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Abstract: The collar is an important part of a garment that reflects its style. The collar classification
task is to recognize the collar type in the apparel image. In this paper, we design a novel convolutional
module called MFA (multi-scale features attention) to address the problems of high noise, small
recognition target and unsatisfactory classification effect in collar feature recognition, which first
extracts multi-scale features from the input feature map and then encodes them into an attention
weight vector to enhance the representation of important parts, thus improving the ability of the
convolutional block to combat noise and extract small target object features. It also reduces the
computational overhead of the MFA module by using the depth-separable convolution method.
Experiments on the collar dataset Collar6 and the apparel dataset DeepFashion6 (a subset of the
DeepFashion database) show that MFANet is able to perform at a relatively small number of collars.
MFANet can achieve better classification performance than most current mainstream convolutional
neural networks for complex collar images with less computational overhead. Experiments on
the standard dataset CIFAR-10 show that MFANet also outperforms current mainstream image
classification algorithms.

Keywords: deep learning; image classification; collar classification; attention mechanism; multi-scale

MSC: 68T07

1. Introduction

The collar classification task is a data processing task based on clothing images,
and its main purpose is to accurately identify the collar types in clothing images. At
present, domestic and foreign scholars’ research on clothing images mainly focus on the
classification tasks [1–3] of clothing style, pattern and other aspects. Liu et al. established
the DeepFashion dataset and proposed a deep model FashionNet [4] for clothing style and
multi-attribute classification based on VGGNet [5]. Other studies based on the DeepFashion
dataset also classify the garment as a whole and do not involve the classification task of
collars as well. However, the collar, as a part of garment, is one of the important factors
affecting the style and fashion of the garment. The collar classification task can provide
powerful technical support for garment retrieval. Since the collar is only a small part of the
garment and fits around the neck of the body, the collar part has a small area in the garment
image and is easily deformed, which poses a challenge to the collar classification task.
Huang et al. collected and organized 18847 garment images to build the collar classification
dataset Collar6, and proposed the EMRes-50 [6] network for collar image classification. The
network used the attention method combined with MC-Loss (mutual-channel loss) to make

Mathematics 2023, 11, 1164. https://doi.org/10.3390/math11051164 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051164
https://doi.org/10.3390/math11051164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11051164
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051164?type=check_update&version=2


Mathematics 2023, 11, 1164 2 of 16

the neural network focus on the more discriminative collar part and obtained a classification
accuracy of 73.6% on the Collar6 dataset. However, this study neglected the nature of
containing multiple targets at different scales in clothing images. Therefore, the proposed
network is less capable of multi-scale feature extraction, which leads to less superior
classification results. In recent years, works have effectively improved model performance
by means of designing excellent multi-scale feature extraction methods [7,8] that can
effectively model global information and capture semantic relationships between different
objects by using different perceptual fields to extract features of objects at different scales.
The application of multi-scale feature extraction in collar classification algorithms would be
a good choice, but when using large convolutional kernels to obtain large receptive fields, it
will lead to an increase in convolutional computation. Due to the small collar area and small
differences between classes, it is also necessary to use attention mechanisms to purposely
guide the network to focus more on collar features when modelling global information.
The starting point of this paper is to reduce the computational overhead incurred when
performing multi-scale feature extraction and to use the attention mechanism to weigh the
important features so that the neural network focuses more on the task-relevant regions.
An effective way of combining multi-scale feature extraction methods with attention
mechanisms is investigated to enable the network to perform better and thus be applied in
collar classification tasks.

Based on the above research, this paper combines multi-scale features with attention
mechanisms and proposes a new module named MFA (multi-scale feature attention).
Specifically, the input feature map is first subjected to a depth-wise separable convolution
operation using sets of convolution operators of different sizes to separately extract feature
information at different scales for modelling contextual information, thus capturing global
dependencies while also reducing the computational overhead. Then, the channel attention
weights of the multi-scale feature mappings are learned and recalibrated by aggregating the
channel attention weights of different dimensions through a non-linear activation function
to obtain the attention weights that include long-range dependencies. Finally, the obtained
attention weights are dot-producted with the input feature map to obtain the attention
feature map. A novel network, MFANet, is constructed by replacing the 3× 3 convolutional
blocks in the residual blocks of ResNet [9] with MFA modules. The proposed MFANet
not only outperforms existing techniques in terms of accuracy, but also requires fewer
parameters. The main contributions of this work are summarized as follows:

1. A novel module MFA is proposed, which is able to efficiently extract multi-scale
feature information while reducing the computational overhead, incorporating a
lightweight attentional approach to highlight the feature representation of key com-
ponents and regions.

