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Abstract: Type 1 Diabetes Mellitus (T1DM) is a disease where insulin production is obstructed in the
pancreas, and exogenous administration of the hormone must be utilized. Automatic control of the
administration can be achieved using the Artificial Pancreas (AP) concept, whose performance is
heavily reliant on the underlying control algorithm. A Robust Fixed-Point Transformations (RFPT)-
based control strategy was designed to automate the insulin delivery process, which incorporates a
Sliding Mode Differentiator (SMD) to provide higher order derivatives of the blood glucose level.
Inter-patient variability, carbohydrate disturbances, and real-life sampling were included in the
validation of the method. Results showed that the algorithm could regulate the blood glucose level,
with a significant overshoot at the beginning of the control action due to the adaptive nature of
the controller. Results indicate that the design requires additional modifications to be feasible in
practice, including an extended validation with more virtual patients and realistic simulation settings
in the future. Nevertheless, the current control algorithm has several attractive features, which are
discussed with respect to PID and Model Predictive Control (MPC).

Keywords: type 1 diabetes mellitus; artificial pancreas; automated insulin delivery; robust fixed-point
transformations; sliding mode differentiators

MSC: 93-10

1. Introduction

Automatic control of physiological systems is one of the most challenging areas of
control theory. In physiological systems, measurements and input actions often have
significant limitations, while many sources of disturbance might be apparent, which are
hard to characterize or compensate for. Some successful applications of physiological
control include the optimization of drug delivery, automated anesthesia, or the automated
treatment of Diabetes Mellitus (DM).

DM is one of modern society’s most prevalent diseases, with an estimated 536.6 million
cases in 2021, projected to increase to 783.2 million cases in 2045 [1]. In general, DM is
a collection of diseases with insufficient insulin production by the pancreas in response
to carbohydrate (CH) intake. DM has several different manifestations, each originating
from a specific biological factor. Of all the possible variants, type 1 (T1DM) and type 2
(T2DM) DM have the most significant prevalence, thus being the target of an automated
solution. While T1DM is an inherited autoimmune disease, where the malfunction of the
pancreas starts at an early age, T2DM is a disease connected to the patient’s lifestyle. A
significant difference between the two conditions is that T1DM cannot be cured completely
(currently), but T2DM could be reversed in some instances by introducing measures that
target unhealthy lifestyle choices.

As a consequence, early attempts to implement an automated scheme targeted the
T1DM condition, due to the limited number of interplaying factors that lead to the disease
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compared to the T2DM variant [2]. A significant achievement in this regard was the
development of the Artificial Pancreas (AP) concept, where an external device controls the
exogenous insulin administration instead of relying on the self-administration of the patient
by an insulin pen [3]. Such a device can provide tighter blood glucose (BG) regulation, thus
leading to an improved quality of life for the patient [4]. The two main physical components
of the AP concept are the Continuous Glucose Monitoring Sensor (CGMS), providing
essentially real-time measurements on the BG level of the patient, and an insulin pump,
which can administer the insulin in a precise manner [5]. In order to automate the process,
a sophisticated control algorithm must also be implemented, which calculates the insulin
administration based on the measured BG levels. The implementation of such an algorithm
is difficult in practice, which can be attributed to the unique physiological characteristics
of the patient, as well as the absence of information on the CH intake, which presents
a disturbance in the control operation. Numerous algorithms exist in the literature, in
which PID-control- and Model-Predictive-Control-based approaches were tested in clinical
trials [6,7]. Nevertheless, a large number of other alternatives were also investigated in the
research community, including Sliding Mode Control [8], Tensor-Product-based control [9],
or fuzzy control [10]. A comprehensive review of the available control algorithms can be
found in the surveys [11,12].

In our current research, the application of the Robust Fixed Point Transformation
(RFPT)-based control was investigated on the T1DM problem. The method can be clas-
sified as an adaptive nonlinear control method, where a fixed-point iteration eliminates
parametric errors and other disturbances arising from the Input–Output (IO) linearization
principle [13,14]. Using the RFPT in the context of T1DM control was reported in [15,16]
and [17]. These works were proof-of-concept studies, with several limitations regarding
the possible real-life application.

Since the RFPT method relies on the IO linearization principle, a major issue that
must be addressed is the acquisition of high-order derivatives of the measured variable,
namely the BG level. Estimating the derivatives is a highly nontrivial task and has been
one of the fundamental issues in control theory. One possible approach is the use of Sliding
Mode Differentiators (SMD), which can provide higher-order derivatives of online sampled
signals, developed initially by [18]. Both continuous and discrete time formulations are
available in the approach of [19,20]. The algorithm uses a dynamical system to estimate the
derivatives of a given signal, where each state variable represent a derivative order. When
the system is solved, the exact values of the derivatives are obtained in finite time due to
the discontinuity in the structure of the ODEs.

