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Abstract: Finitely-additive measures invariant to the action of some groups on a separable infinite-
dimensional real Hilbert space are constructed. The invariantness of a measure is studied with
respect to the group of shifts on a vector of Hilbert space, the orthogonal group and some groups
of symplectomorphisms of the Hilbert space equipped with the shift-invariant symplectic form. A
considered invariant measure is locally finite, σ finite, but it is not countably additive. The analog
of the ergodic decomposition of invariant finitely additivemeasures with respect to some groups
are obtained. The set of measures that are invariant with respect to a group is parametrized using
the obtained decomposition. The paper describes the spaces of complex-valued functions which
are quadratically integrable with respect to constructed invariant measures. This space is used to
define the Koopman unitary representation of the group of transformations of the Hilbert space. To
define the strong continuity subspaces of a Koopman group, we analyze the spectral properties of
its generator.

Keywords: A. Weil theorem; finitely-additive measure; shift-invariant measure on an infinite-dimensional
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1. Introduction
1.1. Motivation

Shift-invariant finitely additive measures on a Hilbert space present the realization
of invariant measures on a topological group without the locally compactness property.
According to the A. Weil theorem, there is no Lebesgue measure on an infinite dimensional
Euclidean space. For this reason, the paper [1] states that there is no function of a set on
an infinite dimensional space such that this function defines the notion of a volume on
this space. We analyze different approaches to the extension of the volume notion for
an infinitely dimensional space and study the invariantness with respect to the action of
groups of finitely additive measures on a Hilbert space.

A studying of invariant measures on the phase space of an infinite-dimensional
Hamiltonian system is important for the statistical mechanics of infinite-dimensional
systems. An isometry-invariant measure is the base for the constructing of the Koopman
representation of a group of shifts along a vector field in a separable Hilbert space (the
group isometries in a Hilbert space are defined as the group generated by the group of
shift and the orthogonal group). The isometry invariance of a measure on a separable
Hilbert space allows the opportunity to analyze a random Hamiltonian and the asymptotic
behavior of compositions of independent random Hamiltonian flows with values in the
group of isometries of a separable Hilbert space.

Gibbs measures of infinite-dimensional Hamiltonian equations (including a nonlin-
ear Schrödinger equation, a nonlinear wave equation, a Kleyn–Gordon equation, and
a Korteveg–de Vrize equation) are studied in the works [2–8]. The Gibbs measure of every
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considered Hamiltonian system is invariant with respect to the flow generated by this
system. However, the Gibbs measures of a Hamiltonian system can be singular with respect
to another one even in the class of Gaussian measures of quadratic Hamiltonian systems.

An invariant measure of a Hamiltonian flow different from the Gibbs measure can be
suggested on the basis of the complete integrability of a Hamiltonian system admitting
action-angle coordinates [9,10]. In papers [11,12], on the contrary, a countably additive
invariant measure is used for the constructing of action-angle coordinates for the Koopman
presentation of a Hamiltonian system. Invariant measures are useful for constructing a
hydrodynamical approach to classical and quantum integrable systems [13].

In this paper, we describe a finitely additive measure on a real separable Hilbert space
such that this measure is invariant with respect to a family of Hamiltonian flows including
one-parametric groups of shifts along a vector of a Hilbert space.

The considered group of self-mappings of a Hilbert space has the unitary representa-
tion in the space of quadratic integrables with respect to an invariant-measure complex-
valued function. Properties of continuity in the strong operator topology of the unitary
representation are studied.

To describe the family of shift-invariant measures, the notions of the ring-ergodicity
and ring-decomposibility of a measure with respect to a group are introduced (see Defi-
nition 1 in Section 2.3). Using a ring-ergodic component of a measure which is invariant
with respect to a group, we obtain the separable space of functions that are quadratically
integrable with respect to ring-ergodic invariant measures.

A unitary representation of a group of self-mappings of a Hilbert space is discontinu-
ous in general. We describe subgroups admitting the continuity of its representation in the
strong operator topology. For the Koopman unitary representation of a Hamiltonian flow
of an infinite system of oscillators, the subspaces of continuity are described in terms of the
spectrum of the Koopman group generator.

1.2. Historical Background

A nontrivial countably additive σ-finite locally finite Borel left-invariant measure on a
topological group G does not exist, according to the A. Weil theorem, if the group G is not
locally compact. Hence, there is no nontrivial countably additive σ-finite locally finite Borel
shift-invariant measure on an infinite-dimensional normalized linear space. Therefore,
the studying of shift-invariant measures on a Hilbert space deals with an additive function
of a set without some properties of the Lebesgue measure. We study finitely additive
measures on an infinite-dimensional separable real Hilbert space so that these measures
are invariant under shifts on a vector and orthogonal transformations. The focus of our
research is the space of functions on a Hilbert space that are quadratically integrable with
respect to an isometry-invariant measure. Unitary groups acting by means of isometric
transformations of the space of arguments in the above space of quadratically integrable
functions are investigated.

Thus, a shift-invariant measure on a topological group without the local compactness
property is considered as an additive non-negative function, which is defined on a ring
of subsets of the space. However, this function of a set would not have at least one of
properties of the Lebesgue measure listed in the A. Weil theorem [14–20].

One approach is based on the construction of a countably additive measure without
the σ-finiteness property. Countably additive measures on topological vector spaces of
numerical sequences are introduced in [14–16,19]. However, the introduced measures are
not σ-finite nor locally finite.

As for the other approach, shift-invariant σ-finite locally finite measures on a separable
Banach space are introduced in [17,20]. However, every constructed measure, at first, is
not countably additive and, secondly, is not defined on the ring of bounded Borel subsets.
The paper [20] describes the construction of a shift-invariant measure on a Hilbert space
as a finitely additive function of a set defined on some ring of subsets of a Hilbert space.
This ring of subsets (the domain of a finitely additive function of a set) is not invariant with
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respect to every orthogonal transformation since this ring depends on the choice of the
orthonormal basis (ONB) in the Hilbert space.

The studying of a finitely additive invariant with respect to shifts and rotations
measured on a Hilbert space is the continuation of the investigation of the same problem in
a finite-dimensional Euclidean space. The problem of the existence of an invariant with
respect to an isometric transformation measure on a finite-dimensional Euclidean space
was investigated during the last century in the form of the following question. Does the
measure λ on the d-dimensional Euclidean space exist so that this measure is

(1) Defined on a bounded subset of the Euclidean space;
(2) Invariant with respect to a shift and a rotation;
(3) Normalized by the condition λ([0, 1]d) = 1?

There is no a countably additive measure with these properties for every natural
number d according to the article by F. Hausdorff [21]. In 1923, S. Banach proved the
existence of a finitely additive measure which is defined on the σ-ring of all bounded
subsets of Euclidean spaces Rd, d = 1, 2, so that this measure is invariant with respect to
any isometry ([22], p. 81). Hence, finitely additive measures can admit invariance with
respect to a wider group than a countably additive one.

The paradox of Hausdorff–Banach–Tarskii includes some restrictions on the properties
of a finitely additive measure on the Euclidean space, which are discussed in [23]. In par-
ticular, there is no finitely additive measure on the Euclidean space Rd with dimension
d ≥ 3, which is defined on the ring of all bounded subsets of this space and invariant with
respect to shifts and rotations. Nevertheless, according to the work by S. Banach, in the
case d = 1, 2, there is a finitely additive non-negative measure νd on the space Rd such that
this measure is shift and rotation invariant, is defined on every bounded subset of the space
Rd and is normalized by the condition νd([0, 1)d) = 1.

In the class of countably additive measures, there is the unique normalized shift-
invariant complete Borel measure on the space Rd satisfying the normalization condition 3.
This is the Lebesgue measure. In addition, this measure is invariant with respect to the
orthogonal group.

In 1923, the following S. Ruziewicz problem was posed. Let B(Rn) be the ring of
bounded Lebesgue measurable sets in the n-dimensional real space Rn. Let λn be the
Lebesgue measure on B(Rn) normalized by λn([0, 1)n) = 1. The following question was
posed by Rusiewicz: Is λn, up to proportionality, the unique finitely additive isometry-invariant
positive measure mapping the ring B(Rn) into the semiaxis [0,+∞)?

In 1923, Banach gave a negative answer to this question for R1 and R2. For Rn with
n ≥ 3, the positive answer to the Ruziewicz question was provided in [24,25].

The Lebesgue measure can be defined as the complete countably additive shift-
invariant extension of the measure defined on the ring r(Rd) and normalized by condition
3). Here, r(Rd) is the ring generated by the collection of bounded d-dimensional rectangles.
Hence, the Ruziewicz problem can be reformulated in the following way: what finitely
additive isometry-invariant positive measure is the extension of the measure defined on the ring
r(Rd) and normalized by condition 3)?

However, in the separable infinite-dimensional real Hilbert space E, the Ruziewicz
question should be reformulated since there is no Lebesgue measure on space E or on the
sphere in space E. In the present paper, we study the following question.

What measure on space E exists so that this measure satisfies the conditions:

(1) It is invariant to any bijective isometric transformation of this space;
(2) The domain of this measure is the ringR of subsets of space E which contains any measurable

rectangle (a measurable rectangle in the space E is an infinite-dimensional parallelepiped, such
that the product of lengths of its edges converges unconditionally) of space E;

(3) The normalized condition λ({x ∈ E : (x, ek) ∈ [0, 1) ∀ k ∈ N}) = 1 holds for some ONB
E = {ek}?
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The constructing of a finitely additive shift-invariant measure and study of its proper-
ties was started in the work [17]. Results of Sections 3–7 on the rotation-invariant measure
on a Hilbert space were announced in [26]. The construction of a symplectic-invariant
measure was presented in [27]. The present article is the review of results on finitely
additive invariant measures. The notion of ring ergodicity is introduced in this paper and
applications of this notion are new results. The new result of this article are the analysis of
the continuity of Koopman unitary representation together with the spectral properties of a
Koopman generator.

1.3. The Main Result and Comparison with Similar Approaches

The purpose of this paper is to introduce a finitely additive measure on an infinite-
dimensional real separable Hilbert space so that this measure is invariant with respect to
shifts and orthogonal mappings (i.e., the measure is shift- and rotation-invariant). Moreover,
the introduced measure is locally finite and σ-finite. However, it is nether countably
additive nor a Borel measure.

In the separable real Euclidean space, there is no normalized shift-invariant countably
additive σ-finite and locally finite measure. There are different shift-invariant finitely
additive σ-finite and locally finite measures, which are normalized by the condition
λ([0, 1)N

⋂
`2) = 1 (see [17,20]). The existence of a shift and rotation-invariant measure on

a real separable Hilbert space was proven in [17] using the transfinite induction procedure.
In the present paper, the extension of one of these measures up to the isometry-invariant
normalized measure is introduced.

The construction of a shift and rotation-invariant measure on the real separable Hilbert
space E is based on the analysis of the deformation under the action of orthogonal mappings
on a shift-invariant measure λE on the space E. We obtain the criterion of an absolute
continuity of the measure λE with respect to the image λE ◦U of a measure λE under the
action of an orthogonal mapping U. We prove that if the measure λE ◦ U is absolutely
continuous with respect to the measure λE , then measures λE ◦U and λE coincide. In the
opposite case, measures λE ◦ U and λE are defined on the different rings RUE , RE and
RUE

⋂RE = {A ⊂ E : λUE (A) ⊂ λE (A) = 0}.
The equivalence relation ∼ on the set of the ONB of space E is introduced by the

following way. Two orthonormal bases, E and F , are equivalent to each other if and only if
λF = λE . We prove that if two bases, E and F , are not equivalent, then the restrictions of
measures λE and λF on the intersection of their domains are equal to zero. This property
allows gluing of the measures λE , which are defined on the subset ringsRE into the unique
measure λ, which is defined on the unique ringR. This analysis of measures λE : RE → ∞,
corresponding to different ONB E , gives the rule for defining an isometry-invariant measure
λ : R → [0,+∞), whereR is the ring of subsets generated by the collection of sets

⋃
E
RE .

The paper [18] is devoted to the properties of a measure on a topological vector space,
which is invariant with respect to a shift in a vector from some admissible subspace of the
topological vector space. A constructed measure has all the properties of Lebesgue measures
listed in the Weil Theorem except invariance with respect to a shift in an arbitrary vector.

The problem of the existence of translation-invariant measures on an Abelian topo-
logical group G can be considered as the description of a shift-invariant linear functional
on the space of proper functions on group G. The description of the translation invariant
functionals on space Lq(G), 1 < q < +∞ is given in [28]. Invariant means on an infinite
product of measured spaces with an infinite measure are defined and studied in [29] using
a limit of normalized finite-dimensional approximation. A generalized shift-invariant
measure is investigated in [30] as a shift-invariant functional on the space of test functions
of the Schwartz type. Constructed functionals have properties of invariance with respect to
the group of orthogonal mappings. However, the problem of the existence of a measure as
the additive set function on some rings of the subsets is currently unresolved.

Ergodic properties of countable-additive measures on a topological group with respect
to the action of a group of automorphisms are important for the analysis of problems of
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dynamical systems and the dynamical properties of solutions of evolution PDE’s [31–34].
Now we extend this approach to the study of ergodic properties of finitely-additive mea-
sures on topological groups without the locally compactness property.

Let G be a group of mappings of a space E into itself. LetR be a ring of subsets of a
space E which is invariant with respect to the group G. An invariant with respect to the
group-G measure µ : R → [0,+∞) is called ring-ergodic with respect to group G if for any
two G-invariant subrings r1, r2 of the ringR the following two conditions

(i) the ringR is completion with respect to the measure µ of the ring, which is generated
by the collection of sets r1

⋃
r2,

(ii) µ|r1 6= 0, µ|r2 6= 0,

imply that there is a set A ∈ r1
⋂

r2 such that µ(A) > 0 (conversely, the measure µ is called
ring-decomposible).

Roughly speaking, the definition of ring ergodicity changes the condition of an invari-
ant subset to the condition of an invariant subring in the definition of the ergodicity of a
measure with respect to a group.

The decomposition of an G-invariant measure µ to the sum of ring-ergodic mutually
singular measures is called the ring-ergodic decomposition of the measure µ.

The properties of ergodicity or the decomposability of a G-invariant measure are
important to the study of the uniqueness of a G-invariant measure. We use the notion of
the ring ergodicity of a shift-invariant measure to parametrize the collection of mutually
singular shift-invariant measures. The ring-ergodic decomposition of a shift-invariant
measure is obtained. Thus, the obtained ergodic decompositions describe the collection of
measures satisfying the condition of invariantness with respect to the considered group
and the normalization condition from Section 1.2.

The Lebesgue measure on the Euclidean space R2N is invariant not only to the group
of isometries but with respect to symplectomorphisms of the space R2N equipped with
a shift-invariant symplectic form. This property is important to applications in statistical
mechanics. Let us equip the Hilbert space E with a shift-invariant symplectic form. Then,
the measures considered above have neither invariantness with respect to the group of
simplectomorphism nor with respect to the subgroup of linear symplectomorphisms.
We consider the measures that are invariant to the subgroup of symplectomorphisms
preserving two-dimensional symplectic subspaces. In addition, we prove that there is no
measure on a Hilbert space equipped with the shift-invariant symplectic form such that
this measure is invariant with respect to the above subgroup of symplectomorphisms and
the orthogonal group.

The invariance of a measure on the space of complex matrices with respect to a group of
unitary transformations is studied in [35]. In this paper, the Pickerell measures on the space
of infinite complex matrices and on the Grassman manifold of infinite-dimensional Hilbert
space are constructed. Pickerell measures are the two-parametric family of probability
measures on the space of complex matrices such that each of these measures is invariant
with respect to a infinite subgroup of a unitary-operators group acting on the space of
complex matrices by means of conjugation [36].

The measures of the algebras of operators are studied in [37]. Some of these measures
were defined by means of operator intervals [38,39]. The invariance of the introduced
measures on algebras with respect to the action of some groups was obtained.

1.4. Organization of the Paper

The structure of the present article is the following.
Section 2 introduces the family of shift-invariant measures {λE}, where a measure

λE : RE → [0,+∞) is defined on the ringRE of subsets of the space E. The ringRE and
the measure λE depend on the choice of ONB E in the space E [17,40]. For the constructed
measure, we obtain its decomposition onto the sum of pairwise singular measures which
are ring ergodic with respect to the group of shifts or to the subgroup of shifts with a
continuity property.
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Section 3 contains the description of the mutual position for two ONB in space E in
terms of an infinite orthogonal transition matrix. The condition of the proximity of one
ONB to another in terms of the transition matrix is introduced. Section 4 shows that if ONB
E and F satisfy the proximity condition, then the measure λE coincides with the measure
λF . Section 5 demonstrates that if ONB E and F do not satisfy the proximity condition,
then λE (A) = 0 = λF (A) ∀ A ∈ RE

⋂RF .
To solve the problems of Sections 4 and 5, properties of the intersection of a measurable

rectangle with its image under the action of a shift or an orthogonal mapping are studied.
This geometric problem is interesting as the infinite-dimensional generalization of the
theory of k-dimensional sections of n-dimensional cubes [41,42]. The solving of this problem
gives the opportunity to introduce the equivalence relation on the set of ONB of the space
E in terms of the proximity condition from Section 3.

The proof of the existence of an isometry-invariant analog of a Lebesgue measure
λ on a Hilbert space is given in Section 6 using the introduced equivalence relation on
the set of ONB. The decomposition of the measure λ into the sum of mutually singular
shift-invariant measures is obtained. In Section 6, we study the space H = L2(E,R, λ,C) of
complex valued functions which are quadratically integrable with respect to an isometry-
invariant measure. The orthogonal decomposition of spaceH corresponding to the mutually
singular decomposition of the measure λ is obtained. Any component of the orthogonal
decomposition is invariant with respect to a shift in any vector of the space E. The whole
space H is invariant with respect to a shift and to an orthogonal transformation.

In Section 7, we study the unitary group in the Hilbert space H which is generated by
the orthogonal mapping of arguments of the functions from the space H. The Koopman
representation of the orthogonal group in space E by means of the unitary group in space H
is obtained. The condition of strong continuity in space H and the description of continuity
subspaces for these unitary groups are obtained in Section 7. These results are important for
extending the procedure of the averaging of random orthogonal mappings to the infinite-
dimensional case, and for obtaining the differential equation describing the mean values of
the compositions of independent random orthogonal mappings [43].

To study the symplectic-invariant measure, in Section 8 we equip a Hilbert space with
a shift-invariant symplectic form. We introduce a measure which is the continuation of a
shift-invariant measure. A continued measure is invariant with respect to a group of sym-
plectomorphisms (namely, the group of symplectomorphisms, preserving two-dimensional
symplectic subspaces). The unitary Koopman representation of the above group of sym-
plectomorphisms is obtained in the space of functions that are quadratically integrable with
respect to a symplectic-invariant measure. The continuity of a Koopman group and its spec-
tral properties are studied. In addition, we prove that a considered symplectic-invariant
measure has no continuation that is invariant with respect to orthogonal groups.

Section 9 is the conclusion of the main results of the article.

2. Shift-Invariant Measures on a Hilbert Space

Let E be a real separable Hilbert space. Let S be a set of ONB in space E.
Here, we introduce a family of shift-invariant measures on the Hilbert space E. This

family of measures, {λE , E ∈ S}, is parametrized by the choice of ONB E = {ei} ([17,20]).
A set Π ⊂ E is said to be a rectangle if there is an ONB E = {ei} and elements a, b ∈ `∞

such that
Π = {x ∈ E : (x, ej) ∈ [aj, bj) ∀ j ∈ N}. (1)

A rectangle (1) is called measurable if either Π = ∅ or the following condition holds

∞

∑
j=1

max{0, ln(bj − aj)} < ∞. (2)

Let K be a collection of measurable rectangles in the space E. Let E be an ONB in the
space E. Let KE be a set of measurable rectangles in E such that the edges of any rectangle
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Π ∈ KE are collinear to vectors of ONB E . In other words, if ∆j ⊂ R is the projection of a
set Π onto the axis Oej for any j ∈ N, then Π = {x ∈ E : (x, ej) ∈ ∆j ∀ j ∈ N}. Let rE be a
ring of subsets of the space E which is generated by the set KE . According to [20], the ring
rE is generated by the following semiring sE of subsets of space E

sE = {A0\(
m⋃

j=1

Aj), m ∈ N, A0, . . . , Am ∈ KE}. (3)

Let r be a ring of subsets of space E generated by the collection K.
Let λ be a function of a set such that the function λ is defined on the collection of sets

K by the equality

λ(Π) = exp
[ ∞

∑
j=1

ln(bj − aj)
]

(4)

for any non-empty measurable rectangle (1), and λ(∅) = 0. According to the condition (2),
we have λ(Π) ∈ [0,+∞) for any Π ∈ K. Let λE be the restriction of the function of a set λ
to the collection of sets KE .

