |
---|---|---|---|
Resin | 19.6 | 19.6 | 2.7 |
3D woven | 25.7 | 22.6 | 5.2 |
Material | Diffusivity (10−6 cm2/min) | M (%) | Parameters | |||
---|---|---|---|---|---|---|
Resin | 1.548 | 0.018 | 4.06 | 1.14 | 1 | 1 |
Material | Diffusivity (10−6 cm2/min) | M (%) | Fractional Parameters | |||
---|---|---|---|---|---|---|
WCa | 1.2. | 0.00054 | 1.2 | 0.7 | 0.83 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhu, C.; Yao, L.; Ma, Y.; Ni, Y.; Li, S.; Li, H.; Liu, Y.; Wang, Y. The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation. Mathematics 2023, 11, 1160. https://doi.org/10.3390/math11051160
Yu H, Zhu C, Yao L, Ma Y, Ni Y, Li S, Li H, Liu Y, Wang Y. The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation. Mathematics. 2023; 11(5):1160. https://doi.org/10.3390/math11051160
Chicago/Turabian StyleYu, Hang, Chenhui Zhu, Lu Yao, Yan Ma, Yang Ni, Shenkai Li, Huan Li, Yang Liu, and Yuming Wang. 2023. "The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation" Mathematics 11, no. 5: 1160. https://doi.org/10.3390/math11051160
APA StyleYu, H., Zhu, C., Yao, L., Ma, Y., Ni, Y., Li, S., Li, H., Liu, Y., & Wang, Y. (2023). The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation. Mathematics, 11(5), 1160. https://doi.org/10.3390/math11051160