In the current paper, we aim to develop an RFPT controller which is validated through
simulations, where multiple real-life factors are addressed. Our novelty in this work is
that the design of the controller is based on a rigorous theoretical foundation developed
in previous papers [15,21], rather than ad hoc observations. Additionally, the controller
is also augmented with an SMD, which can provide higher-order derivatives of online
sampled signals. Moreover, this is the first time in the literature that the SMD is connected
to the RFPT methodology, which can be beneficial for the future development of the control
technique. The implementation of the algorithm was based on an identifiable virtual patient
(IVP) model, introduced in [22], and the design was tested using virtual patients in silico,
where parametric uncertainty, CH disturbance, and sampling time were also considered.

In Section 2, preliminaries of the IO linearization principle are presented in conjunction
with the RFPT method and the SMD. In Section 3, the application of the theory is shown
on the IVP model and the controller design is performed. In Section 4, simulation results
of the closed-loop system are presented, with additional analysis on the achieved results.
Conclusions and future research directions are presented in Section 5.

2. Materials and Methods

The RFPT method is an extension of the IO linearization principle, where an iteration
aims to eliminate the mismatch between the predicted output of the system model and
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its measurement through an additional dynamic variable. Convergence of the iteration
eventually results in the original IO linearized version of the controller. In the original IO
linearization, a state transformation is calculated, which renders the original system into
a chain of integrators and a scalar nonlinear differential equation in single input, single
output (SISO) cases. The input signal is then defined so that the nonlinear terms cancel out
in the nonlinear equation, and the system is fully linearized through a virtual input. This
linear system can then be controlled using traditional linear control strategies, such as PID
or state feedback control. Nevertheless, when the system parameters are inexact or other
disturbances are present during the closed-loop control, the linearization fails, resulting
in unstable behavior for most systems. RFPT aims to bridge this difference by utilizing
a discrete-time iteration, such that the linearization is preserved and the operation of the
linear controller is maintained.

This section shows the theoretical background of the method for continuous SISO
systems, highlighting its benefits and drawbacks. We first introduce the IO linearization
principle based on the exposition of [23].

2.1. Input–Output Linearization

A general nonlinear SISO input-affine system is given by

ẋ = f (x) + g(x)u

y = h(x)
(1)

where x = x(t) ∈ Rn is the state of the system at time t, u = u(t) ∈ R is the input
of the system at time t, while y = y(t) ∈ R is the output of the system at time t, and
t ∈ R+, and f , g, h are continuously differentiable vector fields. The output of the system is
differentiated, which leads to

ẏ =
∂h
∂x

ẋ =
∂h
∂x

[ f (x) + g(x)u] , L f h + Lgh u (2)

where L f h and Lgh are the Lie derivatives of h along the vector fields f and g, respectively.
This notation has the property

L0
f h = h

Lk
f h = L f Lk−1

f h =
∂(Lk−1

f h)

∂x
f , k ≥ 1.

(3)

Assuming that the input u of the system appears in the r-th derivative, the following
condition can be formulated

LgLr−1
f h =

∂(Lr−1
f h)

∂x
g 6= 0, (4)

where r is the relative degree of the system. The relative degree r (1 ≤ r ≤ n) of a nonlinear
input-affine system in a region D0 ⊂ D exists if

LgLi−1
f h(x) = 0, i = 1, ..., r− 1

LgLr−1
f h(x) 6= 0

(5)

for all x ∈ D0. It is also assumed that the relative degree equals the state dimension, such
that r = n. This assumption implies that no zero dynamics are present in the transformed
system. If this assumption is not satisfied, the controller can still provide adequate closed-
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loop performance when the zero dynamics are stable. As a consequence, the coordinate
transform is given as 

ξ1
ξ2
...

ξn

 = T (x) =


h(x)

L f h(x)
...

Lr−1
f h(x)

, (6)

where T : Dx ⊂ Rn → Dξ ⊂ Rn must be a diffeomorphism. Using this transformation, a
normal form can be obtained

ξ̇1 = ξ2

ξ̇2 = ξ3

...

ξ̇n−1 = ξn

ξ̇n = α(ξ) + β(ξ)u

y = ξ1.