According to papers [17,20], the function λE is an additive function on the collection
of sets KE and it has the unique extension to the measure λE : rE → R. This measure,
λE : rE → [0,+∞), is invariant with respect to a shift on a vector of space E.

A set A ⊂ E is said to be λE -measurable if for any ε > 0 there are sets A∗, A∗ ∈ rE
such that A∗ ⊂ A ⊂ A∗ and λ(A∗\A∗) < ε. Then, the collection RE of λE -measurable
subsets of the space E is the ring. The measure λE : rE → [0,+∞) has the unique extension
to the ringRE by the equality λE (A) = inf

A∗∈rE , A∗⊃A
λ(A∗) ∀ A ∈ RE .

The function of a set λE : RE → [0,+∞) is the finitely additive measure which is
invariant with respect to a shift on any vector of the space E [17]. This measure is locally
finite, σ-finite, complete. However, this measure is not σ-additive and it is not defined on
the σ ring of bounded Borel subsets. In particular, the ring RE does not contain a ball in
space E with a sufficiently large radius [44].

Thus, for a given ONB E ∈ S , there is the ring of subsets RE and there is the shift-
invariant finitely additive locally finite and σ-finite measure λE : RE → [0,+∞).

2.1. Dependence of the Measure λ E on ONB

The paper [17] describes the procedure of extending the family of measures
{λF : RF → [0,+∞); F ∈ S} to the measure λ : R → [0,+∞), where R is the ring
generated by the collection of sets

⋃
F∈S
RF (or generated by the collection of sets K).

The existence of the measure λ : R → [0,+∞) such that λRF = λF ∀ F ∈ S is
proven in the work [17] by using some total ordering ≺ on the set S of ONB in the space E
and by applying transfinite induction procedure. It is proven that the measure λ:

(1) Is invariant with respect to any orthogonal mapping and to a shift on a vector h ∈ E;
(2) Does not depend on the choice of total ordering ≺ on the set S .

The dependence of the properties of the ringRE
⋂RF on the mutual position of two

ONB E and F is not considered in the paper [17]. In the present article, we describe the
dependence of the ringRE

⋂RF on the mutual position of two ONB, E and F .

2.2. Representation of the Group of Shifts in the Space HE = L2(E,RE , λE ,C) and the Subgroup
of Strong Continuity

The shift-invariant measure λE defines the space HE = L2(E,RE , λE ,C) of quadrat-
ically integrable functions. In order to construct the space HE , one should consider the
space S(RE ) of finite linear combinations over the field C of the indicator functions of sets
from the ring RE . Let us introduce a non-negative hermitian sesquilinear form: for any
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A, B ∈ RE , one can pose (χA, χB) = λ(A ∩ B). For arbitrary functions f , g ∈ S(RE ),
where

f (x) =
s

∑
k=1

αkχAk (x) and g(x) =
p

∑
l=1

βlχBl (x)

we have

( f , g) =
s

∑
k=1

p

∑
l=1

αkβl(χAk , χBl ).

We call functions f , g ∈ S(RE ) equivalent if ( f − g, f − g) = 0. Thus, the linear space
of classes of the equivalence of functions from S(RE) is pre-Hilbert, and after the procedure
of completion,HE is obtained. The same construction of the spaceH = L2(E,R, λ,C) will
be used for other choices of a measure λ on a ringR of subsets of the space E.

The space E, as the group with respect to the summation operation, is represented in
the spaceHE by the Abelian unitary group of shift operators S = {Sh, h ∈ E} acting by the
rule Shu(x) = u(x− h), x ∈ E. The subgroup Sth, t ∈ R of the group S is a one-parameter
unitary group in the spaceHE for every vector h ∈ E.

In paper [17], the criterion of the strong continuity of the one-parameter unitary group
Sth, t ∈ R in the spaceHE is obtained.

Theorem 1 ([17]). Let E be an ONB in the space E and h ∈ E. Then, the one-parameter unitary
group Sth, t ∈ R is continuous in the strong operator topology of the space HE if and only if
{(h, ek)} ∈ l1.

If E is ONB in the space E, then L1(E) = {h ∈ E : {(h, ek)} ∈ l1} is the linear subspace
of the space E (hence, L1(E) is the subgroup of the group E). The subgroup L1(E) equipped

with the norm ‖x‖L1(E) =
∞
∑

k=1
|(x, ek)| is the Banach topological group.

Corollary 1. Let E be an ONB in space E. If S1(E) = {Sh, h ∈ L1(E)} when equipped with
the strong operator topology τsot of the space B(HE ), then the topological group of linear operators
(S1(E), τsot) is the continuous unitary representation in the spaceHE of the Abelian topological
group (L1(E), ‖ · ‖L1(E)).

Corollary 2. Let E be an ONB in space E. If the group S is equipped with the strong operator
topology τsot of the space B(HE ), then the topological group of linear operators (S , τsot) is the
unitary representation of the Abelian topological group (E, ‖ · ‖E) in the spaceHE . However, this
representation is not continuous.

2.3. Decomposition of a Shift-Invariant Measure λ E : RE → [0,+∞) Ring-Ergodic with Respect
to a Strongly Continuous Group of Shifts

The ergodic properties of countable-additive measures on a topological group with
respect to the action of a group of automorphisms are important for the analysis of the
problems of dynamical systems and the dynamical properties of evolution PDE [31–34].
Now, we extend the approach of ergodic theory to the study of the properties of finitely
additive measures on a topological group without the locally compactness property.

Let G be a group of mappings of a space E into itself. LetA be an invariant with respect
to the group-G algebra of subsets of a space E. A G-invariant measure µ : A → [0,+∞)
is called ergodic with respect to the group G if for every G-invariant set A ∈ A either
µ(A) = 0 or µ(E\A) = 0.

Now we consider a decomposition of the ring which is the domain of the measure
onto invariant subrings instead of the decomposition of the space onto invariant subspaces.

Let G be a group of mapping of a space E into itself. LetR be an invariant with respect
to the group-G ring of subsets of a space E.
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Let us note that the ring R is called the completion of the ring r with respect to a
measure µ : r → [0,+∞) if

R = {A ∈ E : ∀ ε > 0 ∃ B1, B2 ∈ r : λ(B2\B1) < ε}.

Definition 1. An invariant with respect to the group-G measure µ : R → [0,+∞) is called

(1) Ring-decomposible with respect to group G if there are two G-invariant subrings r1, r2 of ring
R satisfying conditions (i) and (ii) such that µ(A) = 0 ∀ A ∈ r1

⋂
r2;

(2) Ring-ergodic with respect to group G if, for any two G-invariant subrings r1, r2 of ring R,
conditions (i) and (ii) imply that there is a set A ∈ r1

⋂
r2 such that µ(A) > 0.

Here, (i) and (ii) are the following conditions:

(i) RingR is the completion with respect to the measure µ of the ring which is generated by the
collection of sets r1

⋃
r2, µ(A) = 0 ∀ A ∈ r1

⋂
r2;

(ii) µr1 6= 0, µ|r2 6= 0,

If an invariant with respect to the group-G measure µ : R → [0,+∞) is ring-decomposible
with respect to group G, then this measure admits the decomposition µ = ν1 + ν2 into the sum
of two mutually singular G-invariant measures νi(A) = sup

B∈rj , B⊂A
µ(B), i = 1, 2.

The decomposition of a G-invariant measure µ to the sum of ring-ergodic mutually
singular measures is called the ring-ergodic decomposition of the G-invariant measure µ.

Now we present the example of ring-ergodic decomposition for the measure λE . Let
E be an ONB in space E. Let us consider the measurable space (E, E) equipped with the
measure λE .

Let us consider the representation of the topological group (E, ‖ · ‖E) by the group of
unitary operators S in the spaceHE .

We study the following questions. Is the measure λE ring-ergodic with respect to group
E? What ring-ergodic components with respect to group E does the measure λE admit?

A non-empty rectangle Π ∈ KE is called E-equivalent to a rectangle Q ∈ KE (Π ∼E Q)
if there is a vector h ∈ E such that Q = Π + h. For a rectangle Π = Πa,b, a, b ∈ l∞, the
point c(Π) ∈ l∞ is called the center of the rectangle Πa,b if c(Π) = 1

2 (a + b). A rectangle
Π = Πa,b, a, b ∈ l∞ is non-empty if and only if aj < bj ∀ j ∈ N and max{0, |cj| − 1

2} ∈ l2.
For every vector c ∈ l∞, the symbol KE (c) denotes the collection of non-empty rectangles
Π ∈ KE such that c(Π)− c ∈ l2 (any rectangle Π ∈ KE (c) is E-equivalent to the rectangle
with the center c).

Let C∞ be a set of vectors c ∈ l∞ such that KE (c) 6= ∅. Let S∞ = C∞/l2 be the set of
classes of E-equivalent vectors of the set C∞.

Lemma 1. Let c1, c2 ∈ S∞ and c1 6= c2. If Π′ ∈ KE (c1), Π′′ ∈ KE (c2), then λE (Π′
⋂

Π′′) = 0.

Proof. If λE (Π′) = 0 or λE (Π′′) = 0, then the statement is true. If λE (Π′) 6= 0 and
λE (Π′′) 6= 0, then for any k ∈ N we have a′k = c1,k − 1

2 − α′k, b′k = c1,k +
1
2 + α′k where

α′ ∈ l1. Analogously, for any k ∈ N, we have a′′k = c2,k − 1
2 − α′′k , b′′k = c2,k +

1
2 + α′′k where

α′′ ∈ l1.
We have ∆c = c2 − c1 /∈ l2 since c1 6= c2 in S∞. Let Π = Π′

⋂
Π′′ and [ak, bk) be the

projection of the rectangle Π to the k-th coordinate axis span(ek). Therefore, bk − ak ≤
max{0, min{b′′k − a′′k , b′k − a′k} − |∆ck|} for any k ∈ N. Hence, bk − ak ≤ 1 + βk, k ∈ N

where βk = αk − |∆ck|, k ∈ N. Thus,
∞
∏

k=1
(bk − ak) ≤

∞
∏

k=1
(1 + βk) = 0, since β /∈ l1 and

βk < 0 for every sufficiently large k.

Let rc,E be the ring generated by the family of sets KE (c) for every c ∈ S∞ (the
construction of this ring is described in papers [20]).
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In the paper [20], it is proven that the function of a set λE : KE → [0,+∞) is additive
and has the unique additive extension to the measure λE whose domain is the ring rE .
The same arguments prove the following statement.

Lemma 2. The function of a set λc,E is additive and has the unique additive extension to the
measure λc,E whose domain is the ring rc,E . Moreover, λc,E = λE |KE (c).

Proof. The ring rc,E is generated by the semiring

Λc,E = {A0\(
n⋃

j=1

Aj), n ∈ N, A0, . . . , An ∈ Kc,E}.

For a given n ∈ N, let us introduce families of sets

Λ(n)
c,E = {A0\(

n⋃
j=1

Aj), A0, . . . , An ∈ Kc,E}, V(n)
c,E = {

n⋃
j=1

Aj, A1, . . . , An ∈ Kc,E}.

Let us note that V(1)
c,E = Kc,E . Since the function of a set λE : KE → [0,+∞) is

additive ([20]), its restriction λc,E : Kc,E → [0,+∞) is additive too. Using the induction
procedure, we can prove that the function λc,E has the unique additive extension on classes

V(n)
c,E , Λ(n)

c,E for every n ∈ N (see also [27], Theorem 3.1). Therefore, the function λc,E has the
unique extension onto the semi-ring Λc,E , and, hence, to the ring rc,E .

Let Rc,E be the completion of the ring rc,E by the measure λc,E . The ring rc,E is the
subring of the ring rE since KE (c) ⊂ KE . Therefore, λc,E = λE |rc,E .

Lemma 3. Let c1, c2 ∈ S∞ and c1 6= c2. If A ∈ Rc1,E
⋂Rc2,E , then λE (A) = 0.

Proof. For every i = 1, 2, the indicator function of a set from the ringRci ,E can be approxi-
mated in HE -norm by the linear combination of the indicator functions of rectangles from
the family KE (ci). Thus, the statement of Lemma 3 is the consequence of Lemma 1.

Let ρE be the ring which is generated by the collection of sets
⋃

c∈S∞

Rc,E .

Hence, the ring ρE is generated by the semi-ring

sE = {A0\
N⋃

j=1

Aj, N ∈ N, A0 ∈ Rc0,E , Aj ∈ Rcj ,E , c0, c1, . . . , cN ∈ S∞}. (5)

Since the systems of setsRcj ,E are rings, we can assume that cj 6= ci for every different

i, j = 0, 1, . . . , N. Hence, λE (A0
⋂
(

N⋃
j=1

Aj)) = 0 according to the Lemma 3. Thus, we should

define λ(A0\
N⋃

j=1
Aj) = λE (A0) for any set A0\

N⋃
j=1

Aj, j ∈ N, A0 ∈ Rc0,E , Aj ∈ Rcj ,E from

the semi-ring (5). Then, the function λ : sE → [0,+∞) is additive on the semiring (5).
Moreover, this additive function satisfies the condition λE (A) = ‖χA‖2

HE ∀ A ∈ s. Additive
function λ : sE → [0,+∞) on the semi-ring (5) admits the unique additive extension to the
additive function of a set µE : ρE → [0,+∞) on the ring ρE . Moreover, the measure µE
satisfy the condition λ(A) = ‖χA‖2

H ∀ A ∈ ρE .
The semi-ring sE and the generated by this semi-ring ring ρE are invariant with respect

to a shift on a vector of the space E. The measure µE : ρE → [0,+∞) is shift-invariant
measure on the space E by its construction.

Then, according to Lemmas 1–3 we obtain the following statement.
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Theorem 2. Let E be an ONB in the space E. Then

HE = ⊕c∈S∞Hc,E ,

whereHc,E = L2(E,Rc,E , λc,E ,C).

Proof. Let c ∈ S∞ andHc,E = L2(E,Rc,E , λc,E ,C). Then, the spaceHc,E is the subspace of
the spaceHE since the measure λc,E is the restriction of the measure λE . Hence, according
to Lemma 3 subspacesHc1,E andHc2,E are orthogonal subspaces of the spaceHE if c1 6= c2.

The linear space span(χΠ, Π ∈ KE ) is dense in the spaceHE according to Lemma 3.4 [45].
Hence, the family of functions{

N

∑
j=1

ajχΠj , N ∈ N, aj ∈ C, Πj ∈ KE

}
(6)

is dense in the spaceHE . Since every element of the family (6) belongs to the linear space
span(Hc,E , c ∈ S∞), the linear space span(Hc,E , c ∈ S∞) is dense in the spaceHE .

Then, according to Lemma 3 we have

span(Hc,E , c ∈ S∞)
HE

= ⊕c∈S∞Hc,E .

Hence, the statement is proved.

Corollary 3. The ringRE is the completion of the ring ρE with respect to the measure µE .

Proof. According to the Theorem 2 for any set A ∈ RE there is the sequence of finite
collection of rectangles Π(n)

1 , . . . Π(n)
mn ∈ KE , n ∈ N, such that the sequence of linear

combinations {
mn
∑

j=1
σjχΠj} converges to χA in the spaceHE . It means that the ringRE is the

completion or rings ρE with respect to the measure µE .

Corollary 4. Let c ∈ S∞ and S c
∞ = S∞\{c}. Then

HE = Hc,E ⊕Hc
E

whereHc
E =

⊕
b∈S c

∞

Hb,E .

Corollary 5. Let c ∈ S∞ and S c
∞ = S∞\{c}. LetRE c be the completion with respect to measure

µE of the ring which is generated by the set
⋃

b∈SE c
Rb,E . Then, the ringRE is the completion with

respect to measure µE of the ring generated by the collection of setsRc,E
⋃RE c.

The domain of a measure λc,E depends on a class of vectors c ∈ S∞. Let us introduce
following extensions νc,E : RE → [0,+∞), c ∈ S∞, of measures λc,E :

νc,E (A) =

{
λc,E (A) i f A ∈ Rc,E ;
0, i f A ∈ Rc′ ,E , c′ ∈ S∞, c′ 6= c.

}
(7)

Let c, c′ ∈ S∞, c′ 6= c. Then the following statement take place. If νc′ ,E (A) > 0
for some A ∈ RE , then νc,E (A) = 0 and vice versa according to (7). On the contrary,
if A ∈ Rc,E , B ∈ Rc,E , λE (A) > 0, λE (B) > 0, then there is a vector h ∈ E such that
λE (A

⋂
Sh(B)) > 0.
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Theorem 3. For any c ∈ S∞ the measure νc,S is invariant under the action of the Abelian
unitary group S = {Sh, h ∈ E}. The S-invariant measure λE : RE → [0,+∞) admits the
ring-ergodic decomposition

λE = ∑
c∈S∞

νc,E (8)

into the sum of mutually singular components.

Proof. For every c ∈ S∞ the ringRc,E is invariant with respect to the group S by construc-
tion. Invariant subrings Rc,E , c ∈ S∞ of the ring RE are independent in the following
sense. If c, c′ ∈ S∞, c′ 6= c, then λE (A

⋂
Sh(B)) = 0 for every A ∈ Rc,E , B ∈ Rc′ ,E , h ∈ E.

According to Lemma 3 the equality

λE (A) = ∑
c∈S∞

νc,E (A) (9)

holds for every set A ∈ rE since every set A ∈ rE is the finite union of sets from the
semi-rings (3).

Since the ring RE is the completion of the ring rE with respect to the measure λE ,
the equality (9) is valid. In fact, if A ∈ RE then there are sequences {Ci}, {Di} : N→ rE
such that Ci ⊂ A ⊂ Di and λE (Di\Ci). For every i ∈ N the equality (9) is valid for sets
Ci, Di since Ci, Di ∈ rE . Since 0 ≤ λc,E (Di\Ci) ≤ λE (Di\Ci) ∀ i then the equality (9) holds
for every A ∈ RE .

The measure λc,E is invariant with respect to the group S by the same property of
the measure λE . Thus, the measures in the decomposition (8) are mutually singular and
S-invariant.

Let us prove that the measure νc,E is ring-ergodic with respect to the group S. Let us
assume the contrary that the measure νc,E is not ring-ergodic measure of the group S.

Hence, there are subrings r1, r2 ⊂ Rc,E such that r1, r2 are invariant with respect to the
group S, the ringRc,E is the completion with respect to the measure νc,E of the collection of
sets r1

⋃
r2, νc,E |ri is nontrivial measure for i = 1, 2 and νc,E (A) = 0 ∀ A ∈ r1

⋂
r2. Therefore,

there are sets A ∈ r1, B ∈ r2 such that νc,E (A) > 0, νc,E (B) > 0 and

νc,E (A
⋂

Sh(B)) = 0 ∀ h ∈ E (10)

since A ∈ r1 and Sh(B) ∈ r2 ∀ h ∈ E.
Since νc,E (A) > 0, νc,E (B) > 0, there are sets Π, Q ∈ KE (c) such that Π ⊂ A, Q ⊂ B

and νc,E (Π) > 0, νc,E (Q) > 0. Since Π, Q ∈ KE (c), there is a vector h = c(Π)− c(Q) ∈ E
such that νc,E (Π

⋂
Sh(Q)) > 0. It is the contradiction with condition (10).

2.4. Decomposition of a Shift-Invariant Measure Ring-Ergodic with Respect to the Strongly
Continuous Subgroup of Shifts

The action of the group E transforms a ringRc,E into itself for every c ∈ S∞. But the
representation {Sh, h ∈ E of the group E is not strongly continuous in spaces HE and
Hc,E , c ∈ S∞.