2. A new network architecture, MFANet, is built on the basis of the MFA module, which
inherits the advantages of the MFA module and can better handle image classification
problems that contain multiple objects, multiple noises and a small percentage of
recognition targets.

3. Extensive experimental results show that, compared with the current mainstream
network structure, the proposed MFANet obtains significant gains in classification
accuracy on the collar image dataset Collar6 with fewer parameters and computations,
achieving better classification results on the fashion dataset DeepFashion6, similarly
obtaining accuracy gains on the standard classification dataset CIFAR-10.

Next, we elaborate on our work in four aspects. Firstly, Section 2 focuses on the
discussion of the relevant algorithms used in the text. Secondly, Section 3 elaborates
the main work of this paper, i.e., the construction of the MFA module and MFANet and
the related algorithms. Subsequently, our experimental results are described in detail
in Section 4. Finally, we give a concise summary of the work in this paper and present
the outlook.
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2. Related Work

The MFANet proposed in this paper is primarily driven by the ideas of multi-scale
feature extraction methods and attention mechanisms. In this section, the related work of
previous researchers concerning multi-scale feature extraction methods as well as attention
mechanisms are discussed.

2.1. Multi-Scale in Computer Vision

Convolutional neural networks perceive different scale features by the receptive field.
If the receptive field is too small only local features can be observed, and if the receptive
field is too large too much noisy information will be acquired. Therefore, acquiring infor-
mation from different scales is crucial for vision tasks that require understanding parts
and objects, such as fine-grained classification [10], object detection [11], and semantic
segmentation [12]. Using convolution to vary the perceptual field size to obtain multi-scale
information is one of the mainstream approaches. Related studies such as InceptionNet [13]
perform multi-scale feature extraction by constructing four parallel branching structures us-
ing convolutional operators of different sizes at different receptive fields, and Res2Net [14]
constructs layered residual connections within a single residual block using a single con-
volutional operator, enabling it to vary the receptive field at a fine level to capture details
and global features. However, the above-mentioned neural networks require convolu-
tional computations using larger convolutional kernels when expanding the receptive field,
leading to an increase in network computation.

2.2. Channel Attention

The attention mechanism [15] has been proven to be an effective way to improve
the performance of neural networks and is widely used in computer vision tasks such
as image classification [16–18], object detection [19], semantic segmentation [20], face
recognition [21,22], person re-identification [23], etc. SENet [16] first proposed an effective
mechanism for learning channel attention, which can weigh the degree of importance
of each channel to improve the sensitivity of the model to channel information, thus
reinforcing important features to suppress non-important features, achieving satisfactory
performance at that time. Subsequently, a large amount of research on channel attention
has been mainly conducted based on SENet [16]. Wang et al. found that SENet [16]
performs a dimensionality reduction operation to reduce the complexity of the model, but
it destroys the direct correspondence between channels and their weights. To overcome this
shortcoming of SENet [16], Wang et al. proposed a strategy to achieve local cross-channel
interactions by one-dimensional convolutions without dimensionality reduction, named
ECA [17] (efficient channel attention), which performs well in various vision tasks.

Our work addresses the characteristics of collar image data with a lot of noise and
small targets, and provides an effective combination of multi-scale feature extraction and
channel attention methods, using multi-scale feature extraction methods to obtain the
features of the image and attention mechanisms to guide the network to pay more attention
to the collar features. Meanwhile, the depth-separable convolution is used to reduce the
computational overhead caused by multi-scale feature extraction operations (See Table 1).
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Table 1. The similarities and differences between our work and related multi-scale feature extraction
methods and attention mechanisms.

Network
Includes
Attention

Mechanism

Includes
Multi-Scale

Feature
Extraction

Computational
Volume Scale

Embeddable
Modules

InceptionNet # ! the larger #
Res2Net # ! the larger #
SENet ! # small !
ECANet ! # small !
Ours ! ! small #

3. Proposed Method

To construct an efficient collar classification network, we propose a MFA module that
combines multi-scale feature extraction and attention mechanisms and refers to the network
structure of ResNet50 [9] to construct bottleneck blocks with the MFA module, as shown
in Figure 1 (right). By stacking MFA bottleneck blocks, we build the collar classification
network, MFANet. The detailed structure and related algorithms of the MFA module
will be described in the first part of this section and the network structure and specific
implementation of MFANet will be described in the second part of this section.