(7)

In (7), the system is divided into a series of integrators and a nonlinear differential equation
with the components

α(ξ) = [Ln
f h(x)]x=T -1

c (ξ)

β(ξ) = [LgLn−1
f h(x)]x=T -1

c (ξ).
(8)

The nonlinear term ξ̇n in (7) can then be used to define the input as

u =
v− α(ξ)

β(ξ)
, (9)

which eliminates the nonlinearities, from which ξ̇n = v, where v is a virtual input. By
combining equations (7) and (9), the linear system

ξ̇ = Aξ + Bv

y = Cξ
(10)

is obtained, which can be stabilized in the origin using state feedback v = −Kξ, where K
is determined either by LQR control or pole placement. In practice, (9) is often obtained
from an uncertain model with vector fields f ∗, g∗, h∗, which have a similar structure to the
vector fields in (1), thus the equilibrium remains the same qualitatively in both cases. By
combining (7) and (9), the following identity emerges

ξ̇n = α(ξ) + β(ξ)

(
v− α∗(ξ)

β∗(ξ)

)
(11)

with the modified affine terms

α∗(ξ) = [Ln
f ∗h
∗(x)]x=T -1

c (ξ)

β∗(ξ) = [Lg∗Ln−1
f ∗ h∗(x)]x=T -1

c (ξ).
(12)

This does not lead to a linear system anymore; hence, it requires further compensation, for
which the RFPT provides an iterative solution.
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2.2. Robust Fixed-Point Transformation

The normal form can be discretized with the Euler method, for example

ξ+n = ξn + ∆t
[

α(x) + β(x)
(

v− α∗(x)
β∗(x)

)]
, (13)

where ∆t > 0, ξ := ξ(k∆t) and ξ+ := ξ((k + 1)∆t), k ∈ N0. The following requirement is
made on (11) to eliminate the nonlinearities

E(g) ≡ α(ξ) + β(ξ)

(
g− α∗(ξ)

β∗(ξ)

)
= v, (14)

where v = −Kξ is the linear state feedback control and g is a new input which should
satisfy (14). One can define a fixed-point iteration to find the root g∗ of (14) through the
associated equation E(g)− v + g = g, with the additional property that E(g∗) = g∗ = v.
The convergence of the iteration can be ensured on a closed domain g ∈ [a, b] ∈ R, if
the inequality ∣∣∣∣∣∣∣∣dE(g)

dg
+ 1
∣∣∣∣∣∣∣∣ < 1 (15)

can be satisfied on the whole region, which is often not the case due to the structural proper-
ties of E . These properties of E can be altered by introducing the so-called deform function

G(E(gi)− v, gi, θ) = gi+1, (16)

where the function is dependent on the error E(gi)− v, the iteration variable gi, and the
design parameters θ ∈ Rm. An initial condition g0 for the iteration must also be supplied.
One must impose the additional property

G(E(g∗)− v, g∗, θ) = g∗ → E(g∗) = v (17)

such that the fixed-point solution indeed coincides with the linear controller v. If, for some
θ, the closed interval convergence condition can be satisfied, i.e.,∣∣∣∣∣∣∣∣dG(E(g)− v, g, θ)

dg

∣∣∣∣∣∣∣∣ < 1 (18)

then the iteration g+ = G(E(g)− v, g, θ) will converge to g∗ due to the Banach fixed-point
theorem. Since E(g) can only be accessed through direct measurement on the r-th derivative
of the output of the process, the iteration is performed online when measurements are
available, i.e., g = gk = g(k∆t). The normal form augmented with the deform function is
given as

ξ+1 = ξ1 + ∆tξ2

...

ξ+n = ξn + ∆t
[

α(ξ) + β(ξ)

(
g− α∗(ξ)

β∗(ξ)

)]
g+ = G(E(g)− v, g, θ)

v = −Kξ

y = ξ1.

(19)

By adequately tuning θ, the sequence g→ g∗ renders the system essentially linear in a fixed
number of steps from which the linear controller can finish the control task. In practice,
when |g+ − g∗| < ε, where ε is a small number, then g+ = g, since the iteration is in the
vicinity of the fixed point. We note that the requirement (18) is similar to the linearization
theorem for nonlinear discrete-time systems.
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As aforementioned, E(g) can only be accessed by directly measuring the r-th derivative
of the system’s output. Nonetheless, this is infeasible in practice, such that an estimation
must be constructed from the output signal directly, for which Sliding Mode Differentiators
provide a possibility.

2.3. Sliding Mode Differentiator

SMDs originate from the sliding mode control theory, closely related to the IO lin-
earization principle [18]. SMDs can provide exact differentials of a signal f (t) up to order r,
if an upper bound L is available such that | f (r+1)| < L, where L is the Lipschitz constant. A
dynamical system can then be constructed in the form of

ż0 = −λ̃rL1/(r+1)|z0 − f (t)|
r

r+1 sign(z0 − f (t)) + z1

ż1 = −λ̃r−1L2/(r+1)|z0 − f (t)|
r−1
r+1 sign(z0 − f (t)) + z2

...