The Abelian group S1 = {Sh, h ∈ L1(E) equipped with the strong operator topology
τsot is the continuous unitary representation in the spaces Hc,E , c ∈ S∞ of the subgroup
L1(E) of the group E equipped with l1-norm on the coordinates with respect to ONB E .
The proof of last statement is based on the estimate ∀ ε > 0 ∃ v ∈ HE : ‖Shu− u‖HE ≤
ε + ‖h‖L1(E)‖v‖HE from [20].

A nonempty rectangle Π ∈ KE is called L1(E)-equivalent to a rectangle Q ∈ KE
(Π ∼L1(E) Q) if there is a vector h ∈ L1(E) such that Q = Sh(Π). Hence, if Π ∼L1(E) Q,
then Π ∼E Q.

Let K1
E (0) be a collection of non-empty rectangles Π ∈ KE (0) such that c(Π) ∈ l1 (any

rectangle Π ∈ K1
E (0) is L1(E)-equivalent to a centered rectangle). For every vector c ∈ S∞
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and every vector d ∈ l2 the symbol K1
E (c, d) denotes the collection of rectangles Π ∈ KE

such that c(Π)− c− d ∈ l1.
Let c ∈ S∞, Π ∈ KE (c) and d ∈ l2. Then the rectangle Q = Π + d ∈ KE (c) is

non-empty. Let D2 = l2/l1 be the set of classes of l1-equivalent vectors of the space l2.
The following statement has the same proof as the Lemma 1.

Lemma 4. Let c ∈ S∞, d1, d2 ∈ D2 and d1 6= d2. If Π′ ∈ KE (c, d1), Π′′ ∈ KE (c, d2), then
λE (Π′

⋂
Π′′) = 0.

For any c ∈ S∞ we obtain the decomposition of the spaceHc,E to the orthogonal sum
of subspaces such that any of this subspaces is invariant with respect to the group S1.

Let c ∈ S∞. Let rE (c, d) be the ring generated by the family of sets KE (c, d) for every
d ∈ l2 (the construction of this ring is described in papers [20,27]). The following statement
can be obtained as Lemma 2.

Lemma 5. The function of a set λE : KE (c, d)→ [0,+∞) is additive and has the unique additive
extension to the measure λc,d,E whose domain is the ring rc,d,E .

Lemma 6. Let c ∈ S∞. Let d1, d2 ∈ l2 and d1 6= d2. If A ∈ Rc,d1,E
⋂Rc,d2,E , then λE (A) = 0.

Let Rc,d,E be the completion of the ring rc,d,E by the measure λE |rc,d,E . The symbol
λc,d,E denotes the completion of the measure λE |rc,d,E .

Theorem 4. Let E be on ONB in the space E and c ∈ S∞. Then

Hc,E = ⊕d∈D2Hc,d,E ,

where Hc,d,E = L2(E,Rc,d,E , λc,d,E ,C). The ring Rc,E is the completion with respect to the
measure λc,E of the ring which is generated by the collection of sets

⋃
d∈D2

Rc,d,E .

Let us introduce the following extensions νc,d,E : Rc,E → [0,+∞), d ∈ D2, of measures
λc,d,E :

νc,d,E (A) =

{
λc,d,E (A) i f A ∈ Rc,d,E ;
0, i f A ∈ Rc,d′ ,E , d′ ∈ L1(E), d′ 6= d.

}
(11)

Then the following statement take place.

Corollary 6. For any d ∈ D2 the measure νc,d,S is invariant under the action of the Abelian unitary
group S1 = {Sh, h ∈ L1(E)}. The measure λc,E : Rc,E → [0,+∞) admits the decomposition

λc,E = ∑
d∈D2

νc,d,E (12)

into the sum of mutually singular components invariant with respect to the group S1.

Invariant components of the measure λc,E in decomposition (12) are independent in
the following sense. If d, d′ ∈ S∞, d′ 6= d then λE (A

⋂
Sh(B)) = 0 for every A ∈ Rc,d,E ,

B ∈ Rc,d′ ,E , h ∈ E. Therefore, if νc,d′ ,E (A) > 0 for some A ∈ Rc,E , then νc,d,E (A) = 0 and
vice versa according to (11).

On the contrary, the following statement takes place.

Lemma 7. If A ∈ Rc,d,E , B ∈ Rc,d,E , λc,d,E (A) > 0, λc,d,E (B) > 0, then there is a vector
h ∈ L1(E) such that λc,d,E (A

⋂
Sh(B)) > 0.

Proof. Since λc,d,E (A) > 0, λc,d,E (B) > 0, there is the rectangles Π, Q ∈ KE (c, d) such that
Π ⊂ A, Q ⊂ B and νc,d,E (Π) > 0, νc,d,E (Q) > 0.
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Since Π, Q ∈ KE (c, d), c(Π)− c− d, c(Q)− c− d ∈ L1(E). Therefore, there is a vector
h ∈ L1(E) such that c(Q) = c(Π) + h. Hence, the rectangles Π and Q′ = Q− h has the
common center C(Π). Let P = Π

⋂
Q′. Then, c(P) = c(Π) and pi = min{πi, qi} ∀ i ∈ N

where pi, qi, πi are the length of projections of rectangles P, Q, Π on the axis ei respectively.
Since νc,d,E (Π) > 0, νc,d,E (Q) > 0, {ln(πi)} ∈ l1, {ln(qi)} ∈ l1. Hence, {ln(pi)} ∈ l1.
Therefore, λ(P) > 0.

Theorem 5. Let E be on ONB in the space E, c ∈ S∞ and d ∈ D2. Then the decomposition (12) of
S1-invariant measure νc,E is ring-ergodic.

The proof of the Theorem 5 has the same scheme as the proof of the Theorem 3.
Similar decomposition will be obtained for the measure that is invariant with respect

to the group of orthogonal mappings in Section 6, Theorem 13.

Now we prove that the spaceH0,E is separable.
Let E be an ONB in the space E and Π− 1

2 , 1,
2
≡ Π ∈ KE (0). Let Hk(Π) be linear the

space of functions Π− 1
2 , 1,

2
→ C of the form {φk(x1, . . . , xk)1(xk+1, . . .), φk ∈ L2([− 1

2 , 1
2 ])

k}
for every k ∈ N. The space Hk(Π) equipped with the norm ‖φk(x1, . . . , xk)1(xk+1, . . .)‖Hk =
‖φk‖L2([− 1

2 , 1
2 ])

k is the Hilbert space. Let SE (Π− 1
2 , 1,

2
) be a linear hull of the set

⋃
k∈N
Hk(Π)

equipped with the norm ‖ · ‖H(Π) of inductive limit of the sequence of Hilbert spaces
{Hk(Π)}. The completion of the normed linear space (SE (Π− 1

2 , 1,
2
), ‖ · ‖H(Π)) is the Hilbert

spaceH(Π) which is the inductive limit of the sequence of Hilbert spaces {Hk(Π)}.

Lemma 8. The system of functions P = {ShφχΠ, φ ∈ H(Π), h ∈ L1(E)} is the total system in
the spaceH0,E .

Proof. By the definition of the spaceH0,E the set

{ShχQ, h ∈ L1(E), Q ∈ KE (0)} (13)

is total in the spaceH0,E .

Therefore, to prove the Lemma it is sufficient to show that for every Q ∈ KE (0) the
function χQ is the limit of a sequence of linear combination of functions from the system P .
As the consequence we obtain that for every Q ∈ KE (d), d ∈ L1(E), the function χQ is also
the limit of a sequence of linear combination of functions from the system P .

For any Q ⊂ Π− 1
2 , 1

2
, Q ∈ KE (0) and for any ε > 0 there is a number m ∈ N such that

λE (Pm\Q) < ε where the rectangle Πm is defined by the following rule. If Q = Π−q,q, then
Pm = Π−p,p, where

p1 = q1, . . . , pm = qm, pm+1 = pm+2 = . . . =
1
2

.

Therefore, χPm ∈ Hm(Π) ⊂ H(Π). Thus, for every Q ∈ KE (0) : Q ⊂ Π− 1
2 , 1

2
there is a

sequence {uk} : N→ H(Π) such that ‖χQ − um‖HE → 0 as m→ ∞.
According to Lemma 3.3 [27] for any ε > 0 and every P, Q ∈ KE (0) there are mutually

disjoint rectangles Π1, . . . , Πm ∈ KE such that λE ((P\Q)\(
m⋃

j=1
Πj)) < ε. Therefore, for ev-

ery Q ∈ KE (0) and every ε > 0 there are a system of vectors h1, . . . , hN ∈ L1(E) and a

system of rectangles Π1, . . . , ΠN ∈ KE (0) such that ‖χQ −
N
∑

j=1
Shj

χΠj‖H0,E . �

Corollary 7. The spaceH0,E is separable.
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Proof. The spaceH(Π) is separable since it contains the ONB

{ψk1,...,kn(x) = φk1(x1) . . . φkn(xn}
∞

∏
j=n+1

1(xj), n ∈ N, k1, . . . , kn ∈ N},

where {φk} is an ONB in the space L2([− 1
2 , 1

2 ]).
The space L1(E) is separable since in isomorphic to the Banach space l1.
The system of vectors 13 is total in the spaceH0,E by the definition of this space. More-

over, ‖ShχQ − χQ‖2
H0,E
≤ ‖h‖L1(E)‖χQ‖2

H0,E
according to Lemma 7 in [17]. Hence, if {hm}

is dense system of elements in the space L1(E) then the countable system of elements

{Shm ψk1,...,kn , m, n, k1, . . . , kn ∈ N}

is total in the spaceH0,E .

3. Proximity for Two ONB and Orthogonal Transition Matrix

Let us study the dependence of the ring REF = RE
⋂RE on the mutual position

of two ONB E , F ∈ S in the space E. The description of this dependence gives the
opportunity to define the procedure of the extension of the family of measures λF , F ∈ S ,
to the rotation invariant measure.

Let U be an orthogonal operator in the space E. Let E , F be a pair of ONB in the
space E such that F = U(E). Let us consider two measures λE : RE → [0,+∞) and
λF : RF → [0,+∞). We study measures λE REF and λF REF whereREF = RE

⋂RF .
Let ‖C‖ = ‖ci,j‖ be the matrix of transition of the basis E into the basis F . Hence,

matrix elements are ci,j = (ei, f j) = (ei, Uej), i, j ∈ N. Therefore, (ek, U−1el) = cl,k, k, l ∈ N

and
∞
∑

k=1
ck,ick,j = δij, i, j ∈ N where δi,j is the Kronecker symbol.

The sequence {c·,j} is the unit vector of Hilbert space `2 since ‖c·,j‖ are coordinates
of the unit vector f j, j ∈ N, with respect to the basis E . But the sequence {c·,j} can be
not belong to the space `1. We will show that if {c·,j} /∈ `1 then λE (A) = 0 = λF (A) for
any set A ∈ RE

⋂RF . For a given ONB E the symbol L1(E) denotes the linear subspace
L1(E) = {x ∈ E : {(x, ej)} ∈ `1}. If conditions f j ∈ L1(E) ∀ j ∈ N and ej ∈ L1(F ) ∀ j ∈ N
hold then the property of absolute continuity of measures λE , λF with respect to each
other is controlled by following conditions on the pair of bases E , F

∞

∏
j=1
‖c·,j‖`1 < +∞; (14)

∞

∏
j=1
‖cj,·‖`1 < +∞. (15)

We prove that the condition (14) is equivalent to the condition (15). If the conditions (14)
and (15) are satisfied thenRE

⋂RF = RE = RF and the equality λE (A) = λF (A) holds
for any A ∈ RE

⋂RF . In the opposite case the measures λE and λF take only zero values
on an arbitrary set of the ringRE

⋂RF .
The next Lemma defines the geometrical sense of values of products in left hand side

of inequalities (14) and (15).

Lemma 9. Let Π0,1 be a unit rectangle from the collection of sets KE . Then

inf
Q∈KF : Π0,1⊂Q

λF (Q) =
∞

∏
j=1
‖c·,j‖`1 .
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Proof. According to the conditions Q ∈ KF : Π0,1 ⊂ Q the length lj of the orthogonal
projection of the rectangle Q on the line O f j = {x = t f j, t ∈ R}, j ∈ N (i.e., the length of
j-th edge of the rectangle Q) no less than the sum of lengths of orthogonal projections of

edges of the rectangle Π0,1 onto the line O f j: lj ≥
∞
∑

i=1
| (ei, f j)) | ∀ j ∈ N. Therefore, we

obtain the statement of Lemma 9.

Lemma 10. Let {ck} ∈ `2 and ‖{ck}‖`2 = 1. If max
j∈N
|cj| = α, then ‖cj‖`1 ≥ α +

√
1− α2.

In particular, ‖{ck}‖`1 ≥ 1.

The statement is the consequence of the inequality

| c1 | + . . .+ | cm |≥
√

c2
1 + . . . + c2

m

which holds for any m ∈ N and for any collection of complex numbers c1, . . . , cm. �

Corollary 8. Let c(m) be a sequence of vectors of the space `2 with coordinates c(m)
k , k ∈ N such

that lim
m→∞

‖{c(m)
k }‖`2 = 1. If lim

m→∞
‖c(m)‖`1 = 1 then lim

m→∞
αm = 1 where αm = max

k∈N
| c(mk ) | for

every m ∈ N.

Corollary 9. Let conditions of the Corollary 8 be hold. Then there is the number m0 ∈ N such that
the maximum max

k∈N
| c(n)k | is reached on the only one number k = in for any n ≥ m0.

Lemma 11. Let F , E be a pair of ONB in the space E. Let {mj} be a sequence of natural numbers
such that max

i∈N
| ci,j |= cmj ,j for every j ∈ N. Then the condition

∞

∑
j=1

∑
i 6=mj

| ci,j |< +∞ (16)

is equivalent to the condition (14).

Proof. Let the condition (14) be hold. Let lj =
∞
∑

i=1
| ci,j |. Then the series

∞
∑

j=1
ln(lj) converges.

Hence, the series
∞
∑

j=1
(lj − 1) converges and lim

j→∞
(lj − 1) = 0.

Let αj = max
i
| ci,j |. According to Lemma 10 inequalities lj ≥ αj +

√
1− α2

j ≥ 1 hold

for any j ∈ N. Hence, lj ≥ 1− β j +
√

2β j − β2
j for any j ∈ N. Here β j = 1− αj, hence

β j ∈ [0, 1). Then, lim
j→∞

β j = 0 according to Corollary 8. Hence, lj − 1 ∼
√

2β j as j→ ∞ and

the series
∞

∑
j=1

√
β j (17)

converges as well as the series
∞
∑

j=1
(lj − 1). Since ∑

i 6=mj

| cij |= lj − 1 + β j for any j ∈ N,

the condition (16) is the consequence of the convergence of the series
∞
∑

j=1
(lj − 1) and (17).



Mathematics 2023, 11, 1161 17 of 49

Let the condition (16) be hold. Let γj = ∑
i 6=mj

| cij |= lj − αj, j ∈ N. Then, lim
j→∞

γj = 0.

Since lj = αj +γj ≤ 1+γj, the convergence of the series
∞
∑

j=1
γj is the consequence of the con-

dition (16). Therefore, the series
∞
∑

j=1
(lj − 1) converges. Hence, the condition (14) holds.

Theorem 6. Conditions (14) and (15) are equivalent.

Proof. Let the condition (14) be hold. Hence, lim
j→∞

lj = 1. Therefore, lim
j→∞

αj = 1 according

to the Corollary 8. Hence, there is the number j0 ∈ N such that αj >
1√
2

for any j > j0.
There is the sequence of natural numbers mj, j ∈ N such that

max
k
| ck,j |= cmj ,j = αj.

Moreover, the number mj is uniquely defined for every j > j0. On the other hand
there is the sequence of natural numbers Mk, k ∈ N such that max

j
| ck,j |= ck,Mk

. Since

| cmj ,j |>
1√
2

for all j > j0, max
i
| cmj ,i |=| cmj ,j | for all j > j0. I.e., the maximal element

| cmj ,j | of j-th column is the maximal element of mj-th row in matrix ‖C‖ for any j > j0.
Hence, Mmj = j, ∀ j > j0.

Thus, max
i∈N
| cmj ,i |=| cmj ,Mmj

|=| cmj ,j | for any j > j0.

The condition (14) implies ∑
j∈N

∑
k∈N\{mj}

| ck,j |< +∞ according to the Lemma 11.

Therefore,
j0

∑
j=1

∑
k∈N
| ck,j | +

+∞

∑
j=j0+1

∑
k∈N\{mj}

| ck,j |< +∞. (18)

Let N1 be the set of values of the sequence mj, j > j0. Let N0 be a set N\N1. In the
condition (18) we can rearrange the order of summation of the series of non-negative terms:

j0

∑
j=1

∑
k∈N
| ck,j | +

+∞

∑
j=j0+1

∑
k∈N\{mj}

| ck,j |=

=

(
∑

k∈N0

j0

∑
j=1

+ ∑
k∈N1

j0

∑
j=1

+ ∑
k∈N0

∑
j>j0

+ ∑
k∈N1

∑
j>j0; j 6=Mk

)
| ck,j |< +∞. (19)

In the last equality we use the following presentation of the set of summation indexes

{{(k, j), k ∈ N\{mj}}, j > j0} =

= {(k, j), j > j0, k ∈ N0}
⋃
{{(k, j), j > j0, j 6= Mk}, k ∈ N1}.

Therefore, according to (19) we obtain the following condition

∑
k∈N

∑
j∈N\{Mk}

| ck,j |≤ ∑
k∈N0

∑
j∈N
| ck,j | + ∑

k∈N1

∑
j∈N\{Mk}

| ck,j |< +∞.

Since ∑
k∈N

∑
j∈N\{Mk}

| ck,j |< +∞, according to the Lemma 11 the condition (15) holds.

If we swap the bases E and F , then we obtain that the condition (15) implies the
condition (14).
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Corollary 10. Let ‖C‖ be the transition matrix from one ONB to another. Then the product
∞
∏
j=1
‖c·,j‖`1 converges if and only if the product

∞
∏
i=1
‖ci,·‖`1 converges.

ONB E is called near to the ONB F if E and F satisfy the condition (14). If the
condition (14) is not satisfy for two ONB E and F , then ONB E is called distant from the
ONB F .

In the Section 4 we show that if ONB E is near to ONB F , then measures λE and λF
coincide. In the Section 5 we show that if ONB E is distant from ONB F , then measures
λE and λF are defined on different rings such that both measures λE and λF take zero
value on an arbitrary set from the ringRE

⋂RF . Results of Sections 4 and 5 are obtained
by the analysis of mutual position of rectangles with edges collinear to vectors of different
ONB. Results of Sections 4 and 5 give tools for the proof of the existence of shift- and
rotation-invariant measures on the Hilbert space.

4. Ring RE
⋂RF in the Case of Nearness of Bases E and F

Let us prove that if the condition (14) holds (as well as the equivalent condition (15)),
then rectangles Π and Q = U(Π) belong to the ringRE and λE (Q) = λE (Π). At the first
step to this goal we apply orthogonal mappings V of the space E which only change the
order of vectors in the basis E . Also we use the following property of the measure λE to be
invariant with respect to permutation of vectors of basis E .

Lemma 12. Let V be an orthogonal transformation of the space E changing the order of vectors of
the basis E only. Let E ′ = V(E). Then,RE ′ = RE and λE ′(A) = λE (A) for all A ∈ RE .

Proof. The collection of absolutely measurable rectangles KE coincides with the collection
KE ′ . In fact, for any rectangle Π ∈ KE its edges are collinear to vectors of ONB E ′ and the
product of lengths of edges converges unconditional. Therefore, Π ∈ KE ′ . The opposite
is also true. Moreover, λE ′(Π) = λE (Π) for any Π ∈ KE according to unconditional
measurability. We have rE = rE ′ since KE ′ = KE . Since the finitely additive function λE ′
coincides with λE on the collection of sets KE ′ = KE , additive functions λE ′ and λE has
the unique (only one) additive extension to the ring rE = rE ′ . Therefore the completion of
the measures λE ′ and λE coincides with each other. Thus, we prove the statement on the
transformation V.