Figure 1. Illustrations and comparison of the ResNet block and MFANet block proposed in this paper.

3.1. MFA Module

The core function of the MFA module proposed in this paper is to extract multi-
scale feature information and weigh the channels, and its structure is shown in Figure 2.
The workflow of the MFA module is divided into 3 steps. Firstly, the input feature map
is convolved with convolution operators of different sizes to extract multi-scale feature
information; Secondly, the ECA [17] module is used to extract the channel attention weights
from the feature maps at different scales and then calibrated by the non-linear activation
function to obtain the channel attention weights with multi-scale information. Finally, the
obtained channel attention weights are multiplied with the corresponding feature maps to
obtain a finer feature map as the output. The above process will be explained in detail in
the following section.
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Figure 2. MFA module.

3.1.1. Multi-Scale Feature Information Extraction

In order to obtain the multi-scale features of the input image, it is necessary to convo-
lute the images with different sizes of convolution. Let X ∈ RH,W,C be the input feature
map, and after conducting parallel convolution of the input feature map using s convolu-
tion kernels of different sizes, we can obtain s outputs, each with a channel C′ = C

s of the
output feature map, and for each output, the module learns the feature map of a single
convolution operator. If feature extraction is performed on X using standard convolution,
assuming a step size of 1 and a fill of 1, the output feature map for one standard convolution
is computed as:

Fh′ ,w′ ,n = ∑
kh ,kw ,m

Kkh ,kw ,m,n · Xh′+kh−1,w′+kw−1,m (1)

where F is the output feature map; h′, w′, and n denote the height, width, and number of
channels of the output feature map; K is the convolution kernel; kh and kw denote the height
and width of the convolution kernel; and h′ = [0, H − Dki + 3], w′ = [0, W − Dki + 3],
n = [0, C′], m = [0, C], kh = kw = [0, Dki], and Dki denote the height and width of the
convolution kernel needed for the i-th convolution. The computational cost required for
one standard convolution operation is:

Dki · Dki · C · C′ · H ·W (2)

where the computational cost is multiplicatively related to the number of input channels
C, the number of output channels C′, the kernel size Dki and the input feature map size.
The computational cost will undoubtedly increase when using multiple convolution 160
kernels for convolution operations.

In order to reduce the computational effort caused by multiple standard convolutions
while being able to better extract the feature information, we use the depth-separable
convolution to convert part of the multiplicative relationship in Equation (2) into an
additive relationship to achieve the purpose of reducing the computational effort. We
denote the depth-wise separable convolution [24,25] operation as DW, then the steps for
performing one DW operation on the feature map X ∈ RH,W,C are as follows: First, the
depth-wise convolution operation is performed. The convolution kernel is split into a
single channel using depth-wise convolutions, and the convolution operation is performed
on each channel without changing the depth of the input feature image. This operation can
be expressed as:

F̂h′ ,w′ ,m = ∑
kh ,kw

K̂kh ,kw ,m · Xh′+kh−1,w′+kw−1,m (3)

where F̂ is the feature map output from the first operation of the depth-wise convolution
and K̂ is the depth-wise convolutional kernel of size Dki × Dki × 1. The mth filter in K̂ is
applied to the mth channel in X to produce the channel of the filtered output feature map F̂.
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The range of values of h′, w′, m, kh, and kw is consistent with the description in Equation (1).
Second, point-wise convolutions are performed. After the depth-wise operation, the feature
channels are aggregated and the number of output channels is changed using a convolution
operator of size 1 × 1. This operation can be expressed as:

F′h′ ,w′ ,n = ∑
m

K′1,1,m,n · F̂h′ ,w′ ,m (4)

where F′ is the output feature map after point-wise convolutional, and K′ is the pointwise
convolution kernel of size 1 × 1 × C. The range of values of h′, w′, n, and m is consistent
with the description in Equation (1). The computational cost required for one depth-wise
separable convolution operation is:

Dki · Dki · C · H ·W + C · C′ · H ·W (5)

By expressing convolution as a two-step process of filtering and combining we obtain
a reduction in computation of:

Dki · Dki · C · H ·W + C · C′ · H ·W
Dki · Dki · C · C′ · H ·W

=
1
C′

+
1

Dk2
i

(6)

The DW process is shown in Algorithm 1.