żr−1 = −λ̃1Lr/(r+1)|z0 − f (t)|
1

r+1 sign(z0 − f (t)) + zr

żr = −λ̃0Lsign(z0 − f (t)) + zr,

(20)

where λ̃r = λr, λ̃0 = λ0, and λ̃i = λiλ̃
i/(i+1)
i+1 . The parameters λi are free parameters, often

determined empirically. A possible choice for the coefficients of a fifth-order differentiator
is λ = [1.1, 1.5, 2, 3, 5, 8] [20]. In practice, the larger the coefficient values, the faster the
convergence of the system with larger sensitivity for the noise in the function f (t). The
initial condition associated with (20) is given as z = [ f (0), 0, . . . , 0]. Additional material on
SMD can be found in [24].

In the case of the RFPT method, the differentiated function f (t) is the measured BG
level y(t) such that the value of E(g) is estimated by zr(t), where r is the relative degree.
This estimation is essential since E(g) forms a basis of the error between the output of the
system and the linear controller. In the case of T1DM control, there is no possible way to
physically measure the r-th derivative of the BG level, only to estimate it, which justifies
the use of the SMD. In particular, at each sampling instant k in (19), the system (20) is
integrated with initial condition z = [y(k∆t), z1(k∆t−), . . . , zr(k∆t−)], where the notation
zr(k∆t−) denotes the endpoint of the previous solution curve of z.

In the following, the Identifiable Virtual Patient (IVP) model is presented, on which
the control design is based.

3. Controller Design

In order to design the controller, a suitable model is required, which was chosen to be
the IVP model which can be found in [25]. The model describes the insulin interactions in
the body using four state variables, where the CH intake is represented as a disturbance:

ẋ1 = − 1
τ1

x1 +
1
τ1

u
CI

ẋ2 = − 1
τ2

x2 +
1
τ2

x1

ẋ3 = −k1x3 + k1SI x2

ẋ4 = −(GEZI + x3)x4 + EGP + Ra,

(21)

where x1 (mg/dL) is the catheter site subcutaneous insulin concentration, x2 (mg/dL) is
the insulin plasma concentration, x3 (mg/dL) is the insulin effect related to the decrease in
plasma glucose, which is denoted by x4 (mg/dL), Ra (mg/dL/min) is the rate of appearance
of glucose following meals, and u (U/min) is the exogenous insulin administration rate. In
this model, u is the input signal, while Ra is a disturbance term. The output for this model
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is the BG level, y = x4, which can be measured with a CGMS device directly. A description
of the model parameters and their corresponding dimensions can be found in Table 1.

Table 1. Model parameters.

Parameter Unit Description

τ1 min Pharmacokinetic time constant
τ2 min Pharmacokinetic time constant
CI mL/min Insulin clearance
k1 1/min Time constant of insulin action
SI mL/µU/min Insulin sensitivity

GEZI 1/min Glucose effectiveness at zero insulin
EGP mg/dL/min Endogenous glucose production

The model was also augmented with a sensor model, based on the research of [26].
The sensor model is derived from measurements taken with a Dexcom G6 sensor, which
can provide BG measurements with a sampling time of 5 min. The sensor model can be
decomposed into two parts, namely a fixed error IGs, originating from calibration impreci-
sion, and a random noise vk, characterized by a Gaussian white noise. The calibration error
is given by the continuous time system

ẋ5 =
1
τ
(x4 − x5) (22)

x5s = (a0 + a1t + a2t2)x5 + b0 (23)

where the coefficients were experimentally determined to be τ = 3.1, a0 = 1, a1 = 0.002, a2 = 0,
and b0 = 7.3 [26]. The random noise is a discrete-time autocorrelated white noise as

vk = α1vk−1 + α2vk−2 + wk (24)

wk, v0, v1 ∼ N (0, σ), (25)

where α1 = 1.3, α2 = −0.46, and σ = 3.2. Each measurement is then given as

ŷk = x5s(∆tk) + vk, (26)

where ŷk is the noise-corrupted BG measurement directly used in the SMD.
To design the controller, the steps outlined in Section 2 must be followed. First, the

relative degree must be determined by differentiating the output y = x4 with respect to
time until the input appears explicitly. Here, the relative degree was found to be r = 4,
since the input is explicitly present in the fourth derivative of the output signal. The second
step is the calculation of the coordinate transform T from (6), which was performed using
Wolfram Mathematica due to the complexity of the calculations. The transformation is
given by 

ξ1
ξ2
ξ3
ξ4

 = T (x) =


x4

γ2 − γ1x4
Ṙa + k1γ3x4 + γ1(−γ2 + γ4x4)

R̈a + γ5 + γ6 − γ4(Ṙa + γ7)

 (27)
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where the auxiliary variables are defined as

γ1 = (GEZI + x3)

γ2 = EGP + Ra

γ3 = (−SI x2 + x3)

γ4 = (GEZI + x3)

γ5 = (k1(SI(−x1 + x2 + k1τ2x2)− k1τ2x3)x4)/τ2

γ6 = 2k1(SI x2 − x3)(−b + ax4)

γ7 = k1cx4 − a(b− ax4).