Let E = {ej} and F = { fk} be a pair of ONB in the space E. Let us define subspaces
En = span(e1, . . . , en) and En = E⊥n ; Fn = span( f1, . . . , fn) and Fn = F⊥n for any n ∈ N.

Theorem 7. Let the condition (14) for the pair of ONB E and F be hold. Then there is the
permutation of vectors of ONB F such that this permutation transform ONB F into ONB F ′
satisfying the condition

∃m0 ∈ N : ∀ j > m0 | c′j,j |= max
k∈N
| c′j,k |= max

i∈N
| c′i,j |, (20)

where c′k,j = ( f ′k, ej), k, j ∈ N.

Proof. According to condition (14) we have lim
j→∞

αj = 1. Therefor the set

M′ = {j ∈ N : αj ≤
1√
2
}
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is finite. Since the condition (14) implies the condition (15), the set M′′ = {k ∈ N : max
j∈N
|

ck,j |≤ 1√
2
} is finite analogously. Let us denote by m′, m′′ numbers of elements in finite sets

M′, M′′ respectively. Let us prove that m′ = m′′.
Let us assume that m′ > m′′ (the case m′ < m′′ can be considered analogously). Then

| ck,j |≤ 1√
2

for any k ∈ M′′, j ∈ M′.
We will done finite number of permutations of rows and columns of the matrix

‖cij‖. For each permutation of two rows (of two columns) we done the permutation of
corresponding vectors in the basis F (in the basis E ).

Step 1. Let us permute the vectors of ONB F with the numbers from the set M′′ onto
first m′′ positions. The natural order of numbers in the set M′′ and in its complement
are preserved. Analogously, let us permute the vectors of ONB E with the numbers from
the set M′ onto first m′ positions. The natural order of numbers in the set M′ and in its
complement are preserved.

After the above permutation of bases E and F we obtain the matrix of transition with
following properties. Each row with number greater than m′′ contains the only one element
with the modulus greater than 1√

2
. According to the permutation in step 1 this element

belongs to the column with the number greater than m′. Conversely, each column with
number greater than m′ contains the only one element with modulus greater than 1√

2
. This

element belongs to the row with the number greater than m′′.
Hence, there is the permutation of columns with the numbers m′ + 1, m′ + 2, . . . such

that each row with a number k > m′′ contains the only one element with the modulus
greater than 1√

2
and this element belong to the column with the number m′ + (k− m′′).

After this permutation of the vectors of the basis F the matrix ‖ci,j‖ satisfies the condition:
for any j > m′ (and for any i > m′′) an element with the maximal modulus in the j-th
column (in i-th row) is the element ci,j with i− j = m′′ −m′.

Step 2. We transform the ONB F by the following rule. We change the vector
fk, k > m′′, onto the vector − fk under the condition ck,k+m′−m′′ < 0. In opposite case
we remain fk.

The ring of subsetsRF (andRE ) and the measure λF (and λE ) so not change under
the transformation in steps (1) and (2) according to Lemma 12. The matrix ‖ci,j‖ under the
above transformation satisfies the conditions ck,k+m′−m′′ >

1√
2
∀ k > m′′.

In the proof of the Lemma 11 we should prove that the condition (14) implies estimates

∑
j>m′′

(1− cj,j+m′−m′′) <
∞

∑
k=1

(1− | ck,Mk
|) <

∞

∑
k=1

√
1− | ck,Mk

| < +∞.

Therefore, there is the number N such that

∞

∑
j=N+1

√
1− cj,j+m′−m′′ <

1
2

;
∞

∑
k=N+1

(lT
k − | ck,k+m′−m′′ |) <

1
2

, (21)

here lT
k =

∞
∑

j=1
| ckj |.

Let EN+m′−m′′ (EN+m′−m′′ ) be the subspace of the space E such that the orthonor-
mal system of vectors {eN+m′−m′′+1, . . .} ({e1, . . . , eN+m′−m′′}) forms the ONB in the space
EN+m′−m′′ (EN+m′−m′′ ). Let PEa be an orthogonal projector in the space E onto a subspace Ea
of the space E. Let us consider the system of vectors f̃N+1, f̃N+2, . . .. Here f̃k = PEN+m′−m′′ fk

for any k > N. Therefore, ‖ fk − f̃k‖E ≤ lT
k − | ck,k+m′−m′′ | and for any k > N we have

‖ek+m′−m′′ − f̃k‖ ≤
∥∥∥ ∑

i 6=k+m′−m′′
ck,iei + (1− ck,k+m′−m′′)ek+m′−m′′

∥∥∥ =
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=
√

2(1− ck,k+m′−m′′) < 1.

Hence, the system of vectors { f̃k, k > N} of the space EN+m′−m′′ is the perturbation

of ONB {ek, k > N + m′ −m′′} which is small in the following sense
∞
∑

j=N+1
‖ej+m′−m′′ −

f̃ j‖E < 1 according to (21). Therefore, the system of vectors { f̃k, k > N} is the Riesz basis
in the space EN+m′−m′′ (see [46], chapter 1.6). The system of vectors { f1, . . . , fN , f̃N+1, . . .}
is the Riesz basis in the space E since it is nearby to the ONB F = { f j} in the following

sense
∞
∑

j=N+1
‖ f j − f̃ j‖E ≤

∞
∑

j=N+1
(lT

j − | cj,j+m′−m′′ |) < 1.

The subsystem { f̃N+1, . . .} of Riesz basis { f1, . . . , fN , f̃N+1, . . .} belongs to the subspace
EN+m′−m′′ and forms Riesz basis in the subspace EN+m′−m′′ of codimension N + m′ −m′′.
Therefore, the system of vectors { f̂1, . . . , f̂N , f̃N+1, . . .} forms Riesz basis in the space E
(here f̂i = PEN+m′−m′′

fi, i = 1, . . . , N). Hence, the system of vectors { f̂1, . . . , f̂N} forms the
basis in the space EN+m′−m′′ . It is impossible in the case m′ > m′′. The contradiction proves
that m′′ = m′.

Remark 1. The conditions (14)–(16) are invariant with respect to changing of numbering of vectors
of bases E , F .

Remark 2. The theory of determinants of linear operators [47] forms different approaches to a
definition of a determinant and to study conditions of its existence.

The Poincare Theorem gives the condition on the infinite matrix of a linear operator in
some basis sufficient to the existence of determinant. Poincare Theorem (see [48], p. 400)
states that the following two conditions (A) and (B) are sufficient for the existence of the
determinant of an infinite matrix ‖C‖ (the determinant of the infinite matrix ‖C‖ is defined
as the limit of n-th order main angular minor of matrix ‖C‖ as n → ∞). Here (A) is the
condition of unconditional convergence of products of diagonal matrix elements; (B) is the
condition of absolute convergence of the series of non-diagonal elements of matrix ‖C‖. If
the matrix ‖C‖ is orthogonal, then the condition (A) is the consequence of the condition (B).
In this case the condition (16) on the pair of ONB E and F is equivalent to the condition B)
of the Theorem 25 [48] for the matrix which is connected with the matrix ‖C‖ = ‖( fk, ej)‖
by means of permutations of rows and columns. Thus, the deformation of the measure
under the action of linear mapping is connected with the determinant of the mapping.

Let us introduce some notations. Let E , F be a pair of ONB. Finite-dimensional
subspaces En = span(e1, . . . , en), Fn = span( f1, . . . , fn) and their orthogonal completions
En = (En)⊥, Fn = (Fn)⊥ are defined for any n ∈ N. Operators PEn and PEn in the space
E are operators of orthogonal projections onto subspaces En and En respectively. For any
n ∈ N the matrix Cn = ‖(ei, f j)‖, i, j ∈ {1, . . . , n}, is the matrix of orthogonal projector
PFn ,En : Fn → En from the subspace Fn into the subspace En in pair of bases { f1, . . . , fn}
and {e1, . . . , en}. Let λn be the Lebesgue measure in an n-dimensional Euclidean space.

Lemma 13. Let E , F be a pair of bases which satisfies conditions (14) and (20). Then for any
ε > 0 there is a number Nε ∈ N such that Tr(CT

n Cn) ≥ n− ε for any n ≥ Nε.

Proof. To prove Lemma 13 we firstly obtain some asymptotic estimates for the spectrum
of the matrix Cn = ‖(ei, f j)‖, i, j ∈ {1, . . . , n}.

Norms of projections of vectors f j, j = 1, . . . , n onto a subspace En have following

expressions ‖PEn f j‖2 =
n
∑

k=1
c2

kj. Therefore,

1 ≥ ‖PEn f j‖2 ≥ c2
jj = α2

j ∀ j ∈ {1, . . . , n}. (22)
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Let a number ε > 0 be fixed. Since the series
∞
∑

k=1
(1− αk) converges (Lemma 11), there

is a number mε ∈ N such that n

∑
k=mε+1

(1− αk) ≤
ε

2
(23)

for any n ≥ mε. Then, according to (22) and (23) we have the estimate

n

∑
k=mε+1

(1− ‖PEn fk)‖) ≤
∞

∑
k=mε+1

(1− αk) ≤
ε

2
∀ n > mε.

Since the sequence of operators {PEn} converges to unit operator in the strong operator
topology, lim

n→∞
‖PEn f j‖ = 1 for any j ∈ {1, . . . , mε}. Therefore, there is a number Nε > m

such that the inequality
mε

∑
j=1

(1− ‖PEn f j‖) <
ε

2
(24)

holds for any n ≥ Nε. Thus, for any ε > 0 there are numbers mε ∈ N and Nε > mε such
that the condition

n

∑
j=1

(1− ‖PEn f j‖) =
mε

∑
j=1

(1− ‖PEn f j‖) +
n

∑
j=mε+1

(1− ‖PEn f j‖) < ε (25)

hods for all n ≥ Nε.
Columns of the matrix ‖Cn‖ are coordinate columns of vectors PEn f1, . . . , PEn fn with

respect to ONB {e1, . . . , en} of the space En. Hence, the equality (CT
n Cn)jj = ‖PEn f j‖2 holds

for any j ∈ {1, . . . , n}. Therefore,

Tr(CT
n Cn) =

n

∑
j=1
‖PEn f ‖2

j =
n

∑
j=1

(1− (1− ‖PEn f ‖j))
2 ≥ n− 2

n

∑
j=1

(1− ‖PEn f ‖j)

for any n ∈ N. Thus, according to (25) there is a number Nε ∈ N such that Tr(CT
n Cn) ≥

n− 2ε for any n ≥ Nε.

Corollary 11. Let the assumption of Lemma 13 be hold. Then for any ε ∈ (0, 1
2 ) there is a number

Nε ∈ N such that det(CT
n Cn) ≥ 1− 2ε for any n ≥ Nε.

Proof. The matrix CT
n Cn is positive n× n matrix. Hence, it has the ONB of eigenvectors

and the collection of n positive eigenvalues µ1, . . . , µn. The matrix Cn is the matrix of
the operator of orthogonal projection PFn ,En : Fn → En (and CT

n is the matrix of operator
of orthogonal projection PEn ,Fn from the subspace En onto the subspace Fn). Therefore,
the eigenvalues of the matrix CT

n Cn are no greater than 1 since ‖PFn ,En x‖E ≤ ‖x‖F ∀ x ∈ Fn
and ‖PEn ,Fn y‖F ≤ ‖y‖E ∀ y ∈ En. Thus, 0 < µk ≤ 1 ∀ k ∈ {1, . . . , n}.

Let us fix some ε ∈ (0, 1
2 ). Then, according to Lemma 13 there is the number Nε ∈ N

such that the inequality Tr(CT
n Cn) =

n
∑

k=1
(1− (1− µk)) = n−

n
∑

k=1
(1− µk) ≥ n− ε holds

for any n ≥ Nε. Hence,
n
∑

k=1
tk < ε where tk = 1− µk ∈ [0, ε]. Therefore, det(CT

n Cn) =

n
∏

k=1
µk =

n
∏

k=1
(1 − tk) ≥ 1 +

n
∑

k=1
ln(1 − tk). According to Lagrange Theorem we have

ln(1− t) > − t
1−ε ∀ t ∈ [0, ε]. Therefore, the inequality det(CT

n Cn) ≥ 1− 2ε holds for any
n ≥ Nε.

Lemma 14. Let E , F be a pair of bases which satisfy the conditions (14) and (20). Then
lim

n→∞
λn(PFn ,En(Qn)) = λF (Q) for any Q ∈ KF .
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Proof. Since the rectangle Q ∈ KF is measurable, the equality λF (Q) = lim
n→∞

λn(Qn)

holds. Here Qn is the n-dimensional section of the rectangle Q by the hyperplane Fn for
each n ∈ N.

Let pn = PFn ,En(Qn) be the orthogonal projection of the n-dimensional rectangle
Qn = Fn

⋂
Q from the subspace Fn onto the subspace En. The matrix ‖c(n)i,j‖, i, j ∈ 1, n is

the Jacobi matrix of the linear mapping of orthogonal projection PFn ,En in the bases f1, . . . , fn
and e1, . . . , en in subspaces Fn and En. Therefore, λn(pn) = det(‖Cn‖)λn(Qn).

According to Corollary 11 for any ε ∈ (0, 1
2 ) there is the number Nε ∈ N such that the

condition det(CT
n Cn) = (det(Cn))2 ≥ 1− ε holds for any n ≥ Nε. Moreover, | det(Cn) |≤ 1.

Therefore,
lim

n→∞
λn(PFn ,En(Qn)) = lim

n→∞
(| det(Cn) | λn(Qn)) = λF (Q).

Remark 3. The proof of the Lemma 14 is based on the existence of the determinant det(C) =
lim

n→∞
det(Cn) of the matrix C = ‖( fk, ej)‖ (see [47–50]).

Theorem 8. Let the condition (14) be hold. If Q ∈ KF , then Q ∈ RE and λE (Q) = λF (Q).
On the contrary, if P ∈ KE , then P ∈ RF and λF (P) = λE (P).

Proof. According to the Theorem 7 we can count that the condition (20) holds. (In opposite
case we can change the numbering of basis vectors to obtain (20) but the rings RE , RF
and measures λE , λF do not change). If we prove the first statement, then the second
one follows from the first statement and the Theorem 6. To prove the first statement of
the Theorem 8 it is sufficient to prove the statement for a rectangle Q ∈ KF such that
λF (Q) > 0.

In fact, let the first statement of the Theorem 8 is proved for a rectangle Q′ ∈ KF such
that λF (Q′) > 0. Let Q ∈ KF and λF (Q) = 0. Then, for any ε > 0 the rectangle Q ∈ KF
can be inscribed into the measurable rectangle Q′ ∈ KF with positive measure λF (Q′) < ε.
According to the above assumption Q′ ∈ RE and λE (Q′) = λF (Q′). Therefore, the external
measure λ̄E admits estimates λ̄E (Q) ≤ λE (Q′) = λF (Q′) < ε. Since ε > 0 is arbitrary,
λE (Q) = 0 = λF (Q).

Let us show that if Q ∈ KF and λF (Q) > 0, then for any ε > 0 there are

(1) a set S ∈ RE such that Q ⊂ S and λE (S) < (1 + ε)λF (Q) (the upper estimate);
(2) a set s ∈ RE such that s ⊂ Q and λE (s) > (1− ε)λF (Q) (the low estimate).

I. The upper estimate. Let Q ∈ KF and λF (Q) > 0. Let {dk} be a sequence of

lengths of edges of the rectangle Q. Then,
∞
∑

k=1
max{0, dk − 1} < ∞ since rectangle Q is

measurable. Moreover, the series
∞
∑

k=1
(dk− 1) converges absolutely since λF (Q) > 0. Hence,

0 < d0 ≤ 1 ≤ D0 < +∞ where d0 = inf{dk}, D0 = sup{dk}. Since measures λE , λF are
invariant with respect to a shift, we can count that the rectangle Q is centered and it can be
parametrized by the following way

Q = {x ∈ E : (x, fk) ∈ [−1
2

dk,
1
2

dk], k ∈ N}.

Since the length of the rectangle Q projection onto the axis Oej, j = 1, 2, . . . is equal to

bj =
∞
∑

k=1
dk | ck,j |, j ∈ N, the rectangle Q can be inscribed into the rectangle Π such that

edges of the rectangle Π are collinear to the vectors of ONB E and lengths of edges form
the sequence {bj}.
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Let us prove that the rectangle Π ∈ K(E) and λE (Π) > 0. It is sufficient to prove that

the series
∞
∑

j=1
| bj − 1 | converges. For every j ∈ N we have

bj =
∞

∑
k=1

dk | ck,j |=
∞

∑
k=1
| ck,j | +

∞

∑
k=1

(dk − 1) | ck,j |= lj +
∞

∑
k=1

(dk − 1) | ck,j | .

Hence, we have estimates

∞

∑
j=1
| bj − 1 |≤

∞

∑
j=1

(lj − 1) +
∞

∑
j=1

∞

∑
k=1
| dk − 1 | | ck,j |=

=
∞

∑
j=1

(lj − 1) +
∞

∑
k=1
| dk − 1 | l̂k < +∞. (26)

In fact, lj =
∞
∑

k=1
| ck,j |> 1 ∀ j and the series

∞
∑

j=1
(lj − 1) converges according to

condition (14). Analogously, l̂k =
∞
∑

j=1
| ck,j |> 1 ∀ k and the series

∞
∑

k=1
(l̂k − 1) converges ac-

cording to the Theorem 6. Hence, the sequence {l̂k} is bounded. Therefore, the estimate (26)
holds.

Let us construct the centered rectangle Π̃ ∈ KE such that lengths of edges of this rect-
angle form the sequence {b̃j}, b̃j = max{1, bj}, j ∈ N. Then, the rectangle Π̃ is absolutely
measurable according to the estimate (26).

Since the rectangle Q ∈ KF is measurable, the equality λF (Q) = lim
n→∞

λn(Qn) holds

where Qn is the n-dimensional section of the rectangle Q by the hyperplane Fn for each
n ∈ N.

Let pn = PFn ,En(Qn) be the orthogonal projection of the n-dimensional rectangle
Qn = Fn

⋂
Q from the subspace Fn onto the subspace En. In the proof of Lemma 14 the

equality λn(pn) = det(‖Cn‖)λn(Qn) is obtained. Here the matrix Cn = ‖c(n)i,j‖, i, j ∈ 1, n
is the Jacobi matrix of the linear mapping of orthogonal projection PFn ,En in the bases
f1, . . . , fn and e1, . . . , en in subspaces Fn and En.

Let Pn = PEn(Q) be the orthogonal projection onto the subspace En of the unit rect-
angle Q. Let Π̃n be the projection of the rectangle Π̃ onto n-dimensional hyperplane En.
Then, pn ⊂ Pn ⊂ Π̃n for any n ∈ N and Pn be the convex subset of the space En. Let

∞

∏
j=1

b̃j = B < ∞. (27)

Hence, λn(Π̃n) = b̃1 · · · b̃n ≤ B ∀ n ∈ N.
The rectangle Q can be parametrized by shifts of n-dimensional rectangle Qn along the

vectors fn+1, . . . by the equality Q =
{

Qn +
∞
∑

k=n+1
dktk fk, tk ∈ [− 1

2 , 1
2 ],

∞
∑

k=n+1
d2

kt2
k < ∞

}
.

Therefore, the set Pn admits the parametrization

Pn =
{

pn +
∞

∑
k=n+1

dktkPEn( fk), tk ∈
[
−1

2
,

1
2

]
,

∞

∑
k=n+1

d2
kt2

k < ∞
}
=

=
{

pn +
n

∑
j=1

tjβn,jej, tj ∈ [−1
2

,
1
2
]
}

(28)

where βn,j =
∞
∑

k=n+1
dk | ck,j |. For every n ∈ N we define the numbers
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∆j,n =
∞

∑
k=n+1

| ck,j |, j = 1, . . . , n. (29)

Hence, the set Pn lies in the convex hull Sn of shifts of the set pn along the axes Oej

onto the vectors tD0∆j,nej, t ∈ [− 1
2 , 1

2 ], j = 1, . . . , n:

Pn ⊂
⋃

(t1,...,tn)∈[−1,1]n
(pn +

n

∑
j=1

1
2

tjD0∆j,nej) ≡ Sn ⊂ Π̃n.