Algorithm 1 DW algorithm
Input: Feature map X, Ksize
Output: Feature map F′

1: F̂h′ ,w′ ,m = ∑kh ,kw K̂kh ,kw ,m · Xh′+kh−1,w′+kw−1,m

2: F′h′ ,w′ ,n = ∑m K′1,1,m,n · F̂h′ ,w′ ,m

3.1.2. Attention Weight Computing

In order to enable the network to adaptively weigh the importance of the channels
of each input feature map and output more important information to improve the overall
performance of the MFA module, after obtaining the features, we use the attention method
ECA [17] to obtain the channel attention. The global average pooling operation is first
performed on the input feature map F′, to compress the spatial information and apply it to
the channel information. The global average pooling operation can be calculated as:

y = g(F′) =
1

h× w

h

∑
i=1

w

∑
j=1

F′ij (7)

where y is the feature mapping output after global average pooling and F′ ∈ Rh,w,C′ is
the output feature map after depth-wise separable convolution; and h and w denote the
height and width of F′, respectively. The attention weights wi for each channel yi can be
learned by

ωi = σ

(
k

∑
j=1

wjyj
i

)
, yj

i ∈ Ωk
i (8)

where σ is a sigmoid function, Ωk
i denotes the k neighbouring channels of yi, wj is the

parameter matrix, and all channels share the same learning parameters. The way ECA [17]
obtains cross-channel attention weights can be readily implemented by a fast 1D convolu-
tion with a kernel size of k using Equation (9) to obtain the channel attention mapping.

Z′ = σ
(
C1Dk

(
GAP

(
F′
)))

(9)
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where Z′ is the channel weight vector obtained after ECA module processing, C1D denotes
the 1D convolution, and k denotes the range of channel interactions. The value of k is
analysed in detail in the experiments in Section 4. GAP indicates the global average pooling
operation. With the channel attention module ECA, it is possible to use as little computation
as possible to obtain cross-channel attention weights without dimensionality reduction.

3.1.3. Attentional Calibration and Feature Aggregation

After s times of the above operations, we will obtain s output feature maps containing
different scale information, and s channel attention weight mappings. The description is
as follows:

F′i = DW(X, Dki) i = 0, 1, 2 · · · s− 1 (10)

Z′i = σ
(
C1Dk

(
GAP

(
F′i
)))

i = 0, 1, 2 · · · s− 1 (11)

where F′i is the feature map output from the i-th depth-wise separable convolution operation
and Z′i is the attention weight vector output from F′i after the ECA module. Next, we
first aggregate the different attention mappings and recalibrate them using a non-linear
operation. This operation can be expressed as follows:

Z = δ
([

Z′0 ⊕ Z′1 ⊕ · · · Z′S−1
])

(12)

where Z is the aggregated attention weight vector, which aggregates the output vectors
of several different scale feature maps after the ECA module, δ represents the non-linear
activation function softmax, and ⊕ represents the concat operation. Finally, the feature
maps containing information at different scales are aggregated, and the attention weight
mapping after recalibration is applied to the aggregated feature maps to obtain the final
output. This process can be expressed as:

Xout = Z�
(

F′0 ⊕ F′1 ⊕ · · · F′s−1
)

(13)

where � represents the channel-wise multiplication, Xout is the final output after the
MFA module. To date, the output feature maps after going through the MFA module
both combine background information at different scales and produce better pixel-level
attention to the channels containing important features. The overall flow of the MFA
module algorithm is shown in the Algorithm 2.

Algorithm 2 MFA algorithm
Input: Feature map X
Output: Feature map Xout

1: for i = 1 to n
2: Fi = DW(X, Ksize)
3: Zi = Sigmoid(Conv 1Dk(GAP(Fi)))
4: F = Concat(F1, . . . , Fn);
5: Feats← F
6: Z = Concat(Z1, . . . , Zn)
7: Attention_Vectors = softmax (Z)
8: Xout = Feats � Attention_Vectors
9: return Xout

3.2. Network Design

ResNet [9] was proposed by Kaiming He et al. in 2016 and is still used as a backbone
network for many computer vision tasks. The residual structure used by ResNet [9]
can effectively solve the vanishing gradient (exploding gradient) of neural networks due
to layers that are too deep. A large part of the subsequent research on neural network
structures is based on the ResNet [9] structure, extending or improving it.
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The bottleneck block of ResNet [9] mainly uses a set of 3 × 3 convolution operators
to extract features. In this paper, we seek a higher performance architecture to replace
the 3 × 3 convolution to accomplish the extraction of image features, while also ensuring
a smaller computational load. The MFA module proposed in Section 3.1 of this paper
possesses an efficient multi-scale feature extraction capability and an attention mechanism,
both of which have been shown to be effective ways to improve the performance of
neural networks. Therefore, based on the above-proposed MFA module, we improved the
bottleneck structure of ResNet-50 [9]. Since the multi-scale feature extraction operation
leads to inconsistent sizes of the output feature map, we take the size of the output feature
map after 3 × 3 convolution in each bottleneck block of ResNet-50 [9] as the standard, and
fill the convolution operations of different scales according to the convolution calculation
formula to ensure that the output feature map size is consistent and conforms to the
output of the ResNet [9] bottleneck block, so that the bottleneck of ResNet [9] block 3 × 3
convolution is replaced with the MFA module.