(28)

In the following step, the inverse transformation rule T –1 must be calculated. The inverse
transformation is given by the vector

x1
x2
x3
x4

 = T –1(x) =


−δ1(δ2 + δ3 − δ4 + δ5 + δ6 + δ7))

(δ8 − δ9)/(k1SIξ
2
1)

δ10/ξ1
ξ1

 (29)

where the auxiliary terms are

δ1 = (1/(k1SIξ3
1)

δ2 = −k1Raξ2
1 − R̈aτ2ξ2

1 + GEZIk1ξ3
1 + Raξ1ξ2

δ3 = k1Raτ2ξ1ξ2 + k1ξ2
1ξ2 − 2Raτ2ξ2

2 − ξ1ξ2
2

δ4 = k1τ2ξ1ξ2
2 + 2τ2ξ3

2 − Ṙaξ1(ξ1 + k1τ2ξ1 − 2τ2ξ2)

δ5 = Raτ2ξ1ξ3 + ξ2
1ξ3 + k1τ2ξ2

1ξ3 − 3τ2ξ1ξ2ξ3

δ6 = EGP(ξ1ξ2 − 2τ2ξ2
2 + k1ξ1(−ξ1 + τ2ξ2) + τ2ξ1ξ3)

δ7 = τ2ξ2
1ξ4

δ8 = Ṙaξ1 + EGPk1ξ1 + k1Raξ1 − GEZIk1ξ2
1

δ9 = EGPξ2 − Raξ2 − k1ξ1ξ2 + ξ2
2 − ξ1ξ3

δ10 = (EGP + Ra − GEZIξ1 − ξ2).

(30)

To calculate the input rule that cancels out the nonlinearities, the terms α(x) and β(x) must
be determined, where α(x) is described by

α(x) = x4(k1((x3 − SI x2)k2
1 + (SI(x1 − x2)k1)/τ2)

+ (SIk1(CIτ1x1 − CIτ1x2 + CIτ2x1))/(CIτ1τ2
2 ))

− ((x3 − SI x2)k2
1 + (SI(x1 − x2)k1)/τ2)

(3EGP + 3Ra − 3x4(GEZI + x3))

+ (GEZI + x3)(x4((x3 − SI x2)k2
1

+ (SI(x1 − x2)k1)/τ2)

+ (GEZI + x3)(Ṙa − (GEZI + x3)

(EGP + Ra − x4(GEZI + x3))

+ k1x4(x3 − SI x2))

− 2k1(x3 − SI x2)

(EGP + Ra − x4(GEZI + x3))− R̈a)

− 3k1(x3 − SI x2)(
...
Ra − Ṙa + (GEZI + x3)

(EGP + Ra − x4(GEZI + x3))

− k1x4(x3 − SI x2)),

(31)
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while β(x) is given as
β(x) = (−(SIk1x4)/(CIτ1τ2)). (32)

Using (9), α(x), and β(x), the transformed input has the structure

u = (1/(k1SI x4))(CIτ1τ2(−g− (k1(SI((−τ2)x1

+ τ1(−x1 − k1τ2x1 + x2 + k1τ2x2 + k2
1τ2

2 x2))

− k2
1τ1τ2

2 x3)x4)/(τ1τ2
2 ) + 3k1(SI x2 − x3)

(
...
Ra − Ṙa + EGPGEZI + GEZIRa + EGPx3

+ Rax3 − GEZI2x4 + k1SI x2x4

− 2GEZIx3x4 − k1x3x4 − x2
3x4) + (1/τ2)

((GEZI + x3)((−R̈a)τ2 − EGPGEZI2τ2

− GEZI2Raτ2 + 2EGPk1SIτ2x2 + 2k1RaSIτ2x2

− 2EGPGEZIτ2x3 − 2EGPk1τ2x3

− 2GEZIRaτ2x3 − 2k1Raτ2x3 − EGPτ2x2
3

− Raτ2x2
3 + Ṙaτ2(GEZI + x3) + GEZI3τ2x4

+ k1SI x1x4 − k1SI x2x4 − 3GEZIk1SIτ2x2x4

− k2
1SIτ2x2x4 + 3GEZI2τ2x3x4

+ 3GEZIk1τ2x3x4 + k2
1τ2x3x4 − 3k1SIτ2x2x3x4

+ 3GEZIτ2x2
3x4 + 3k1τ2x2

3x4 + τ2x3
3x4))

− (3k1(SI(−x1 + x2 + k1τ2x2)− k1τ2x3)

(−EGP− Ra + (GEZI + x3)x4))/τ2)).