For every n ∈ N the set Sn is the result of sequentially for j = 1, . . . , n elongations of
the set pn along the axis Oej onto the value 1

2 D0∆j,n in directions of vectors ej and −ej. We
prove that the set Sn is Jordan measurable and obtain the estimate

λn(Sn) ≤ λ(pn) +
n

∑
j=1

BD0∆n,j (30)

for its Jordan measure by using the induction with respect to sequentially elongation.

Let Sn,0 = pn, Sn,k =
⋃

(t1,...,tk)∈[−1,1]k
(pn + 1

2

k
∑

j=1
tjD0∆j,nej) for every k = 1, . . . , n.

Then, Sn = Sn,n. We prove that sets Sn,k, k = 1, . . . , n are Jordan measurable and ob-
tain estimates (30) by the induction with respect to indexes k ∈ {0, 1, . . . , n}. The set Sn,0 is
Jordan measurable and λn(Sn,0) = λ(pn). Let k ∈ {0, . . . , n− 1}. Let the set Sn,k is Jordan
measurable and the estimate

λn(Sn,k) ≤ λ)pn +
k

∑
j=1

BD0∆n,j (31)

holds. Then, Sn,k+1 = Sn,k
⋃

∆Sn,k where

∆Sn,k = Sn,k+1\Sn,k =
⋃

tk+1∈[−1,1]

(Sn,k +
1
2

tk+1D0∆n,k+1ek+1).

Therefore, the set ∆Sn,k is Jordan measurable.
Inequalities λn−1(PΓk+1(Sn,k)) ≤ λn−1(PΓk+1)(Sn,k) ≤ b̃1 . . . b̃k b̃k+2 . . . b̃n ≤ B take

place since the orthogonal projection PΓk+1 of the set Sn,k onto the (n − 1)-dimensional
hyperplane Γk+1 = span(e1, . . . , ek, ek+2, . . . , en) belongs to the projection of the rectangle
Π̃n onto this hyperplane. We have λn(∆Sn,k) ≤ BD0∆n,k+1 since the elongation of the
set Sn,k to the set Sn,k+1 along the axis Oek+1 is equal to D0∆n,k+1. Therefore, sets Sn,k are
Jordan measurable and estimates (31) are hold for any k = 0, 1, . . . , n. Thus, for every n ∈ N
the set Sn is measurable and the estimate (30) takes place.

Lemma 15. Let the condition (14) be hold. Then lim
n→∞

( n
∑

j=1
∆j,n

)
= 0.

Proof. Let us fix a number ε > 0. Since the series
∞
∑

j=1
(1− αj) converges, there is the number

mε ∈ N such that
∞
∑

j=1+m
(1− αj) <

ε
2 for every m ≥ mε. According to the condition (14) the

inequality
∞
∑

k=1
| ck,j |< +∞ holds for any j ∈ N. Hence, there is the number N > mε such

that
mε

∑
j=1

∞
∑

k=N+1
| ck,j |< ε

2BD0
. Thus, for every n > N we have estimates
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n

∑
j=1

∆j,n =
mε

∑
j=1

∆j,n +
n

∑
j=mε+1

∆j,n =
mε

∑
j=1

∞

∑
k=n+1

| ck,j | +
n

∑
j=mε+1

∞

∑
k=n+1

| ck,j |<

<
mε

∑
j=1

∞

∑
k=N+1

| ck,j | +
n

∑
j=mε+1

(1− αj) < ε.

Corollary 12. Let the condition (14) be hold. Then for every n ∈ N there is the measurable set
Sn ⊂ En, such that Pn ⊂ Sn and the sequence {Sn} satisfy the condition lim

n→∞
(Sn) = λF (Q).

The statement of the Corollary 12 is the consequence of the Lemmas 14, 15 and the
estimates (30).

Let Bj be the projection of the rectangle Q onto the axis Oej. Then, Bj is the segment

with the length bj =
∞
∑

k=1
dk | (ej, fk) |. Since Pn is the projection of the rectangle Q onto the

hyperplane En and Pn ⊂ Sn,

Q ⊂ Sn × Bn+1 × Bn+2 × · · · ∀ n ∈ N.

According to (26) the series
∞
∑

k=1
(bk − 1) converges absolutely.

Let us fix a number ε > 0. Then, there is the number n0 ∈ N such that, at first,
∞
∏

j=n+1
bj ∈ [1, 1 + ε

2 ) for any n ≥ n0; at second, λn(Sn) ≤ (1 + ε
2 )λF (Q) for any n ≥ n0

according to the Corollary 12. Therefore, there is the set S = Sn0 × (Bn0+1 × Bn0+2 × · · · )
such that λE (S) < (1 + ε

2 )
2λF (Q) and S ⊃ Q, S ∈ RE . Hence, the estimation from above

for λ̄E (Q) is obtained.
II. The low estimate. Let

Q = {x ∈ E : (x, fk) ∈ [−dk
2

,
dk
2
]}

and
Qn = {x ∈ E : (x, fk) ∈ [−dk

2
,

dk
2
] ∀ k = 1, . . . , n; (x, fi) = 0 ∀ i > n}.

For every n ∈ N the set pn = PEn(Qn) is the orthogonal projection of the set Qn onto
the hyperplane En.

Hence, pn =
{ n

∑
j=1

n
∑

k=1
dktkcj,kej, t1, . . . , tn ∈ [− 1

2 , 1
2 ]
}

for any n ∈ N. Then, for any

x ∈ pn and any l = 1, . . . , n the equality (x, fl) =
n
∑

j=1

n
∑

k=1
dktkcj,kcj,l holds. Since

∞
∑

j=1
cj,kcj,l =

δkl , (x, fl) = dltl −
n
∑

k=1

∞
∑

j=n+1
dktkcj,kcj,l , l = 1, . . . , n. Therefore,

sup
x∈pn

| (x, fl)− dltl |≤
1
2

n

∑
k=1

dk

∞

∑
j=n+1

(| cj,k | | cj,l |) ≤

≤ 1
2

D0

(
n

∑
k=1

∞

∑
j=n+1

(| cj,k |)
)

∞

∑
j=n+1

| cj,l | . (32)

Let us consider numerical sequences ∆l,n, n ∈ N, l ∈ {1, . . . , n} (see (29)) and

γn =
n

∑
k=1

∞

∑
j=n+1

| cj,k |=
n

∑
k=1

∆k,n. (33)
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According to (32)

sup
x∈pn

| (x, fl) |≤ dltl +
1
2

D0γn∆l,n ∀ l = 1, . . . , n. (34)

Consider the set σn ⊂ pn where

σn =
{ n

∑
k,j=1

dktkcj,kej, | tk | ≤
1
2

(
1− 2

d0
∆k,n

)
, k = 1, . . . , n

}
. (35)

The set σn is the convex polyhedron in the space En. It is the image of n-dimensional

rectangle
{ n

∑
k,j=1

dktk fk; | tk | ≤ 1
2 (1−

2
d0

∆k,n), k = 1, . . . , n
}

from the space Fn under the

action of projector PFn ,En . Therefore,

λn(σn) = det(Cn)
n

∏
j=1

(
1− 2

d0
∆j,n

)
λn(Qn). (36)

The n-dimensional set σn admits the extension sn along the directions en+1, en+2, . . .
such that sn ⊂ Q. Consider the set

sn =
{

σn +
∞

∑
j=n+1

tjej, tj ∈ [−aj, aj], j ≥ n + 1
}

. (37)

Here for every j ≥ n + 1 the number aj is chosen from the interval (0, 1
2 ) such that the

condition sn ⊂ Q holds. The condition sn ⊂ Q is equivalent to the system of inequalities
sup
x∈sn

| (x, fk) | ≤ dk
2 , k ∈ N.

Since | tl |≤ 1
2 (1−

2
d0

∆l,n) for every l = 1, . . . , n in the parametrization of the set (35),
according to (34) we obtain estimates

sup
x∈σn

| (x, fl) |≤
1
2

dl(1− ∆l,n(
2
d0
− D0

d0
γn)).

Since aj ≤ 1
2 ∀ j ≥ n + 1, according to (35) we have

sup
x∈sn

| (x, fk) |≤ sup
y∈σn

| (y, fk) | +
∞

∑
j=n+1

aj | cjk |≤

≤ dk
2
(1− ∆k,n

2− D0

d0
γn) +

∆k,n

2
≤ dk

2
(1− ∆k,n

1− D0

d0
γn)

for any k ∈ {1, . . . , n}. Therefore, the inequality sup
x∈sn

| (x, fk) | ≤ 1
2 dk, k = 1, . . . , n holds for

any sufficiently large n.
For every k ≥ 1 + n we have

sup
x∈sn

| (x, fk) | ≤ akck,k +
1
2 ∑

j 6=k
cjk = akαk +

1
2
(lk − αk).

Hence, conditions sup
x∈sn

| (x, fk) |< 1
2 dk, k > n + 1, are satisfied if the values ak are

defined by equations

ak =
1

2αk
(dk − lk + αk) =

1
2
− lk − dk

2αk
, k = n + 1, . . . .
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Thus, if the number n ∈ N is sufficiently large, then there is the set sn ∈ RE of type (37)
such that Q ⊃ sn and its λE -measure has the estimation

λE (sn) = λn(σn)
∞

∏
j=n+1

2aj ≥

≥ [det(Cn)λn(Qn)
n

∏
j=1

(1− 2
d0

∆l,n)]
∞

∏
j=n+1

(
1− lk − dk

αk

)
. (38)

According to Corollary 11 we have lim
n→∞

det Cn = 1; lim
n→∞

λn(Qn) = λF (Q) since

Q ∈ KF . According to Lemma 11 and Theorem 7 we have

lim
n→∞

(
∞

∑
k=n+1

∞

∑
j=k+1

| ck,j | +
∞

∑
j=n+1

∞

∑
k=j+1

| ck,j |) = 0

and lim
n→∞

(
n
∑

l=1

∞
∑

j=n+1
| cl,j |) = 0. Hence, lim

n→∞
(

n
∑

l=1
∆l,n) = 0. Therefore,

lim
n→∞

n

∏
l=1

(
1− 2

d0
∆l,n

)
= 1.

Since αk ∈ (0, 1] and lim
k→∞

αk = 1, the series
∞
∑

k=1

lk−1
αk

converges according to the

condition (15). According to the condition λF (Q) ∈ (0,+∞) the series
∞
∑

k=1

1−dk
αk

converges.

Hence, lim
n→∞

∞
∏

j=n+1

(
1− lk−dk

αk

)
= 1. Therefore, lim

n→∞
λE (sn) = λF (Q) according to (38) and

we obtain the low estimate. The proof of the Theorem 8 is finished.

5. The Ring RE
⋂RE in the Case of Distant Bases F and E

Theorem 9. If the condition (14) is not satisfied, then λF (A) = 0 and λE (A) = 0 for any set
A ∈ RE

⋂RF .

Lemma 16. Let sE = Π0\(
n⋃

i=1
Πi), Πk ∈ KE ∀ k = 0, . . . , n. Let λE (sE ) > 0. Then there is the

rectangle PE ∈ KE such that PE ⊂ sE and λE (PE ) > 0.

Proof. Firstly, we consider the case sE = Π\Π′ where Π, Π′ ∈ KE (we can assume that
Π′ ⊂ Π). Let Π = {x ∈ E : (x, ej) ∈ [aj, bj), j ∈ N} and Π′ = {x ∈ E : (x, ej) ∈ [a′j, b′j),
j ∈ N}. Then, [aj, bj) ⊃ [a′j, b′j) ∀ j ∈ N. Since λE (Π\Π′) > 0, there is the number k ∈ N
such that b′′k − a′′k > 0 and [ak, bk)\[a′k, b′k) ⊃ [a′′k , b′′k ). Let Π′′ be the rectangle such that k-th
edge of Π′′ is the segment [a′′k , b′′k ) and its j-th edge coincides with j-th edges of the rectangle
Π for every j 6= k. Then, the rectangle Π′′ satisfies the following conditions: Π′′ ⊂ KE ,
Π′′ ⊂ Π, Π′′

⋂
Π′ = ∅, Π′′ ⊂ sE and λE (Π′′) > 0.

In general case sE = Π0\(
n⋃

i=1
Πi), Πi ∈ KE , i = 0, 1, . . . , n, the statement of the

Lemma 16 can be obtained by the applying of the induction method with respect to
n ∈ N.

Let lj =
∞
∑

k=1
| ck,j | be the length of the projection of the unit rectangle Q ∈ KF onto

the axis Oej for every j ∈ N. Let lT
k =

∞
∑

j=1
| ck,j | be the length of the projection of the unit
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rectangle Π ∈ KE onto the axis O fk for every k ∈ N. Then, lj ≥ 1, lT
k ≥ 1 according to

Lemma 10 Since the condition (14) is not satisfied, following two conditions hold

∞

∏
j=1

lj = +∞;
∞

∏
k=1

lT
k = +∞.

These two conditions are equivalent to following two equalities

∞

∑
j=1

(lj − 1) = +∞;
∞

∑
k=1

(lT
k − 1) = +∞. (39)

Let LT = sup
k∈N

lT
k and L = sup

j∈N
lj. There are three possible cases for sequences {lT

k } and

{lj}.

(1) LT = +∞ and L = +∞.
(2) LT < +∞ snd L < +∞.
(3) either LT = +∞ and L < +∞, or vice versa.

Let us prove the statement of the Theorem 9 for every of these three cases.
Let us study the case (1). Consider the case LT = +∞ and L = +∞.

Lemma 17. Let LT = +∞. If Π ∈ KE and λE (Π) > 0, then λF (Π) = +∞.
Let L = +∞. If Q ∈ KF and λF (Q) > 0, then λE (Q) = +∞.

Proof. Since LT = +∞, there are two possible cases: either

(i) ∃ k0 ∈ N : lT
k0

= +∞;

or

(ii) ∀ k ∈ N : lT
k < +∞.

Let us prove that for every of these cases conditions Π ∈ KE : λE (Π) > 0 imply
λF (Π) = +∞. Hence, λF (Π) = +∞.

(i) Let the condition ∃ k0 ∈ N : lT
k0

= +∞ be satisfied. Then the projection of the rectangle
Π onto the axis O fk0 is unbounded segment. However, the projection of a set S onto
the axis O fk0 is the finite union of bounded segments. Therefore, it is impossible to
cover a rectangle Π ∈ KE : λE (Π) > 0 by the finite union S of rectangles from the
collection KF .

(ii) Let the condition lT
k < +∞ ∀ k ∈ N be satisfied. If Π ∈ KE : λE (Π) > 0, then

the sequence of lengths of projections of the rectangle Π onto the axes O fk, k ∈ N,
is unbounded. If {rk} is the sequence of lengths of edges of the rectangle Π, then
inf

j
rj = r0 > 0 according to the condition λE (Π) > 0. Therefore, the length of the

projection of the rectangle Π onto the axis O fk no less than r0lT
k . The sequence lT

k is
unbounded according to (ii). Hence, the sequence of lengths of projections of the
rectangle Π onto the axes O fk, k ∈ N is unbounded.

On the other hand, if S =
m⋃

k=1
Qk is the finite union of rectangles from the collection

KF , then the sequence of lengths of projections of the set S onto an axis O f j is bounded.
Hence, in the case (ii) it is impossible to cover the rectangle Π ∈ KE : λE (Π) > 0 by the
finite union S of rectangles from the collection KF . Therefore, λF (Π) = +∞.

Corollary 13. If L = +∞, then the condition A ∈ RE
⋂RF implies λF (A) = 0. If LT = +∞,

then the condition A ∈ RE
⋂RF implies λE (A) = 0. If the condition 1) is satisfied, then for any

set A ∈ RE
⋂RF the equality λF (A) = λE (A) = 0 holds.
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Proof. Let A ∈ RE
⋂RF . Let us assume the opposite that λE (A) > 0. Then, according

to the Lemma 16 there is a rectangle p ∈ KE such that p ⊂ A and λE (p) > 0. According
to the Lemma 17 the condition LT = +∞ implies that µF (A) ≥ µF (p) = +∞. This is the
contradiction to the condition A ∈ RF . Therefore, λE (A) = 0. Analogously, the condition
L = +∞ implies that λF (A) = 0.

Let us study the case (2). Consider the case LT < +∞ and L < +∞.

Lemma 18. Let Π ⊃ Q where Π ∈ KE , Q ∈ KF . Let the condition (2) be satisfied. Then
λF (Q) = 0.

Proof. Let us assume the opposite that λF (Q) > 0. Let {dk} be the sequence of lengths
of the edges of the rectangle Q. We can assume that dk ≤ 1. In fact, in opposite case we
can change the rectangle Q onto the smaller inscribed rectangle Q′ : Q′ ⊂ Q ⊂ Π such
that lengths of edges of the rectangle Q′ no greater than 1. Then, δk = 1− dk ≥ 0 ∀ k,
lim
k→∞

dk = 1 and
∞

∑
k=1

δk < +∞ (40)

according to the condition λF (Q) ∈ (0,+∞).
Therefore, if Π ∈ KE , Π ⊃ Q and {Dj} is the sequence of lengths of edges of the

rectangle Π, then

Dj ≥
∞

∑
k=1

dk | ( fk, ej) |=
∞

∑
k=1

(1− δk) | cj,k |= lj −
∞

∑
k=1

δk | cj,k | .

Hence,

∞

∑
j=1

(Dj − 1) ≥
∞

∑
j=1

(lj − 1−
∞

∑
k=1
| cj,k | δk) =

∞

∑
j=1

(lj − 1)−
∞

∑
k=1

(
∞

∑
j=1
| cj,k |)δk =

=
∞

∑
j=1

(lj − 1)−
∞

∑
k=1

lT
k δk ≥

∞

∑
j=1

(lj − 1)− LT
∞

∑
k=1

δk = +∞

since the first series diverges according to the assumption of violation of the condition (14)
and the second series is converges according to the condition (40) with finiteness of the

value LT = sup
k

lT
k . But the condition Π ∈ KE implies that

∞
∑

j=1
(Dj − 1) < +∞. The obtained

contradiction proves the statement of Lemma 18.

Corollary 14. Let the condition (2) be satisfied. Then for any rectangle Π ∈ KE the equality
λF (Π) = 0 holds.

Proof. Let us assume the opposite, that there is a rectangle Π ∈ KE such that µF (Π) > 0.
Then, there is the set s ∈ rF such that λF (s) > 0 and s ⊂ Π. Hence, according to Lemma 16
there is a rectangle q ∈ KF such that q ⊂ s ⊂ Π and λF (q) > 0. Therefore, λE (Π) = +∞
according to Lemma 18. This is the contradiction with the condition Π ∈ KE .

Let us show that λF (A) = 0 for any A ∈ RE
⋂RF . For this goal we prove that if the

rectangle q ∈ KF and λF (q) > 0, then it is impossible to cover the rectangle q ∈ KF by the
finite union S ∈ rE of rectangles Π1, . . . , Πm ∈ KE .

Lemma 19. Let S =
m⋃

i=1
Πi where Πi ∈ KE , i = 1, . . . , m and Πi 6= ∅ ∀ i = 1, . . . , m. Then

there is a hyperplane Γ of finite codimension k ≤ m− 1 of type

Γj1,...,jk
c1,...,ck = {x ∈ E : (x, ej) = cj, j = 1, . . . , k} (41)
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such that Γ
⋂

S = Γ
⋂

Πj∗ for some j∗ ∈ {1, . . . , m}.

Proof. Let us prove the statement by the induction. Firstly we note that the statement is
true for m = 1 since in this case S = Π1 and Γ = E.