The MFA module with multi-scale feature extraction capabilities as well as channel
attention is embedded in the residual blocks, compensating the shortage of feature extrac-
tion abilities of the single convolution operator and reduce the computational effort to
a great extent by using depth-wise separable convolution operations instead of normal
convolution operations. These residual blocks are stacked in the style of ResNet [9] to con-
struct a new simple and effective neural network MFANet, whereby MFANet can extract
finer multi-scale feature information and obtain the importance of each channel without
increasing the amount of computation. It effectively solves the collar classification problem
that contains multiple objects, noises and small percentage of recognition targets. The layer
structure of the MFANet proposed in this paper is shown in Table 2.

Table 2. MFANET network design.

Output ResNet-50 MFANet

112 × 112 × 64 7 × 7, 64, stride = 2

56 × 56 × 64 3 × 3, max pool, stride = 2

56 × 56 × 256

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
MFA, 64
1× 1, 256

× 3

28 × 28 × 512

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
MFA, 128
1× 1, 512

× 4

14 × 14 × 1024

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
MFA, 256
1× 1, 1024

× 6

7 × 7 × 2048

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
MFA, 512
1× 1, 2048

× 3

1 × 1 7 × 7, global average pool, n-d fc

4. Experiments

Experimental section elaborates conducted experiments, including the introduction of
the experimental environment, datasets, and most importantly, the accuracy of MFANet
on three classification datasets, Collar6, DeepFashion6, and CIFAR-10, compared with the
current mainstream classification networks. Meanwhile, the ablation experiment of the
hyperparameter k in Equation (9) is conducted so as to choose the value that makes the
performance of MFANet optimal.
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4.1. Experimental Configuration

The main hardware device used in the experiments is an NVIDIA GeForce RTX 2080Ti.
The size of the input tensor is randomly cropped to 224× 224 by random horizontal flipping
and normalization. The batch size is set to 64, and a total of 120 epochs are iteratively
trained. Optimization is performed by using an adaptive moment estimation (Adam) with
a weight decay of 1× 10−4. The initial learning rate is set to 0.01, and the cosine annealing
learning rate is implemented using a custom learning rate adjustment function (LambdaLR).
The label-smoothing regularization is used with the coefficient value as 0.1 during training.

4.2. Datasets
4.2.1. CIFAR-10 Dataset

The CIFAR-10 dataset is a public dataset for identifying pervasive objects and is widely
used in image classification tasks for deep learning. It consists of 60,000 colour RBG images
covering 10 categories (aircraft, cars, birds, cats, deer, dogs, frogs, horses, boats, and trucks).
There are 6000 images for each type with a 32 × 32 image size, of which 50,000 images are
used for training and 10,000 for testing. Figure 3 shows the classes in CIFAR-10 and 10
random images for each class.

Figure 3. CIFAR-10 partial image data.

4.2.2. Collar6 Dataset

The Collar6 dataset are collected and sorted by manual collection and crawlers from
all major domestic e-commerce platforms, including round collar, lapel, stand-up collar,
hood, V-neck and fur collar, with a total of 18,847 images. The collar part, which plays a
key role in the classification task, only accounts for a small part of the image, which poses a
considerable challenge to the classification model and tests the ability of the classification
model to extract key features. The detailed data distribution of the Collar6 dataset is shown
in Table 3, and the presentation of some of the image data is shown in Figure 4.
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Table 3. Data distribution for the Collar6 dataset.

Type The Number of Training Set
Pictures The Number of Test Set Pictures Total

Crew neck 2480 620 3100
Lapel 2608 652 3260
Stand collar 2464 616 3080
Hoodie 2560 640 3200
V-neck 2468 617 3085
Fur lapel 3122 625 3122

Figure 4. Data distribution for the Collar6 dataset.