(33)

Note that instead of v, the deformed variable g appears in this equation as the virtual input
(immediately in the first line). In some instances, the input signal u might become negative,
violating the positivity constraint imposed on the system. To this end, a saturation is
imposed on the input signal, such that

u =


ū, if ū ≤ u
u, if 0 < u < ū
0, otherwise,

(34)

where ū is the maximum input rate that the insulin pump can handle. The value of ū was
chosen to be ū = 30[U/h], which corresponds to the typical maximum basal administration
rate in commercial insulin pumps [27].

The corresponding linear system in (33) is described by the matrices

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


B =

(
0 0 0 1

)ᵀ
C =

(
1 0 0 0

)
.

(35)

This system is controllable and could be regulated by a linear state feedback controller that
tracks a setpoint value of rc with x4. The state feedback law is given in the form of

v = k f rc − Kξ

k f = −1/(C(A− BK)−1B),
(36)
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where k f is a corrector term, and K is the gain, which can either be found by pole placement
or the minimization of the LQR cost. The deform function G(E(gi)− v, gi, θ) was chosen
to be

G(E(g)− v, g, θ) = (g + Kc)(1 + Bctanh(Ac(ξ̇4 − v)))− Kc, (37)

which was previously applied in a wide variety of systems [28]. Here, ξ̇4 = E(g) from (14),
and the parameter vector has the elements θ = [Ac, Bc, Kc]ᵀ.

The controller can be tuned by first choosing the closed-loop poles pcl of the linear
controller, using only the IO linearized version, finding the gain matrix K, and then tuning
the parameters of the deform function. In the first step, one sets every model parameter
instance in the control loop to the average system parameters and then finds a proper
choice for pcl , which is pcl = [−0.04,−0.03,−0.02,−0.01] in this case. This choice en-
sures that no overshoot is present during the setpoint tracking, which is important to
avoid negative insulin administration. For this choice, the corresponding gain matrix was
K = [1.57 · 10−7, 3.64 · 10−5, 2.8 · 10−3, 9 · 10−1] with the correction term k f = 1.57 · 10−7.
The reference to be tracked was rc = 120.

After tuning the linear controller, the parameters of the deform function have to be
determined. By keeping the same system parameter settings, i.e., using the approximate
parameters in every function, one determines first the initial condition of the iteration,
which was g0 = k f rc − KT (x0). Then, the elements of θ are determined, for which a rule of
thumb is that Bc is -1, while Ac and Kc differ by order of magnitude [28]. As a consequence,
the parameters Bc = −1, Kc = 10−1, and Ac = 10−2 lead to g(t) = v(t), which means that
the iteration converges to the proper fixed point. Additionally, the convergence tolerance
was set to δ = 10−12.

The last step is to find the Lipschitz constant L of the SMD since the rest of the
parameters are fixed. In this case, its value was determined through computer simulations,
which resulted in the value of L = 10−14. Figure 1 shows a schematic diagram of the entire
control loop.

Sliding

Mode

Di�erentiator

Linear

Controller

Deform

Function

IVP model

Inverse

Model

Figure 1. Schematic diagram of the proposed control loop. The SMD first produces the derivatives ξ

of y = x4. Then, the linear controller calculates v = k f rc + Kξ, which is used in the deform function
to create the error ξ̇4 − v and perform one step of the RFPT iteration. The resulting iterate is then used
to calculate the input signal for the system via the inverse model, and the cycle repeats at each step.

4. In Silico Results

The approach was validated in silico using ten virtual patients, each representing
a unique parameter set for the IVP model. The parameters of the virtual patients can
be seen in Table 2. Each simulation ran for six days with a fixed CH intake profile. On
each day, three meals were simulated, with varying CH contents, which can be seen in
Figure 2. A limit was imposed on the BG level, such that it cannot exit the closed region
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x4 ∈ [50; 400]; otherwise, the subject enters into a deadly hypoglycemic or hypoglycemic
state, respectively.

Table 2. Parameters of the virtual patients, associated with the IVP model.

EGP GEZI CI SI τ1 τ2 vk1

p1 1.33 2.2 × 10−3 2010 8.1 × 10−4 49 47 1 × 10−2

p2 0.6 4.4 × 10−3 1281 9.6 × 10−4 41 10 1.2 × 10−2

p3 1.07 3.5 × 10−3 909 4.6 × 10−4 71 70 2.3 × 10−2

p4 0.98 1.6 × 10−5 1813 3.8 × 10−4 91 70 8.1 × 103

p5 0.6 4.3 × 10−3 1535 2.1 × 10−4 46 46 9.6 × 10−3

p6 0.6 1 × 10−3 588 4.1 × 10−4 68 30 9.2 × 10−3

p7 1.11 2.3 × 10−3 1806 8.2 × 10−4 60 60 1 × 10−2

p8 1.3 1 × 10−8 540 3.7 × 10−4 95 37 1 × 10−2

p9 1.27 6.4 × 10−3 875 2.6 × 10−4 131 21 1 × 10−2

p10 0.61 1 × 10−3 1309 6 × 10−4 53 53 1 × 10−2
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Figure 2. Rate of glucose appearance after CH absorption for the simulation.