Let P⊥ej
be the orthogonal projection onto the subspace (x, ej) = 0 in the space E for

every j ∈ N. For every j ∈ N the intersection Γj
c
⋂

Π1 is either empty set or rectangle in the
hyperplane Γj

c.
Let m ∈ N.
The intersection Γj

c
⋂

S =
m⋃

i=1
(Γj

c
⋂

Πi) is the union of no more than m nonempty

rectangles Γj
c
⋂

Πi, i = 1, . . . , m in the hyperplane Γj
c. Therefore, for every j ∈ N the set-

valued function P⊥ej
(Γj

c
⋂

S), c ∈ R, can has only finite number of values and these values
lies in a set of subsets of the subspace E	 span(ej).

If the set-valued function P⊥ej
(Γj

c
⋂

S), c ∈ R, has only one nonempty value Bj for any
j ∈ N, then the set S is the rectangle (×)∞

j=1POej(S) and the statement of the Lemma is true

for hyperplane Γj
c for any j and for any c ∈ POej(S).

In opposite case there is a number j ∈ N and there are c′, c′′ ∈ POej(S) such that the

sets Γj
c′
⋂

S and Γj
c′′
⋂

S are nonempty sets and P⊥ej
(Γj

c′
⋂

S) 6= P⊥ej
(Γj

c′′
⋂

S). Hence, for at

least one of two numbers c′, c′′ (for certainty, for the number c′) the set P⊥ej
(Γj

c′
⋂

S) can’t be

the union of m nonempty rectangles P⊥ej
(Γj

c′
⋂

Πi), i = 1, . . . , m in the space E	 span(ej).

Therefore, there are numbers j ∈ N and c′ ∈ R such that the set Γj
c′ is the union of no

more than m− 1 rectangles in the space E	 span(ej). Then, we can apply the assumption

of induction to the set Γj
c′(S) in the space E	 span(ej). Thus, we obtain the statement of

the Lemma.

Corollary 15. Let q ∈ KF and q ⊂ S where S =
m⋃

i=1
Πi, Πi ∈ KE ∀ i = 1, . . . , m. Then there

are a hyperplane Γ of type (41) and a number i∗ ∈ {1, . . . , m} such that Γ
⋂

q ⊂ Γ
⋂

Πi∗ .

Lemma 20. Let E , F be a pair of ONB such that the condition (2) is satisfied. If q ∈ KF and
λF (q) > 0, then λE (q) = +∞. If p ∈ KE and λE (p) > 0, then λF (p) = +∞.

Proof. We can assume without loss of generality that q is a centered rectangle such that
the sequence of lengths of its edges {dk} satisfies the condition dk ≤ 1 ∀ k (see proof of
the Lemma 18). Since λF (q) > 0, d0 = inf

k
dk > 0 and D0 = sup

k
dk < +∞. Lengths of

the projections of the rectangle q onto axes Oej form the numerical sequence {Dj}. Then,
Dj ≤ D0L. On the other hand, the condition

∞

∏
j=1

Dj = ∞ (42)

holds according to Lemma 18. For every j ∈ N the projection of the rectangle q onto the

axis Oej is the segment containing the interval
(
−Dj

2 ,
Dj
2

)
.

The rectangle q admits the parametrization

q =
{

x =
∞

∑
i=1

diti fi, ti ∈ [−1
2

,
1
2
],

∞

∑
i=1

t2
i < +∞

}
.
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Let us fix a numbers j ∈ N and b ∈ (−Dj
2 ,

Dj
2 ). Let us consider the intersection

Γj
b
⋂

q = {x ∈ q : xj = b}. The set Γj
b
⋂

q admits the parametrization

Γj
b

⋂
q =

{
x =

∞

∑
i=1

diti fi, ti ∈
[
−1

2
,

1
2

]
,

∞

∑
i=1

t2
i < +∞;

∞

∑
i=1

dici,jti = b
}

. (43)

Since |b| < Dj
2 , Γj

b
⋂

q 6= ∅. Hence, there is a vector {t0
i } ∈ `2 such that

∞
∑

i=1
dici,jt0

i = b

and | t0
i |<

1
2 ∀ i ∈ N.

Since αj = max
i∈N
| ci,j |> 0 for given j, we can define the positive number

δj = min{ 1
2αjdj

(
Dj

2
− |b|), 1

2
− | t0

j |} > 0.

Hence, for given number j there is the number i0 > j such that
∞
∑

i=i0
di | ci,j |< 1

2 αjdjδj.

Therefore, for every collection of numbers t̂j = (t1, . . . , tj−1, tj+1, . . .) such that

ti ∈
[
−

djδj

4i0D0
,

djδj

4i0D0

]
, i = 1, . . . , i0, i 6= j; ti ∈

[
−1

2
,

1
2

]
, i > i0

there is the number tj = tj(t̂j) ∈ (t0
j − δj, t0

j + δj) such that djcj,jtj + ∑
i 6=j

dici,jti = b.

Thus, points with parameters ti, i ∈ N, in the parametrization (43) belong to the set
Γj

b
⋂

q if the following conditions hold:

ti ∈ [−1
2

,
1
2
], i > i0;

| ti − t0
i |<

djδj

4i0D0
, i = 1, . . . , i0, i 6= j; (44)

tj = tj(t̂j) ∈ (t0
j − δj, t0

j + δj).

For any x ∈ Γj
b
⋂

q which is given by parametrization (43) with the parameters from

the set (44) we have (x, ek) =
∞
∑

i=1
dici,kti. Hence,

sup
x∈Γj

b
⋂

q

| (x, ek) | ≥
∞

∑
i=1

1
2

di | ci,k | −
i0

∑
i=1

1
2

di | ci,k |

for any k ∈ N. Therefore, for every k > i0 we obtain

{(x, ek), x ∈ Γj
b

⋂
q} ⊃

(
−1

2
Dk +

1
2

i0

∑
i=1

di | ci,k | ,
1
2

Dk −
1
2

i0

∑
i=1

di | ci,k |
)

.

According to (42) and the condition LT < ∞ we have

∞

∑
k=k0+1

(Dk − 1)−
∞

∑
k=k0+1

i0

∑
i=1

di | ci,k | ≥
∞

∑
k=k0+1

(Dk − 1)− D0

i0

∑
i=1

lT
i = +∞.

Then, we obtain
∞

∏
k=k0+1

(Dk −
i0

∑
i=1

di | ci,k |) = +∞. (45)
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Therefore, every intersection of the rectangle q by the one-codimensional hyperplane of

type Γj
c = {x : (x, ej) = c, j ∈ N, c ∈ (−Dj

2 ,
Dj
2 )} can not be covered by some measurable

rectangle Π∗ ∈ KE . Because if Π∗ ⊃ (Γj
b
⋂

q), then for every k > i0 the k-th edge of

rectangle Π∗ should has the length no less than Dk −
i0
∑

i=1
di | ci.k |. Thus, the condition

Π∗ ∈ KE is violated according to (45).
The same reasoning allows us to show that every intersection of rectangle q by the

m-codimensional hyperplane Γj1,...,jm
c1,...,cm of type

{x : (x, ej1) = c1, . . . , (x, ejm) = cm, j1, . . . , jm ∈ N,

ck ∈ (−Dk
2

,
Dk
2
) ∀ k ∈ {j1, . . . , jm}}

with some m ∈ N can not be covered by some measurable rectangle Π∗ ∈ KE .
Let us assume that λE (q) < +∞. Then there is the set

S =
N⋃

k=1

Πk, N ∈ N, Πk ∈ KE ∀ k ∈ {1, . . . , N},

such that q ⊂ S. Then, {x ∈ S : (x, ej) = c} 6= ∅ for every j ∈ N and for every

c ∈ (− 1
2 Dj, 1

2 Dj). Therefore, according to the Corollary 15 the condition q ⊂ S =
N⋃

k=1
Πk

implies that there are numbers j∗ ∈ {1, . . . , N} and c1, . . . , cN such that ci ∈ (− 1
2 Di, 1

2 Di)

and Γj1,...,jm
c1,...,cm

⋂
q ⊂ Πj∗ . Hence, the intersection q

⋂
Γj1,...,jm

c1,...,cm is covered by one rectangle Πj∗ .
The obtained contradiction prove that the rectangle q ∈ KF : λF (q) > 0 can’t be

covered by the finite union of rectangles from the collection KE . Hence, λE (q) = +∞.

Corollary 16. Let the pair of bases satisfy the condition (2). Then for any A ∈ RE
⋂RF the

equality λE (A) = λE (A) = 0 holds. (The proof is the same as the proof for the Corollary 13).

Let us study the case (3). Consider the case LT = +∞, L < +∞, or vice versa.
Let LT = +∞, L < +∞. Then the sequence lT

k , k ∈ N, either is an unbounded
real valued sequence or takes values +∞. The sequence lj, j ∈ N is bounded against,

but
∞
∑

j=1
(lj − 1) = +∞. Since LT = +∞, according to the corollary 13 λE (A) = 0 for any set

A ∈ RE
⋂RF .

Theorem 10. Let the condition (3) by satisfied. Then λF (A) = 0 for any set A ∈ RE
⋂RF .

Proof. Let us assume the opposite, that there is a set A ∈ RE
⋂RF such that λF (A) > 0.

Then, according to the Lemma 16 there is the rectangle q ∈ KF such that q ⊂ A and
λF (q) > 0. Let {dk} be the sequence of lengths of edges of the rectangle q ∈ KF . Then, we

can assume without loss of generality that dk ≤ 1 ∀ k ∈ N. Since λF (q) > 0,
∞
∑

k=1
| dk − 1 |<

+∞. In particular
lim
k→∞

dk = 1. (46)

The lengths of projections of the rectangle q onto the axes Oej, j ∈ N are

Dj =
∞

∑
k=1
| cj,k | dk, j ∈ N.

Therefore, if Π ∈ KE and Π ⊃ q, then
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λE (Π) ≥ exp(
∞

∑
j=1

ln(Dj)).

To prove the Theorem 10 we firstly obtain following five statements.

Lemma 21. If the condition
lim
j→∞

lj = L0 > 1, (47)

is satisfied, then
∞
∑

n=1
max{0, ln(Dj)} = +∞.

Proof. Let us fix ε > 0. According to (46) there is the number Kε such that dk > 1− ε for
any k > Kε.

Since lim
j→∞

ck,j = 0 for any k, we have lim
j→∞

(
max

k∈1,...,Kε

| ck,j |
)

= 0. Hence, there is the

number Jε such that
Kε

∑
k=1
| ck,j |< ε for every j > Jε. Therefore, for every j > Jε we have

the estimate

Dj =
∞

∑
k=1
| ck,j | dk ≥

∞

∑
k=Kε

| ck,j | (1− ε) ≥ (1− ε)(lj − ε). (48)

Since ε > 0 is arbitrary, according to (47) we can choose the value ε > 0 in (48)
such that there is a strictly monotone sequence of numbers {jn} satisfying following

condition: Djn > 1
2 (1 + L0) > 1 for any n ∈ N. Hence,

∞
∑

n=1
(Djn − 1) = +∞ and Lemma 21

is proved.

Corollary 17. If the condition (47) is satisfied, then a rectangle q ∈ KF with positive measure
λF (q) > 0 can’t be covered by a rectangle Π ∈ KE .

Let us introduce the notation δk = 1− dk, k ∈ N.

Lemma 22. Let the condition (47) be violated. If ‖δ‖2 =
√

δ2
1 + δ2

2 + . . . < 1, then a rectangle q
with positive measure λF (q) > 0 can’t be inscribe into any rectangle Π ∈ KE .

Proof. Since lj ≥ 1 ∀ j ∈ N, the negation of the condition (47) implies that there is the
limit lim

j→∞
lj = 1. According to Lemma 10 the condition αj < 1√

2
implies the estimate

lj ≥
√

2; the condition αj > 1√
2

implies the inequality lj ≥ αj +
√

1− α2
j (remember

that αj = max
k∈N

| ck,j |, j ∈ N). Hence, the equality lim
j→∞

lj = 1 implies that lim
j→∞

αj = 1.

If αj = 1 − β j (see the notation used in the Lemma 11), then lj ≥ 1 − β +
√

2β j − β2
j .

Therefore, the asymptotic equality

β j =
1
2
(lj − 1)2(1 + o(1)) (49)

as j→ ∞ holds. For every j ∈ N we have the estimate

Dj − 1 =
∞

∑
k=1
| ck,j | dk − 1 = lj − 1−

∞

∑
k=1
| ck,j | δk =

= lj − 1−
∞

∑
k 6=j
| ck,j | δk− | cj,j | δj ≥ lj − 1− δj −

√
1− α2

j ‖δ‖2. (50)
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According to (49) we have
√

1− α2
j ‖δ‖2 =

√
β j(1 + β j)‖δ‖2 ∼ (lj − 1)‖δj‖2 as j→ ∞.

Therefore, there are numbers J ∈ N and σ ∈ (0, 1− ‖δ‖2) such that√
1− α2

j ‖δ‖2 ≤ (1− σ)(lj − 1)

for every j > J. Hence,
Dj − 1 ≥ σ(lj − 1)− δj ∀ j > J

according to (50). Since the condition (14) is not satisfied, the nonnegative series
∞
∑

j=1
(lj − 1)

diverges. Therefore,
∞
∑

j=1
(Dj − 1) = +∞, hence λ(Π) =

∞
∏
j=1

Dj = +∞.

Lemma 23. Let q ∈ KF and the sequence {dk} of lengths of its edges satisfy the condition of the
Lemma 22. Then λE (q) = +∞.

The proof of the Lemma 23 repeats the proof of the Lemma 20.

Lemma 24. Let q ∈ F and λF (q) > 0. Then λE (q) = +∞.

Proof. Let us assume the opposite, that λE (q) < +∞. Hence, there is a set S =
m⋃

s=1
Πs such

that Π1, . . . , Πm ∈ KE and q ⊂ S.

Since λF (q) > 0, there is a number N ∈ N such that
∞
∑

k=N+1
δk < 1.

We can assume that the rectangle q is centered. Consider the orthogonal projec-
tions qN = PFN (q), qN = PFN (q) of the rectangle q onto N-dimensional subspace
FN = span( f1, . . . , fN) and onto its orthogonal complement respectively. Let Q1

N be the
centered unit rectangle in the subspace FN . Let Q = Q1

N × qN . Then the rectangle Q satisfies
conditions of Lemma 22. Therefore,

λE (Q) = +∞. (51)

Lengths of edges of the rectangle q satisfy conditions dk ≤ 1 ∀ k ∈ N. Hence, qN ⊂ Q1
N

and q ⊂ Q. Since λN(qN) > 0, there is the collection of vectors h1, . . . , hM ∈ FN such that
M⋃

j=1
Shj

(qN) ⊃ Q1
N (here Shj

(qN) = qN + hj). Since
M⋃

j=1
Shj

(q) ⊃ Q, we have
M⋃

j=1
Shj

(S) ⊃ Q.

Thus, we obtain the contradiction with the condition (51).

Therefore, the statement of the Theorem 10 is the consequence of the Lemma 24.

Corollary 18. Let the condition (3) be satisfied. Then the equality λE (A) = λE (A) = 0 holds for
any set A ∈ RE

⋂RF .

The Theorem 9 follows from corollaries 13, 16, 18.

6. Isometry-Invariant Measure

Let I be the group of isometries of the space E. The group I is generated by the group
S of shifts on a vector of the space E and the orthogonal group O of orthogonal mappings
in the space E.

Let S be a set of ONB in Hilbert space E. Theorems 8 and 9 imply the following statement.

Theorem 11. Let E , F ∈ S . Then λE RE
⋂RF = λF RE

⋂RF . In particular, if the condition (14)
is satisfied, then RE = RF and λE = λF . If the condition (14) is violated, then λF (A) =
λE (A) = 0 for every set A ∈ RE

⋂RF .
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Consider the family {RE , E ∈ S} of rings of subsets of the space E. LetM =
⋃
E∈S
RE .

Let us define the function of a set λ : M → [0,+∞] by the equality λ(A) = λE (A) ∀ A ∈
RE . The function λ is correctly defined since λE (A) = λF (A) for every A ∈ RE

⋂
RF due

to the Theorem 11. Let r be the ring generated by the family of setsM. Let us study the
problem of extension of the function λ from the collection of setsM to the ring r [51].

Let us introduce the relation ∼ on the set S of ONB by the following way. ONB E and
F are in the relation ∼ if the condition (14) is satisfied for ONB E and F .

Definition 2. ONB E and F are called equivalent if they satisfy the condition (14).

The relation ∼ in Definition 2 is obviously reflexive. According to the Theorem 6 the
relation ∼ is symmetric. Now we prove that the relation ∼ is transitive. Let us assume
that the pairs of ONB E , F and F , G satisfy the relation ∼ (14). Then RE = RF and
RF = RG according to the Theorem 11. Therefore,RE = RG . Hence, ONB E , G satisfy the
condition (14) according to the Theorem 11. Hence, the relation ∼ is transitive.

Let Σ be a set of equivalence classes with respect to relation ∼: Σ = S/ ∼. For every
ONB E ∈ S the space HE = L2(E,RE , λE ,C) of quadratically integrable with respect to
the measure λE complex valued functions is introduced by the standard way (see [17]).
If {E} ∈ Σ and E ′, E ′′ ∈ {E}, thenHE ′ = HE ′′ according to the Theorem 11 and definition
of the spacesHE , E ∈ S . The symbolH{E} denotes the spaceHE for arbitrary choice of an
ONB E ∈ {E}.

Now we describe the ring generated by the family of subsets RE
⋃RF for a pair of

ONB E , F belonging to different classes {E}, {F} ∈ Σ. Moreover, the sum of spacesHE
andHF will be defined.

The intersection of rings RE and RF is the ring which is denoted by the symbol
RE

⋂F . Then, λE (A) = λF (A) ≡ λEF (A) ∀ A ∈ RE
⋂RF according to the Theorem 11.

Then, the space HE ⋂F = L2(E,RE
⋂RF , λEF ,C) is the subspace of Hilbert spaces HE

andHF . LetH⊥FE andH⊥EF be orthogonal complements of the spaceHE ⋂F up to spaces
HE and HF respectively. Then, Hilbert space HEF is defined as the direct sum of three
orthogonal subspaces

HEF = H⊥FE ⊕HE ⋂F ⊕H⊥EF . (52)

Lemma 25. Let {E}, {F} be different equivalence classes of ONB in the space E. Let E ∈ {E},
F ∈ {F}. ThenHEF = HE ⊕HF . Moreover, there is the shift-invariant measure λEF : REF →
[0,+∞) such that HE ⊕HF = L2(E,REF , λEF ,C). Here the ring REF is generated by the
family of setsRE

⋃RF .

Proof. If equivalence classes {E}, {F} ∈ Σ are different, then the equality λEF (A) = 0
holds for any A ∈ RE

⋂RF according to the Theorem 11. Hence, the spaceHE ⋂F is trivial
andHEF = HE ⊕HF .

Thus, every pair of Hilbert spacesH{E} andH{F} defines the Hilbert space

H{E}{F} = H{E} ⊕H{F}. (53)

Let R{E}{F} be the ring which is generated by the collection of sets R{E}
⋃R{F}.

The equality (53) defines the scalar product in the space H{E}{F}. This scalar product
defines (see [17]) the extension of the measures λ{E}, λ{F} to the shift-invariant measure
λ{E}{F} : R{E}{F} → [0,+∞) according to the following condition. The value of the
measure λ{E}{F} on a set A

⋂
B is given by the equality

λ{E}{F}(A
⋂

B) = (χA, χB)HEF (54)

for every sets A ∈ R{E}, B ∈ R{F}. The value of the measure λ{E}{F} on other sets of
the ringR{E}{F} is defined by the additivity condition. Therefore, the function λ{E}{F} :



Mathematics 2023, 11, 1161 36 of 49

R{E}{F} → R is the finitely additive measure. This measure is shift-invariant by the construc-
tion. Moreover, if A ∈ R{E}, B ∈ R{F}, then λ{E}{F}(A

⋂
B) = 0 and λ{E}{F}(A

⋃
B) =

λ{E}(A) + λ{F}(B) according to (53) and (54) . �
Let us endow the linear hull L(H{E}, {E} ∈ Σ) with the Euclidean norm of direct sum

of Hilbert spaces. Let u =
m
∑

k=1
vk, where vk ∈ H{E}k

, k = 1, . . . , m. Then, the intersection

H{E}k

⋂H{E}j
, k 6= j, is trivial subspace according to Lemma 25. Hence, the represen-

tation of an element u ∈ L(H{E}, {E} ∈ Σ) in the form u =
m
∑

k=1
vk, where vk ∈ H{E}k

,

k = 1, . . . , m, is unique.