4.2.3. DeepFashion6

DeepFashion is an open and large clothing dataset collected and organized by the
Chinese University of Hong Kong. It contains 800,000 images, including different angles,
different scenes, buyers’ shows, and so on. The subset “Category and Attribute Prediction
Benchmark” is used to perform the classification and attribute prediction, which contains
50 kinds of classification tags and 1000 kinds of attribute tags, with 289,222 images. In
order to verify that our method is also effective on the DeepFashion dataset, we extracted
clothing images of six kinds of collars, and selected more than 3000 images of each collar to
form the DeepFashion6 dataset. The dataset composition is shown in Table 4.

Table 4. Data distribution for the DeepFashion6 dataset.

Type The Number of Training Set Pictures The Number of Test Set Pictures Total

Dress 2555 639 3194
Jacket 2505 627 3132
Jeans 2412 603 3015
Shorts 2541 636 3177
Tank 2528 632 3160
Tee 2439 610 3049

4.3. Comparative Experiments
4.3.1. Experimental Results and Analysis of Comparison with Mainstream Neural
Networks on the Collar6 Dataset

To verify the performance of the MFANet on realistic collar image classification tasks,
we conducted experiments comparing MFANet with various types of mainstream neu-
ral networks on the Collar6 dataset, and the experimental results are shown in Table 5.
Compared with the backbone networks ResNet-50 [9], Res2Net [14], DenseNet [26], etc.,
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our MFANet shows a large improvement in accuracy. Compared with MobileNet_v3 [24]
and ShuffleNet_v2 [27], which are lightweight networks designed for mobile, they have
improved by 6.9% and 5.3% in accuracy, respectively. Compared with the networks EP-
SANet [28] and SKNet [29] with attention mechanisms and multi-scale design, our MFANet
improves by 2.3% and 24.3% in accuracy, respectively. The same networks containing multi-
scale design and attention mechanisms, SKNet [29] and EPSANet [28] both use SE [16]
to obtain channel attention, and where the dimensionality reduction operation causes
some information loss. SKNet [29] uses summation for multi-scale feature fusion before
passing through the attention module, which leads to multi-scale information loss to some
extent. Our MFANet performs the attention weighing operation on its output feature map
separately after extracting multi-scale features, which better preserves the representation of
multi-scale features by introducing the attention method without dimensionality reduction
to ensure that channel attention is not lost. Compared with the latest research results in
collar classification EMRes-50 [6], MFANet achieves an effective combination of attention
and multi-scale feature extraction, improves the classification accuracy by 6.8%, and is
more capable of accurately classifying complex collar images.

Table 5. Comparative experimental results of MFANet and various neural networks on the
Collar6 dataset.

Network Parameters FLOPs Top-1 Accuracy (%)

EMRes-50 [6] 28.02 M 4.34 G 73.6
ResNet-50 [9] 23.52 M 4.12 G 66.5
ResNeXt-50 [30] 22.99 M 4.26 G 75.7
Res2Net [14] 23.66 M 4.29 G 74.8
DenseNet-161 [26] 26.49 M 7.82 G 72.3
Xception [25] 20.82 M 4.58 G 76.3
EPSANet [28] 20.53 M 3.63 G 78.1
SKNet [29] 25.44 M 4.51 G 56.1
MobileNet_v3_small [24] 1.52 M 58.79 M 73.1
MobileNet_v3_large [24] 4.21 M 226.4 M 73.5
ShuffleNet_v2 [27] 1.26 M 149.58 M 75.1
SqueezeNet [31] 0.73 M 2.65 G 57.1
Ours 13.81 M 2.61 G 80.4

4.3.2. Experimental Results and Analysis of Comparative Experiments with Mainstream
Attention Networks on the Collar6 Dataset

Table 6 shows the comparison results of the proposed MFANet on the Collar6 dataset
with the mainstream classification network after adding the attention method. In order
to be able to make a full comparison, we embed multiple attention methods in different
networks for comparison. These networks include the basic residual network ResNet-50 [9],
the aggregated residual network ResNeXt-50 [30], the Res2Net [14] with multi-scale design,
and the dense connections network DenseNet [26]. It can be seen from Table 6 that the
accuracy rate of MFANet reaches 80.4%, which is higher than other networks, and obtains
very competitive performance at a lower cost. The experimental results in Table 6 show
that our network design is reasonable.
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Table 6. Comparative experimental results of MFANet and various neural networks with added
attention methods on the Collar6 dataset.