Some additional considerations were introduced before running the simulation. Since
CGMS sensors have a reasonably large sampling time, they had to be included in the
simulation. Currently, commercial CGMS devices permit the sampling of BG levels 5 min
apart, and as a consequence, this was chosen to be the dead time between measurements,
such that ∆t = 5. Between each measurement sample, the system was simulated with a
step size of δt = 0.1, which was also the refresh rate of the linear controller (36), which
produces v. The SMD was integrated once a new measurement was available from the
previous measurement, updated with the latest measured value.

It was also assumed that no information is present on the Ra disturbance, hence in
the inverse model Ra = Ṙa = R̈a =

...
Ra = 0. Moreover, only x4 was used in the inverse

model (33), since it could be directly measured, and the remaining terms were set to
x1 = x2 = x3 = 0 in this equation, which leads to the simplified inverse model

u = −(CIτ1τ2(g + (GEZI(−τ2x4GEZI3 + EGPτ2GEZI2))/τ2))/(SI p2x4). (38)
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An unexpected consequence of this choice was that the control performance increased
since the inverse transformation (29) turned out to be numerically ill conditioned. In
practice, one can only measure x4, while the other states are hidden. By estimating the
derivatives ξ of y = x4 using the SMD, these derivatives can be used in the inverse
transformation (29) to obtain estimates on x1, x2, and x3. However, the SMD produces noisy
estimates, and the cubic terms further exacerbate the errors in the inverse transformations
(ξ̄1 in δ1, for example), which leads to unreliable state estimates. While omitting these terms
leads to an inaccurate inverse, this discrepancy still involves smaller errors than using the
ill-conditioned transformations.

The deform function (37) was also only updated when a new measurement was
available since the effect of gk on E(gk) could only be determined through direct sampling.
Between each measurement, with the previously defined sampling ∆t = 0.1, the previous
iteration gk−1 was used in the inverse model.

The results were assessed using the time-in-range (TIR) metric [29] and the Control
Variability Grid Analysis (CVGA) [30]. The TIR metric defines different regions and
determines what percentage of the BG level stays in the given areas during the simulation,
whereas the CVGA plot shows the maximal and minimal BG levels attained during closed-
loop therapy.

The first simulation with the initially tuned parameters led to unsatisfactory results
in general. Of the ten virtual patients, only eight could stay within limits on the BG level.
Additionally, three of the remaining cases were grouped in the E region of the CVGA
plot, indicating life-threatening BG levels. Consequently, the control parameters were fine-
tuned, so better performance was achieved. Through simulations the control parameters
were empirically modified to pcl = pcl × 0.8, Kc = 10, Ac = 10−4, and L = 10−16. By
decreasing the eigenvalues of pcl , the response time of the linear controller can be decreased,
thus lowering the overshoot in the BG level due to the disturbances. This modification
improved general performance; however, two virtual patients were still out of range. The
simulation results can be seen in Figures 3–6, and the corresponding CVGA plot in Figure
7. Table 3 contains each patient’s CVGA and TIR metrics, where an additional column
shows the extreme cases where hypoglycemia or hyperglycemia occurred. The best results
were achieved in the case of p1, p7, p8, and p9, where the TIR was in the safe range (70–
180 (mg/dL)) for more than 80% of the time. However, as one can see, only two sets of
parameters entered the safe region B on the CVGA plot, while the others remained in the D
and E zones. While this seems to be a poor result at first glance, another perspective can be
gained by inspecting Figure 3.

As one can see, the out-of-range BG levels occurred in the region t ∈ [0; 2500], where
there was a significant deviation from the tracked setpoint. However, after 2500 min, the
controller could provide a tight tracking of the BG level, irrespective of the Ra magnitude.
Each BG trajectory is contracted in the optimal region, indicated by the green dash-dotted
lines. This initial deviation is due to the iterative nature of the controller, where if the
initial condition g0 is poorly estimated, the convergence is slower to the desired fixed point,
as Figure 5 shows. In Figure 3, this slow convergence is what one can see, where at the
beginning of the simulation, the trajectories corresponding to each virtual patient have a
significant deviation in between, but as time progresses, this deviation vanishes and each
trajectory evolves close to each other.

The adaptation period can be significantly shortened by supplying better initial con-
ditions at the beginning of the simulation. For example, taking the last value of g in the
simulation and using it as an initial condition improves the results drastically, which can
be seen in Figures 3, 4 and 6. The beginning of the simulations is significantly better, and
the trajectories are bounded by the red dashed lines, except for p7, which barely enters into
hypoglycemia. This observation is further confirmed by the bottom CVGA plot in Figure 7,
and the TIR values in Table 4.