For any vector u ∈ L(H{E}, {E} ∈ Σ) of the form u =
m
∑

k=1
vk, vk ∈ H{E}k

, k = 1, . . . , m,

let us define

‖u‖ = (
m

∑
k=1
‖vk‖{E}k

)
1
2 . (55)

Then, the function (55) is the Euclidean norm on the space L(H{E}, {E} ∈ Σ).
By the construction the linear hull L(H{E}, {E} ∈ Σ) with the norm (55) is invariant
both with respect to a shift of the argument of functions u ∈ L(H{E}, {E} ∈ Σ) on
any vector of the space E and with respect to a transformation of argument of functions
u ∈ L(H{E}, {E} ∈ Σ) by any orthogonal operator in the space E. The completion of
Euclidean space L(H{E}, {E} ∈ Σ) by the norm (55) is the Hilbert space H.

Theorem 12. There is the unique finitely additive measure λ : r → [0,+∞) which is an additive
continuation of measures λ{E}, {E} ∈ Σ, to the ring r generated by the family of sets

⋃
{E}∈Σ

R{E}.

The completion λ : R → [0,+∞) of the measure λ : r → [0,+∞) is σ-finite, locally finite,
invariant both with respect to shift on any vector of the space E and with respect to any orthogonal
transformation of the space E. But the measure λ is not countably additive. The measure λ is
connected with the space H by the equality H = L2(E,R, λ,C).

Proof. Let r be the ring of subsets of the space E which is generated by the system of sets
{R{E}, {E} ∈ Σ}. Hence, the ring r is generated by the semi-ring

s = {A0\
N⋃

j=1

Aj, N ∈ N, A0 ∈ R{E}0
, Aj ∈ R{E}j

, E0, E1, . . . , EN ∈ Σ}. (56)

Since the system of setsR{E}0
is the ring, we can assume that {E}j 6= {E}0 for every

j = 1, . . . , N. Hence, λE (A0
⋂
(

N⋃
j=1

Aj)) = 0 according to the Theorem 11. Thus, the there

is the unique additive continuation λ of measures λ{E}, {E} ∈ Σ, to the semi-ring s

which is defined by the equality λ(A0\
N⋃

j=1
Aj) = λE (A0) for any set A0\

N⋃
j=1

Aj from the

semi-ring (56). Then, λ(A) = ‖χA‖2
H ∀ A ∈ s. Additive function λ : s → [0,+∞) on the

semi-ring s admits the unique additive extension to the measure λ : r → [0,+∞) on the
ring r. Moreover, the measure λ satisfy the condition λ(A) = ‖χA‖2

H ∀ A ∈ r.
The semi-ring s and the generated by this semi-ring ring r are invariant with respect

to both a shift on a vector of the space E and an orthogonal mapping of the space E.
The measure λ : r → [0,+∞) is both rotation- and shift-invariant measure on the space E
by its construction.

According to [17] (see also [40]) the measure λ takes zero values on a ball of the space
E with sufficiently small radius ρ ∈ (0, 1√

2
) ([44]). Therefore, the measure λ is locally finite.

Its σ-finiteness is the consequence of its locally finiteness and the separability of the space
E. Moreover, since λ(Bρ(a)) = 0 for any ball Bρ(a) = {x ∈ E : ‖x − a‖E < ρ} where
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a ∈ E, ρ = 1
4 , the measure λ is not countably additive according to the separability of the

space E.
The measure λ is not complete. Its completion λ : R → [0,+∞) is defined by the

standard scheme by means of external and internal measures (see [17]). Here R is the
completion of the ring r by the measure λ : r → [0,+∞).

According to the construction of measure λ the following equality λR{E} = λ{E}
holds for every {E} ∈ Σ. Therefore, L2(E,R, λ̄, C) ⊃ L(H{E}, {E} ∈ Σ). Linear manifold
L(H{E}, {E} ∈ Σ) is dense in the space H since the space H is defined as the completion
of the Euclidean space (L(H{E}, {E} ∈ Σ), ‖ · ‖).

The linear hull span(χA, A ∈ R) of the family of indicator functions of sets from
the ringR is the dense linear manifold in the space L2(E,R, λ,C) according to definition
of this space. Since the ring R is the completion of the ring r with respect to measure
λ : r → [0,+∞), the linear hull of the family of indicator functions span(χA, A ∈ r) is
dense in the space L2(E,R, λ,C).

The ring r is generated by families of sets {R{E}, {E} ∈ Σ}. Therefore, the linear
manifold span(χA, A ∈ r{E}, {E} ∈ Σ) is dense in linear space span(χA, A ∈ r) equipped
with the Euclidean norm of the space L2(E,R, λ,C).

Since the linear space span(χA, A ∈ rE ) is the dense linear manifold in the spaceHE
for every {E} ∈ Σ, the linear manifold

span(span(χA, A ∈ rE ), {E} ∈ Σ) = span(χA, A ∈ r{E}, {E} ∈ Σ)

dense in the linear space

L(H{E}, {E} ∈ Σ) = span(H{E}, {E} ∈ Σ)

equipped with the norm ‖ · ‖H.
Therefore, L2(E,R, λ,C) = H since the norm ‖ · ‖H and the norm of the space

L2(E,R, λ,C) are coincide on the vectors of linear manifold span(χA, A ∈ r{E}, {E} ∈ Σ)
and this linear manifold is dense both in the space L2(E,R, λ,C) and in the space H.

The Theorem 12 gives the orthogonal decomposition of the space H. According to the
Lemma 25 the condition {E} 6= {F} impliesH{E}⊥H{F}. Thus, we obtain the following

Corollary 19.
H = ⊕{E}∈ΣH{E}.

In fact, the Hilbert space H is defined as the completion of linear hull of the family of
spacesHF , F ∈ S equipped with the scalar product (55).

The decomposition of the space H to the orthogonal sum of the invariant with respect
to the group of shift subspaces as well as the decomposition of the spaceHE to the orthogo-
nal sum of S1-invariant subspaces in the Theorem 2 present analogs of the lamination of
the phase space of a dynamical system to invariant manifolds in the work [52].

Corollary 20. Let E , F ∈ S . If bases E , F satisfy the condition (14), then HE = HF . If the
condition (14) is violated for bases E , F , thenHE⊥HF .

Theorem 13. Shift- and rotation-invariant measure λ : R → [0,+∞) on the space E from the
Theorem 12 admits the decomposition

λ = ∑
{F}∈Σ

ν{F} (57)

into the sum of mutually singular shift-invariant measures ν{F}, {F} ∈ Σ. Here for every
{F} ∈ Σ the measure ν{F} is given by the equality
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ν{F}(A) = sup
B∈RF , B⊂A

λ{F}(B), A ∈ R. (58)

Proof. In the proof of Theorem 12 we show that if A ∈ R, then for any ε > 0 there are

A′1 ∈ R{E1}, . . . , A′m ∈ R{Em} and A′′1 ∈ R{E1}, . . . , A′′m ∈ R{Em} such that
m⋃

j=1
A′j ⊂ A ⊂

m⋃
j=1

A′′j and λ((
m⋃

j=1
A′′j )\(

m⋃
j=1

A′j)) < ε. This fact and the Theorem 11 together imply the

equality (57) where measures νF are defined by (58). The mutually singularity of measures
ν{E}, ν{F} under the assumption {E} 6= {F} is the consequence of the decomposition (57)
and the Theorem 11.

Remark 4. If U is the unitary operator in the space E, then ν{F}(UA) = ν{U−1F}(A) for any set
A ∈ R and for any class of ONB {F} ∈ Σ.

Let us obtain the ring-ergodic decomposition of isometry-invariant measure for a
subgroup of the group of isometries I.

Lemma 26. The family of orthogonal mappings O1
E (E) = {U ∈ O(E) : U(RE ) = RE} forms a

subgroup of the orthogonal group O(E).

Proof. The unit operator I belongs to O1
E (E). According to the Theorem 11, if U ∼ I and

V ∼ I, then UV ∼ I and U−1 ∼ I.

Let E be an ONB in the space E. Let I1(E) be the group of isometries which is
generated by the groups S and the group O1

E (E). Let K0,E be the class of absolutely
measurable rectangles which are L1(E)-equivalent to centered rectangles. Then, according
to Theorem 3 the measure λ0,E : R0,E → [0,+∞) is O1

E (E)-invariant and ring-ergodic with
respect to the group of shifts S.

Corollary 21. Let E be an ONB in the space E. Then the measure λ0,E is ring-ergodic invariant
measure on the space E with respect to the group of isometries I1(E).

The proof of Corollary 21 repeats the proof of Theorem 3.

7. Linear Operators in the Space H Generated by Orthogonal Transformations
of Argument

Let U(t), t ∈ R, be the one-parametric family of operators in the space H which
is given by the following way. Consider an ONB E = {ej, j ∈ N} in the space E. Let
Ek = span(e2k−1, e2k), k ∈ N, be a sequence of two-dimensional orthogonal subspaces of
the space E. Let {ak} be a sequence of real numbers. Let us consider the group Λ(t), t ∈ R
of orthogonal transformations of the space E such that, at first, subspaces Ek, k ∈ N are
invariant with respect to operators of this group and, at second, for every k ∈ N the
restriction Λ(t)Ek , t ∈ R has the matrix(

cos(akt) sin(akt)
− sin(akt) cos(akt)

)
.

Let U(t), t ∈ R, be a one-parametric family of operators in the space E such that for
every t ∈ R the operator U(t) is given by the equality

U(t)u(x) = u(Λ(t)x), x ∈ E, u ∈ H. (59)

Since the measure λ : R → [0,+∞) is invariant with respect to any orthogonal
transformation of the space E, the equality (59) defines the unitary operator U(t) in the
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space H for every t ∈ R. The one-parametric family of operators U(t), t ∈ R forms the
one-parametric unitary group in the space H.

It is easy to check that the matrix of the orthogonal operator Λ(t), t 6= 0, in an ONB E
satisfies the condition (14) if and only if {ak} ∈ `1.

Lemma 27. If {ak} /∈ `1, then one-parametric group U(t), t ∈ R, of unitary operators in the
space H is not strongly continuous.

Proof. Let A ∈ RE be a set such that λ(A) = λE (A) > 0. Let us assume the opposite,
that the one-parametric group U(t), t ∈ R is strongly continuous. Then, the function
(U(t)χA, χA)H, t ∈ R, is continuous.

But this function has the discontinuity point t0 = 0 since

(U(t)χA, χA)H t=0 = λ(A) > 0,

and (U(t)χA, χA)H = 0 ∀ t 6= 0. In fact, χA ∈ H{E}, U(t)χA ∈ H{Λ(t)(E)}. Since the orthog-
onal mapping Λ(t) does not satisfy the condition (14), subspaces HE and H{Λ(t)(E)} are
orthogonal and (U(t)χA, χA)H = 0. The obtained contradiction proves the statement.

Lemma 28. If {ak} ∈ `1, then a subspace HE is invariant with respect to operators of one-
parametric group U(t), t ∈ R. Moreover, the group U(t)HE , t ∈ R is strongly continuous unitary
group in the spaceHE .

Proof. The condition {ak} ∈ `1 implies that for every t ∈ R the matrix of orthogonal
mapping Λ(t) in the basis E satisfies the condition (14). Therefore, ONB E and Λ(t)(E) are
equivalent and hence U(t)HE = HE ∀ t ∈ R.

Let us fix a number ε > 0. Let φ ∈ HE . For every m ∈ N the equality {ak} = {a′k(m)}+
{a′′k (m)} holds. Here {a′k(m)} = {a1, . . . , am, 0, . . .}, {a′′k (m)} = {0, . . . , 0, am+1, . . .}. Hence,
Λ(t) = Λ′′m(t) ◦Λ′m(t), t ∈ R and U(t)HE = U′′m(t)HE ◦U′m(t)HE , t ∈ R.

Therefore, for any t > 0 there is a number m ∈ N such that sup
τ∈[0,t]

‖U′′(τ)mφ −

φ‖HE < ε. In fact, for every Π ∈ KE we have ‖U′′(t)mχΠ− χΠ‖2
H = 2λ((Λ′′m(t)Π)\Π) and

lim
m→∞

sup
τ∈[0,t]

λ((Λ′′m(τ)Π)\Π) = 0 according to Lemma 14. The strong continuity of the group

U′m(t)HE , t ∈ R is the consequence of the decomposition HE = L2(R2m)⊕HE ′′ (see [40])
and the strong continuity of the group of orthogonal transformations of the argument of a
quadratically integrable function on a finite-dimensional Euclidean space R2m.

Remark 5. Let {ak} ∈ `1. Then a subspaceHF can be not invariant with respect to operators of
the one-parametric group (59) for every choice of ONB F ∈ S . Moreover, the group (59) of unitary
operators in the spaceH can be discontinuous. This fact is shown by the following example.

Let the operator Λ(t) in the ONB E has the matrix

‖Λ(t)‖E =



cos(at) sin(at) 0 0 0 . . .
− sin(at) cos(at) 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . .


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The operator I−Λ(t) is trace class operator and the statement of the Lemma 28 takes
place. Let us consider the ONB F which is the image of the ONB E under the action of the
orthogonal mapping V of the space E with the following matrix in ONB E

‖V‖E =


1 0 0 0 . . .
0 c2,2 c2,3 c2,4 . . .
0 c3,2 c3,3 c3,4 . . .
0 c4,2 c4,3 c4,4 . . .
. . . . . . . . . . . . . . .

.

Rows of the matrix ‖V‖E forms the orthonormal system in the space `2. There is the
choice of this orthonormal system such that the following condition

∞

∑
k=1
| c2,k |= +∞ (60)

holds. Let us consider the orthogonal mapping V such that the condition (60) is satisfied.
Then, the matrix of the orthogonal operator Λ(t) in the ONB F is

‖Λ(t)‖F = ‖V‖−1
E ‖Λ(t)‖E‖V‖E =

=


cos(at) c2,2 sin(at) c2,3 sin(at) c2,4 sin(at) . . .
−c2,2 sin(at) . . . . . .
−c2,3 sin(at) . . . . . .
−c2,4 sin(at) . . . . . .
. . . . . . . . . . . . . . .

.

Hence, the condition (14) is not satisfied for bases F and Ft = Λ(t)F such that
sin(at) 6= 0. If t ∈ R and sin(at) 6= 0, then bases E and Et = Λ(t)E are equivalent in the
sense of the definition 2, but bases F and Ft = Λ(t)F are not equivalent. Hence, subspaces
HF and U(t)HF = HF−t are orthogonal in the spaceH for any t : sin(at) 6= 0 according to
the corollary 20. Then, the group of unitary operators (59) in the space H is discontinuous
since the function t → (u, U(t)u)H, t ∈ R, is discontinuous for any nontrivial vector
u ∈ HF .

Remark 6. The condition (14) on the orthogonal mapping Λ and ONB E in the space E should not
be considered as the condition on the operator Λ only. In particular, the condition (14) is not the
consequence of the belonging of the operator I−Λ to the space of trace class operators. This fact
is shown by the example in the remark 5. In fact, the operator Λ(t)− I is trace class operator (as
well as the operator V−1Λ(t)V− I). Nevertheless, the operator Λ(t) and the basis E satisfy the
condition (14), but the operator Λ(t) and the basis F = VE are not satisfy the condition (14).

Remark 7. The unitary group of operators in the space H generated by the group of orthogonal
mappings (59) in the space E has the strong continuity property describing by Lemmas 27, 28
and Remark 5. This property is similar to the strong continuity property of the unitary group of
operators in the space H generated by the group of shifts of argument according to the formula

Sthu(x) = u(x− th), t ∈ R. (61)

If h 6= 0, then the group of unitary operators (61) is not continuous in the space H. But it has the
family of invariant subspacesHF , F ∈ S and the restriction SthHF , t ∈ R, is strongly continuous
group in the spaceHF if and only if {(h, fk)} ∈ l1 (see [53]).
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8. Measures Invariant with Respect to Some Group of Simplectomorphisms
8.1. Symplectic Structure

Now we introduce standard notations for the symplectic space and Hamiltonian
systems that are used in [27]. Symplectic form on a real separable Hilbert space E is a non-
degenerate closed differential 2-form on the space E. If a symplectic form on a Hilbert space
E is invariant with respect to a shift, then it is given by a non-degenerate skew-symmetric
bilinear form ω on the space E. A Hilbert space E is identified with its conjugate space. Let
B(E) be the Banach space of bounded linear operators E→ E endowed with the operator
norm. If linear operator J ∈ B(E) is associated with the bilinear form ω, then J is the
non-degenerate skew-symmetric operator ([54]). Shift-invariant symplectic form ω on a
real separable Hilbert space E is called standard, if there is an orthonormal basis (ONB)
{ek} ≡ E such that ω(e2k−1, ej) = δj,2k, k, j ∈ N where δj,i is the Kronecker symbol.

The standard symplectic form ω defines decomposition E = Q⊕ P of the space E to
the direct sum of two subspaces Q, P such that the following properties take place. There
is a pair of ONB F = { fk}, G = {gk} in the subspaces Q and P respectively such that
e2k−1 = fk, k ∈ N and e2k = gk, k ∈ N. Then,

ω( fi, f j) = 0, ω(gi, gj) = 0, ω( fi, gj) = δi,j, ∀ i, j ∈ N (62)

(see [30]). In the above case the basis E = {ei, i ∈ N} = { f j, gk; j, k ∈ N} is called
symplectic basis of the symplectic form ω in the space E. Symplectic form ω on the space E
with the symplectic basis { f j, gk; j ∈ N, k ∈ N} is given by bilinear form of skew-symmetric
symplectic operator J which is associated with symplectic form ω by the condition

ω(z1, z2) = (Jz1, z2) ∀ z1, z2 ∈ E. (63)

Then, the symplectic operator is defined by equalities J(ej) = f j, J( fk) = −ek, j ∈ N,
k ∈ N. Spaces Q and P are called configuration and momentum space respectively. Any of
this two spaces is conjugate to the other. (see [30,54,55]).

Hamiltonian system is defined as the following triplet (E, J, h). Here (E, J) is a Hilbert
space with the symplectic structure, h : E1 → R is the real-valued function which is
continuously differentiable in the sense of Gateau on a dense subspace E2 of the space E.
The function h in this triplet is called Hamilton function [30,55].

For example, if Hamilton function h is defined by the equality

h(x) =
∞

∑
k=1

λkx2
k , (64)

then E1 = {x ∈ E :
∞
∑

k=1
|λk|x2

k < ∞}, E2 = {x ∈ E :
∞
∑

k=1
|λk|2x2

k < ∞}. Here {λk} ∈ RN,

xk = (x, ek), k ∈ N and {ek} is an ONB in the space E.
A densely defined vector field v : E2 → E is called Hamiltonian vector field if

there is a function h : E1 → R, such that v(z) = JDh(z), z ∈ E2. Here the Hamilton
function h is Gateau differentiable on the dense subspace E2 of the space E. In this case
Dh : E2 × E2 → E is the differential of the function h. In this case the differential equation
z′(t) = J(h′(z(t))), t ∈ ∆, on the unknown function on a segment ∆ z : ∆ → E2 is called
Hamilton equation for the Hamiltonian system (E, J, h) ([54,55]).

A linear Schrödinger equation is the Hamilton equation of a Hamiltonian system with
quadratic Hamilton function such that the operator of quadratic form commute with the
symplectic operator. In this case the phase space is the reification of complex Hilbert space
of a quantum system ([54]).

A Hamiltonian vector field v : E2 → E generates the one-parametric group Φt, t ∈ R,
of continuously differential transformation of the space E2 such that

d
dt

Φt(q, p) = v(Φt(q, p)), (q, p) ∈ E2, t ∈ R.
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One-parametric group Φt, t ∈ R, of transformation of the space E2 is called smooth
Hamiltonian flow in the space E2

If a Hamiltonian flow in the space E2 admits the unique continuous continuation to
the space E, then this continuation Φ is called generalized Hamiltonian flow in the space
E generated by the Hamiltonian vector field v (by the Hamilton function h). this contin-
uous continuation of a smooth Hamiltonian flow Φ of linear operators to a generalized
Hamiltonian flow exists if values of the smooth flow Φ are contraction operators in the
space E. The described situation is realized in the case of Hamiltonian system connected
with a linear Schrodinger equation.