Method Backbone
Models Parameters FLOPs Top-1 Accuracy (%)

SENet [16]

ResNet-50

26.05 M 4.12 G 67.9
CBAM [32] 26.05 M 4.12 G 67.3
ECANet [17] 23.52 M 4.12 G 68.8
CANet [33] 25.43 M 4.14 G 66.7
FcaNet [34] 26.03 M 4.12 G 69.7
Ours 13.81 M 2.61 G 80.4

SENet [16]

ResNeXt-50

25.51 M 4.27 G 74.3
CBAM [32] 25.52 M 4.27 G 71.8
ECANet [17] 22.99 M 4.26 G 75.7
CANet [33] 24.91 M 4.29 G 69.9
FcaNet [34] 25.51 M 4.27 G 71.8

SENet [16]

Res2Net

26.18 M 4.29 G 73.9
CBAM [32] 26.20 M 4.29 G 70.3
ECANet [17] 23.66 M 4.29 G 72.2
CANet [33] 25.58 M 4.31 G 70.8
FcaNet [34] 26.18 M 4.29 G 71.6

SENet [16]

DenseNet-161

27.14 M 7.82 G 70.4
CBAM [32] 27.14 M 7.82 G 73.2
ECANet [17] 26.49 M 7.82 G 72.9
CANet [33] 26.98 M 7.83 G 71.9

4.3.3. Comparative Experimental Results and Analysis on the DeepFashion6 Dataset

We extracted some data from the large dress public dataset DeepFashion, collated
a dress classification subset DeepFashion6, and verified the effectiveness of our method
on this dataset for the dress style classification task, and the experimental results are
shown in Table 7. The models compared include the basic backbone networks ResNet [9],
ResNeXt [30] and DenseNet [26]; the attention networks SENet [16], ECANet [17], and
CANet [33]; networks containing multi-scale designs Res2Net [14], and Xception [25]; and
the attention mechanism and multi-scale design networks EMRes-50 [6], EPSANet [28],
SKNet [29], etc. The MAFNet proposed in this paper achieves an accuracy of 87.7% on the
DeepFashion6 dataset, higher than all the above-mentioned networks. It can be seen that
rich multi-scale feature information as well as attention information are equally effective in
improving the accuracy of clothing style classification.

Table 7. Comparison experimental results on the clothing style classification dataset DeepFashion6.

Network Parameters FLOPs Top-1 Accuracy (%)

EMRes-50 [6] 28.02 M 4.34 G 86.1
CANet [33] 23.52 M 4.12 G 86.4
ECANet [17] 22.99 M 4.26 G 86.3
SENet [16] 23.66 M 4.29 G 86.3
ResNet-50 [9] 26.49 M 7.82 G 85.8
ResNeXt-50 [30] 20.82 M 4.58 G 86.5
Res2Net [14] 20.53 M 3.63 G 87.0
DenseNet-161 [26] 25.44 M 4.51 G 87.3
EPSANet [28] 20.53 M 3.63 G 87.4
SKNet [29] 25.44 M 4.51 G 83.8
Xception [25] 20.83 M 4.58 G 87.3
Ours 13.81 M 2.61 G 87.7
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4.3.4. Comparative Experimental Results and Analysis on the CIFAR-10 Dataset

To verify the generalization performance of MFANet, we conducted comparative
experiments on the benchmark public dataset CIFAR-10 in image classification tasks. The
training parameter settings of all networks were kept the same, and the experimental results
are shown in Table 8. The experimental results show that the TOP-1 accuracy of MFANet on
the CIFAR-10 dataset is slightly higher than the other neural network structures. It indicates
that mainstream networks have been able to complete conventional image classification
tasks well. On the other hand, MFANet uses multi-branch multi-scale convolution to widen
the network, combining the advantages of the attention mechanism to possess a more
powerful feature extraction ability, and the accuracy is slightly higher than other networks.

Table 8. Comparison experimental results of MFANet and various neural networks on the CIFAR-
10 dataset.

Network Parameters FLOPs Top-1 Accuracy (%)

ResNet50-CA [33] 25.45 M 4.14 G 91.2
ResNet50-ECA [17] 23.53 M 4.12 G 91.5
ResNet50-SE [16] 26.05 M 4.12 G 91.4
ResNet-50 [9] 23.53 M 4.12 G 91.2
ResNeXt-50 [30] 23.00 M 4.26 G 93.0
Res2Net [14] 23.67 M 4.29 G 93.1
DenseNet-161 [26] 26.49 M 7.82 G 92.2
EPSANet [28] 20.53 M 3.63 G 94.0
SKNet [29] 25.45 M 4.51 G 84.6
MobileNet_v3_small [24] 1.53 M 58. 80 M 92.2
MobileNet_v3_large [24] 4.21 M 226.44 M 92.6
ShuffleNet_v2 [27] 1.26 M 149.58 M 92.8
SqueezeNet [31] 0.73 M 2.65 G 82.3
Xception [25] 20.83 M 4.58 G 92.7
Ours 13.81 M 2.61 G 94.4

4.4. Ablation Experiments
4.4.1. Structural Ablation Experiments

The MFA block in the MFANet residual block contains two major functional modules,
one is the multi-scale feature extraction module (multi-scale feature extraction); the other is
the attention weighing module (attention). In this part of the experiments, we evaluate the
importance of these two modules to the overall structure. Because our network is improved
from ResNet-50 [9] as the basic architecture, we use the accuracy results of ResNet-50 [9] on
the three datasets as a baseline, disassembled the MFA structure in the same environment,
and trained it separately. Table 9 shows the results of this ablation experiment. On Collar6,
DeepFashion6, and CIFAR-10 dataset, the accuracy of the model was 80.4, 87.7, and 94.4%
using the full MFA module; when only the multi-scale feature extraction module was
reserved, the accuracy of MFA on the three datasets was 79.6, 87.4, and 93.9%; and when
only the MFA attention module was reserved, the accuracy was 68.8, 86.5, and 91.5%,
respectively. Therefore, we prove that the two main functional modules that constitute
MFA have a great impact on model performance. The combination of the two can bring
richer and more effective feature information, thereby improving model performance.
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Table 9. Results of the structural ablation experiments.

Dataset Settings Accuracy (%)

Collar6

Baseline(ResNet-50) 66.5
+Multi-scale Feature Extraction 79.6

+Attention 68.8
+MFA 80.4

DeepFashion6

Baseline(ResNet-50) 85.8
+Multi-scale Feature Extraction 87.4

+Attention 86.5
+MFA 87.7

CIFAR-10

Baseline(ResNet-50) 91.2
+Multi-scale Feature Extraction 93.9

+Attention 91.5
+MFA 94.4

4.4.2. Hyperparameter Ablation Experiments

The hyperparameter K is involved in the channel attention module ECA, as shown
in Equation (3), which has the kernel size of one-dimensional convolution, and its role
is to determine the local cross-channel interaction range of attention. In this part of the
experiments, we evaluate the impact of its value on the MFA module. To this end, we
train the model by setting K to 3, 5, 7, and 9. The results are shown in Table 10. On the
Collar6, DeepFashion6, and CIFAR-10 datasets the model performed best when K = 5, with
accuracy of 80.4, 87.7, and 94.5%, respectively. When K = 3, the accuracy was 79.9, 87.0,
and 94.5%, respectively. When K = 7, the accuracy weas 80.0, 87.4, and 94.3%, respectively.
When K = 9, the accuracy was 79.7, 87.2, and 94.2%, respectively, and the model performed
poorly. From this we conclude that for the MFANet, the ECA module achieves the best
results when K = 5. When training the network, a small convolution kernel cannot capture
enough feature information and an excessively large convolution kernel will bring noise
and make the model performance worse.

Table 10. The value of hyperparameter K affects the accuracy of the model.

Dataset Number of K Accuracy (%)

Collar6

3 79.9
5 80.4
7 80.0
9 79.7

DeepFashion6

3 87.0
5 87.7
7 87.4
9 87.2

CIFAR-10

3 94.5
5 94.5
7 94.3
9 94.2

5. Conclusions

In this paper, we design a modular MFA including multi-scale feature extraction
and attention mechanisms.The MFA module can extract multi-scale spatial information
as well as finer cross-channel attention information. Based on the MFA module, we
constructed a novel network structure MFANet, which inherited the advantages of the
MAF module and can effectively integrate multi-scale contextual features and image-
level classification information. Through extensive comparative experiments and ablation
implementations, we demonstrated that our method MFANet can achieve more advanced



Mathematics 2023, 11, 1164 15 of 16

performance in general image classification tasks compared with various mainstream
neural networks, and can also recognize small-scale targets in images. The state-of-the-art
performance is achieved on small-scale image classification tasks. However, there are still
some shortcomings in our work. First, our model is currently only useful for the image
classification tasks and does not explore its possibilities in other vision tasks. Second, our
use of only a single channel attention mechanism can result in loss of spatial information.
In the future, we will investigate the application of MAFNet in more computer vision tasks
and further investigate how to effectively embed spatial attention in the MFA module to
combine it with channel attention for the purpose of improving model performance.
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