8.2. Symplectomorphism-Invariant Measures

Now we consider measures on a real separable Hilbert space E with a shift-invariant
symplectic form ω such that these measures are invariant with respect to some group of
symplectomorphisms (see [27,56]). Let E = Q⊕ P and let E = F ⋃ G be the symplectic
basis of the form ω (see (62)).

Definition 3. A set Π ⊂ E is called absolutely measurable symplectic rectangle in the Hilbert
space E if there is a symplectic form ω on the space E with a symplectic basis { f j, gk, j ∈ N, k ∈ N}
such that the set Π is given by the equality

Π = {z ∈ E : ((z, fi), (z, gi)) ∈ Bi, i ∈ N}, (65)

where Bi are Lebesgue-measurable sets in a plane R2 such that the condition

∞

∑
j=1

max{ln(λ2(Bj)), 0} < +∞

holds (here λ2 is the Lebesgue measure on R2).

Let K(E) be the set of absolutely measurable symplectic rectangles in Hilbert space E.
Let us note that symplectic basis in the definition 3 depends on the choice of symplectic

rectangle. Let us fix a symplectic basis E = F ⋃ G. Let KF ,G(E) ≡ KE (E) be the set of
absolutely measurable symplectic rectangles such that any of these rectangles has the
form (65) in the basis F ⋃ G.

Let λF ,G : KF ,G(E)→ [0,+∞) be a function of a set which is given by the equality

λF ,G(Π) =
∞

∏
j=1

λ2(Bj) = exp(
∞

∑
j=1

ln(λ2(Bj)))

under the condition Π 6= �; λF ,G(Π) = 0 in the case Π = �.
It is easy to check that if A, B ∈ KF ,G(E) for some ONB F ⋃ G, then A

⋂
B ∈ KF ,F (G).

Moreover, the class of sets KF ,G(E) is invariant with respect to a shift on any vector of
the space E. The function of a set λF ,G : KF ,G(E) → [0,+∞) is shift-invariant too. A set
Π ∈ KF ,G(E) in (65) is denoted by the symbol ×∞

j=1Bj.

Lemma 29 ([27]). The function of a set λ : KF ,G(E)→ [0,+∞) is finite additive.

Let rF ,G be a ring generated by the system of setsKF ,G . It is easy to check the statement.

Lemma 30 ([20]). The class Λ of sets A = Π\(
n⋃

i=1
Πi), where n ∈ N0, Π, Π1, . . . , Πn ∈ KF ,G ,

is the semi-ring.

Corollary 22 ([20]). Let rF ,G be the ring generated by the class of sets KF ,G . Then the ring rF ,G
consists of finite union of sets from the semi-ring Λ.
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Let us define the collection Λn of the sets of the type A = Π\(
n⋃

i=1
Πi) for any n ∈ N0,

Π, Π1, . . . , Πn ∈ KF ,G . In addition, for any n ∈ N we introduce the collection Vn of sets of

the type A =
n⋃

i=1
Πi, where Π1, . . . , Πn ∈ KF ,G . Then, Λn ⊃ Λn−1 for every n ∈ N and the

equality Λ =
∞⋃

n=0
Λn holds.

Lemma 31 ([27]). Let Π, Q ∈ KF ,G(E) and Q ⊂ Π. Then, for any ε > 0 there is a number
N ∈ N such that Π ⊃ QN ⊃ Q, λ(QN)− λ(Q) < ε and there are pairwise disjoint symplectic

rectangles Π1, . . . , Πm ∈ KF ,G(E) such that Π\QN =
m⋃

j=1
Πj.

Lemma 32 ([27]). Let Π, Q ∈ KF ,G(E) and Q ⊂ Π. Then there is a sequence {Πk} of pairwise

disjoint symplectic rectangles from the class KF ,G(E) such that Π\Q =
∞⋃

k=1
Πk and the equality

λ(Π) = λ(Q) +
∞
∑

k=1
λ(Πk) holds.

Theorem 14 ([27]). The additive function of a set λ : KF ,G(E)→ [0,+∞) has the unique additive
extension on the ring rF ,G . The completion of the measure λ : rF ,G → [0,+∞) is the complete
measure λF ,G : RF ,G → [0,+∞), which is invariant with respect to a smooth symplectorphism
Φ : E→ E which preserves two-dimensional symplectic subspaces Ek = span( fk, gk), k ∈ N of
the decomposition E = ⊕∞

k=1Ek.

The completion of the measure λ : Λ → [0,+∞) is the complete measure λF ,G :
RF ,G → [0,+∞). The ring Λ defines the ring RF ,G in the following way. Internal λ and
external λ measures are defined by the measure λ : Λ → [0,+∞) on the collection of
arbitrary subsets of the space E. Then,RF ,G = {A ⊂ E : λ(A) = λ(A) ∈ R}.

Remark 8. The measure λF ,G : RF ,G → [0,+∞) defines (see [27]) the spaceH = L2(E,RF ,G ,
λF ,G ,C) by the standard way as the completion in euclidean norm of the space S2(E,RF ,G , λF ,G ,C)
of equivalence classes of simple functions.

8.3. Invariance of the Symplectic Measure with Respect to Hamiltonian Flows

Let h : E → R be a non-degenerate quadratic form on the space E. Let us consider
function h as the Hamilton function on the symplectic space (E, ω). Quadratic form h on
the space E has the canonical basis E such that its quadratic form is diagonal on the basis
of E . Let us assume that the linear operator associated with the form H commutes with
the symplectic operator. Then the basis E can be chosen as the symplectic basis of the
symplectic form ω ([54]). Hence, the bilinear form ω satisfies equalities ω(e2k−1, e2k) =
−ω(e2k, e2k−1) = 1 and ω(el , em) = 0 in other cases. Let us introduce the orthonormal
systems F , G in the subspaces P, Q such that e2k−1 = fk, e2k = gk, k ∈ N.

Let us consider a countable system of non-interacting oscillators.

Lemma 33 ([27]). Let E be a symplectic basis of the form ω such that conditions (62) hold. Let a
quadratic form h be diagonal on the basis of E :

h =
∞

∑
k=1

λk(p2
k + q2

k), D(h) = {(q, p) ∈ E :
∞

∑
k=1
|λk|(p2

k + q2
k) < +∞}, (66)

where {λk} : N → R. Then the Hamiltonian vector field v = J∇h is defined on the space

D2(h) = {(q, p) ∈ E :
∞
∑

k=1
λ2

k(q
2
k + p2

k) < +∞}. This vector field generates the smooth

Hamiltonian flow Φt, t ∈ R in the space E2. The flow Φt, t ∈ R has the unique continuation to
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the generalized Hamiltonian flow in space E. The symplectic measure λω is invariant with respect
to the generalized Hamiltonian flow Φt, t ∈ R.

Proof. The dynamics of the Hamiltonian system (66) is defined by the countable system of
ordinary differential equations

q′k = h′pk
= ωk pk; p′k = −h′qk

= −ωkqk, k ∈ N. (67)

The Hamiltonian system (67) has the first integral h(u) = (u, Hu), u ∈ D(h). Here, H
is the self-adjoint operator in the real Hilbert space E such that the spectrum of operator H
is the sequence of eigenvalues {λk} and Ker(H− λkI) = span(ek, fk) for any eigenvalue
λk. Then, there is the group Φt = exp(JHt), t ∈ R of orthogonal operators defined in space
E. For any k ∈ N, the subspaces Ek are invariant subspaces of this group. The restriction
Φt|Ek , t ∈ R is the two-dimensional Hamiltonian flow Φt,k, t ∈ R of orthogonal operators
in space Ek. For any k ∈ N, the two-dimensional Hamiltonian flow Φt,k, t ∈ R is defined
by the Hamiltonian function hk = λk(q2

k + p2
k), (qk, pk) ∈ Ek.

The subspaces D(h), D2(h) are invariant with respect to the group of operators
Φt, t ∈ R of the Hamiltonian flow. Therefore, the restriction (Φt)|E2 , t ∈ R is the smooth
Hamiltonian flow in the space D2(h), which is the domain of the vector field v. The group
of operators Φt, t ∈ R are the unique continuations of the smooth Hamiltonian flow in the
space D2(h).

If A ∈ KF ,G , then Φt(A) ∈ KF ,G and λF ,G(Φt(A)) = λF ,G(A) for all t ∈ R. (Here,
E = F ⋃ G). Therefore, the ring RF ,G is invariant with respect to the generalized flow
Φt, t ∈ R and equalities λF ,G ◦Φt = λF ,G, t ∈ R hold.

The flow Φt, t ∈ R in the space E from Lemma 33 defines the one-parametric group

UΦt u(x) = u(Φ−t(x)), x ∈ E, u ∈ S(E,RF ,G,C), t ∈ R,

of linear isometric operators in the space of simple functions S2(E,RF ,G, λF ,G,C). The
group of isometries UΦt , t ∈ R in the space S2(E,RF ,G, λF ,G,C) is the unique continuous
extension of the unitary group in the spaceHF ,G such that

UΦt u(x) = u(Φ−t(x)), t ∈ R, u ∈ HF ,G , x ∈ E. (68)

The unitary group (68) is called the Koopman representation of the Hamiltonian flow Φ.

8.4. Koopman Group in the SpaceHF ,G and Its Generator

Let the Hamilton function H of the flow Φ be the reification of the quadratic form of a
positive operator Λ in the space H = R(E) with the discrete spectrum {λk}. Then, H is the
Hamiltonian of the countable system of oscillators in the symplectic space (E, J):

H(q, p) =
1
2

∞

∑
k=1

λk(p2
k + q2

k), (q, p) ∈ E1 = D(H).

The Hamiltonian flow Φ preserves the two-dimensional symplectic subspace Ek, k ∈ N
of the space E. Moreover, it preserves the measure λF ,G .

Example 1. Let u = χΠ
[− 1

2 , 1
2 ]

. Then, the function (UΦ(t)u, u)HF ,G , t ∈ R, is continuous if

{λk} ∈ l1.

Lemma 34. The Koopman group UΦ is the unitary group in the space HF ,G which is strongly
continuous if and only if the sequence {λk} is finite.

Proof. According to [56], the spaceHF ,G is the tensor productHF ,G = L2(R2n)⊗HFn ,Gn .
Here, R2n is the linear hull of the first 2n vectors of ONB { f1, g1, f2, g2, . . . and E2n is the
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orthogonal complement of R2n. Let Fn,Gn be a part of ONB F ,G which belongs to the
space E2n. LetHFn ,Gn = L2(E2n,RFn ,Gn , λFn ,Gn ,C).

Let {λk} ∈ c0. Let the flow Φ be generated by the Hamiltonian H. Then, for every
t ∈ R, the mapping Φt is the tensor product of an orthogonal mapping in the space R2n and
the identical operator in the space E2n. Therefore, if λk = 0 ∀ k > n, then UΦ = UΦ2n ⊗ I2n

where UΦ is the Koopman group of Hamiltonian flow Φ in the space HF ,G , UΦ2n is the
Koopman group of the system of n harmonical oscillators in the space L2(R2n), and I2n is
the identical operator in the space HEn ,Fn . It is well-known that the Koopman group of
a system of n oscillators is the strong (and uniformly) continuous one-parametric unitary
group in the space L2(R2n). Hence, group UΦ of countable system of oscillators with a finite
sequence of frequences {λk} is the strong continuous unitary group in the spaceHF ,G .

Conversely, let {λk} /∈ c0. Without loss of generality, we can assume that {λk} 6= 0 ∀ k.
The flow Φ is the tensor product of two-dimensional flows in the space Φk. For every
k ∈ N the group, Φk is the rotation in the plane E(k) with the angular velocity λk. Let us

consider the round Kk of radius
√

2√
π

in every plane E(k), k ∈ N. Let {mk} be a sequence
with values in the set N. For every k ∈ N, the round Kj, j = 1, 2, . . . , 2mk is subdivided into
2mk sequentially numbered congruent sectors of square 1

2mk . Let Ak be the union of sectors
with even numbers. Then, λR2(Ak) = 1, k ∈ N. Let Π = A1 × A2 × . . .. Then, Π ∈ KF ,G is
the symplectic rectangle and λF ,G(Π) = 1.

The absence of the strong (weak) continuity of an operator-valued function UΦ(t), t ∈ R
is the consequence of the discontinuity of scalar function (UΦ(t)χΠ, χΠ)HF ,G , t ∈ R.

Let us fix a number δ ∈ (0, 1
3 ). For every k ∈ N, the condition (UΦk (t)χAk , χAk ) ∈

[0, 1− δ) holds for every t ∈ ⋃
n∈Z

∆n
k , where

∆n
k = (

1
λk

(
1
3

2−mk π + 2−mk πn),
1

λk
(

2
3

2−mk π + 2−mk πn)).

Hence, there are N-valued sequences {mk} and {nk} such that, for every k ∈ N, there
is a number nk ∈ N such that ∆nk

k ⊂ (0, 1
k ) and ∆nk

k ⊃ ∆nk+1
k+1 .

Therefore, there is a sequence {mk} : N→ N such that every right half-neighborhood
of a zero point contains a point τ such that (UΦk (τ)χAk , χAk ) ∈ [0, 1− δ) for infinitely
many numbers k ∈ N.

Hence, there is a sequence {τn} such that τn → +0 and (UΦ(τn)χΠ, χΠ)HF ,G = 0 for
any n ∈ N. This fact implies the discontinuity of the function (UΦ(t)χΠ, χΠ)HF ,G , t ∈ R
in point t = 0, since (UΦ(0)χΠ, χΠ)HF ,G = 1.

To define the strong continuity subspaces, we use the spectral properties of Koopman
generator.

Let L2,r(0,+∞) be the Hilbert space of Lebesgue measurable functions (0,+∞)→ C,
which are quadratically integrable with the weight ω = 1

r . Let (N→ Z)0 be the space of
finite sequences with values in the set of integer numbers Z.

Theorem 15. The Koopman group UΦ has the invariant subspace HΦ ⊂ HF ,G such that the
group UΦ|HΦ is strongly continuous in the spaceHΦ. The generator HΦ of the strongly continuous
group UΦ|HΦ has the countable set of eigenvalues

λm1,...,mN = m1λ1 + . . . + mNλN , N ∈ N, m1, . . . , mN ∈ Z.

Every eigenvalue λm1,...,mN has the proper subspace

Ker(HΦ − λm1,...,mN I) ≡ H~m = span(
∞

∏
k=1

vjk (rk)eimkφk ), (69)

where ~m ∈ (N→ Z)0, {vj} is an ONB in the space L2,r([0,+∞)), and {jk} : N→ N.
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The Hilbert space ⊕~mH~m is the invariant subspace of strong continuity for the group UΦ.

Proof. It is directly calculated that

UΦ(t)(vjk (rk)eimkφk ) = eitλkmk vjk (rk)eimkφk , t ∈ R.

Hence, the generator HΦ of the strongly continuous group UΦ has the countable set of
eigenvalues λm1,...,mN = m1λ1 + . . . + mNλN , N ∈ N, m1, . . . , mN ∈ Z. Moreover, every
eigenvalue λ~m has the infinite dimensional proper space (69). If ~m 6= ~n, then it is easy to
check that subspacesH~m andH~n are orthogonal. If λ~m = λ~n, then the eigenvalue λ~m has
the proper spaceH~m ⊕H~n. Every proper spaceH~m is invariant with respect to the group
UΦ and the restriction UΦ|H~m

is strongly continuous group in the space H~m. Therefore,
if HΦ = ⊕~mH~m, then the space HΦ is invariant with respect to the group UΦ and the
restriction UΦ|HΦ is strongly continuous group in the spaceHΦ.

Remark 9. If the sequence {λk} is not finite, then the Koopman unitary group UΦ is not contin-
uous on the whole space HF ,G . However, it has the invariant subspace of strong continuity HΦ.
Some parts of the spaceHΦ can be defined using the spectral properties of the unitary group UΦ.

8.5. Measure with the Property of Orthosymplectic Invariance

We see that the shift-invariant measure λE on the Hilbert space has continuations to
measures on more wide rings such that a continued measure is invariant with respect to a
mere wide group. One of these continuations is the invariant with respect to the group of
isometry measures λ. Another continuation is the measure λF ,G which is invariant with
respect to the group of symplectomorphisms.

Lemma 35. There is no continuation of the measure λF ,G which is invariant both to the group of
symplectomorphisms and to the orthogonal group.

Proof. Let us assume the opposite, that there is a measure ν which is defined on ring R̂ of
the subsets of the space E such that

(1) R̂ ⊃ R, R̂ ⊃ RF ,G and ν|R = λ, ν|RF ,G = λF ,G .
(2) U(A) ∈ R̂ and ν(U(A)) = ν(A) ∀ A ∈ R̂ and for any orthogonal mapping U.
(3) Φ(A) ∈ R̂ and ν(Φ(A)) = ν(A) ∀ A ∈ R̂ and for any symplectomorphism Φ

preserving two-dimensional symplectic subspaces.

Let Π = B1 × B2 × . . . be a symplectic rectangle such that Bk = [0, 2)× [0, 1
2 ). Since

λ2(Bk) = 1 ∀ k ∈ N, Π is an absolutely measurable symplectic rectangle, Π ∈ KF ,G and
ν(Π) = λF ,G(Π) = 1.

Let U be an orthogonal mapping of the space E which changes the order of the vectors
of the symplectic orthonormal basis E = {e1, e2, e3, e4, . . .} = { f1, g1, f2, g2, . . .} only. Then,
according to our assumption, U(Π) ∈ R̂ and ν(U(Π)) = 1.

Let us pose that U(e1) = e1, U(e3) = e2, U(e2k+3) = e2k+1 ∀ k ∈ N, U(e2m) =
e2m+2 ∀m ∈ N. Then, U(Π) = Π′ = B′1 × B′2 × . . . where B′1 = [0, 2) × [0, 2) and B′k =
Bk, ∀ k = 2, 3, . . .. Therefore, U is orthogonal mapping, U(Π) ∈ KF ,G but ν(U(Π)) 6= ν(Π).
Thus, there is no continuation of the symplectomorphism-invariant measure λF ,G such that
this continuation is invariant with respect to the orthogonal group.

9. Conclusions

In this paper, we constructed the finitely additive measure λ on an infinite-dimensional
real Hilbert space such that this measure is shift- and rotation-invariant. Moreover, the in-
troduced measure is locally finite and σ-finite. However, it is not countably additive and
Borel measureable. The decomposition of the measure λ into the sum of mutually singular
shift-invariant measures was obtained.
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By means of the constructed measure, the unitary representations of the group of shifts
and the orthogonal group in the space which is quadratically integrable with respect to
invariant measure functions were obtained.

The notion of the ring ergodicity of a measure with respect to a group was intro-
duced. The ring-ergodic decomposition of a shift-invariant measure was obtained. The
parametrization of the family of shift-invariant measures was given by the obtained ring-
ergodic decomposition. Thus, the infinite dimensional analog of the Ruziewicz problem
from Section 1.2 was solved. Every ring-ergodic component in the above decomposition
defines the separable Hilbert space of functions that are quadratically integrable with
respect to ring-ergodic invariant measures.

It was shown that the representation of the group of shifts is not continuous in the
strong operator topology. The subgroup of the group of shifts with the strongly continuous
representation was described.

The invariantness of a measure with respect to Hamiltonian flows was studied in
the Hilbert space endowed with the shift-invariant symplectic form. The shift-invariant
measure was extended to the measure which is invariant with respect to the group of
symplectomorphisms preserving every two-dimensional symplectic subspace. By means of
the symplectic-invariant measure, the Koopman unitary representation of the above group
of symplectomorphisms was obtained.

The Koopman representation of the Hamiltonian flow of the countable system of
harmonic oscillators was studied. The subspaces of strong continuity in the Koopman
unitary group were described in terms of the spectrum of its generator.
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