Nevertheless, finding better initial estimates for g is nontrivial in practice since it
implicitly requires knowledge of the uncertainty of the model parameters. One possible
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way to reduce the variation during adaptation is to restrict the CH intake at the beginning of
the operation of the controller. Another solution could be to redefine Ac to be time-varying.
Values closer to Kc lend to acceleration in convergence, but poor adaptation in the long run,
while using smaller values has the opposite effect. A better result could be achieved by
using larger values at the beginning of the control cycle and then smoothly varying them
to smaller values, which will be a focus of future research.

Discussion

The proposed method is an adaptive control method, similar to previous designs,
shown in [31,32]. While the previous demonstration showed that the choice of initial
condition for the deform function significantly determines its performance, the controller
could handle inter-patient variability by solely using the mean of the parameters. This
contrasts with PID and Model Predictive Control (MPC), the two most popular approaches
in T1DM control.

The RFPT controller has similar computational characteristics as PID control in the
sense that it does not require extensive computational hardware. The most important
benefit of the method lies in its adaptability. In general, PID control cannot consider the in-
dividual characteristics of each patient, and hence can only give a suboptimal performance
in many cases. However, in this case, the PID should outperform the RFPT, since the initial
condition of the iteration cannot be given precisely in practice. Additionally, RFPT is more
cumbersome in its theoretical exposition, which could make it less preferable in practice.

One can also compare the RFPT with MPC implementations. MPC is an optimal
control method that formulates the control problem as an optimization task. As a direct
consequence, the obtained control signal is optimal with respect to a cost function, which
often incorporates the minimization of the exogenous insulin applied to the patient. By
contrast, RFPT does not possess any optimal traits due to the simulation-based tuning
of the control parameters. However, the optimization procedure often requires complex
algorithms, which makes it computationally less attractive than the RFPT. Moreover, the
performance of the MPC significantly relies on the internal model of the process, which, in
the presence of parameter uncertainties, can lead to instability. In practice, this problem is
challenging to solve and requires advanced mathematical apparatus, thus the RFPT might
be a viable alternative.

One important remark is that, as shown in the theoretical introduction, the RFPT
contains a linear controller due to the IO linearization framework, which can be of any type.
Consequently, the state feedback controller used in this study can be replaced by a PID
controller or a linear MPC, combining the benefits of both approaches.

Table 3. CVGA and TIR metrics, corresponding to the slow adaptation.

TIR (%)

Extermity CVGA < 50 50 − 70 70 − 180 180 − 250 250 <

p1 B 0 0 0.84 0.13 0.02
p2 E 0 0 0.67 0.18 0.15
p3 Lower D 0 0.14 0.74 0.11 0.01
p4 Upper D 0 0 0.71 0.19 0.1
p5 E 0 0.09 0.67 0.14 0.09
p6 hypo 0.14 0.16 0.58 0.1 0.02
p7 Lower D 0 0.06 0.8 0.13 0.01
p8 Lower D 0 0.08 0.81 0.1 0.01
p9 B 0 0 0.85 0.14 0.02
p10 hypo 0.07 0.18 0.59 0.13 0.03
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Figure 3. BG levels of the two simulations. The top figure shows the slow adaptation case, while the
bottom corresponds to the fast. The red dashed line indicates a tolerable region of BG level, while the
green dash-dotted line shows the optimal region.
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Figure 4. Measured and noise-corrupted BG levels. The top figure shows the slow adaptation case,
while the bottom corresponds to the fast. The red dashed line indicates a tolerable region of BG level,
while the green dash-dotted line shows the optimal region.
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Figure 5. Evolution of the deform variable g associated with the closed-loop control. The top figure
shows the slow adaptation case, while the bottom corresponds to the fast.
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Figure 6. The computed closed-loop insulin delivery rates. The top figure shows the slow adaptation
case, while the bottom corresponds to the fast. The signals closely resemble the deformed signals.
One can see that the input signals in both cases respected the actuator limitations, hence the control
strategies were feasible in practice.
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Figure 7. CVGA plot of the BG levels attained during the simulation. The top figure shows the slow
adaptation case, while the bottom corresponds to the fast. The green zones (A,B) indicate safe levels,
yellow zones (C) are the acceptable levels, orange zones (D) are the on the margin of safety, and the
red zone (E) indicates life-threatening scenarios.
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Table 4. CVGA and TIR metrics, corresponding to the fast adaptation.

TIR (%)

Extermity CVGA < 50 50 − 70 70 − 180 180 − 250 250 <

p1 B 0 0 0.84 0.13 0.03
p2 E 0 0.03 0.69 0.17 0.12
p3 Lower D 0 0.01 0.81 0.13 0.04
p4 Lower D 0 0 0.83 0.14 0.03
p5 E 0 0.11 0.66 0.14 0.09
p6 hypo 0.02 0.13 0.64 0.13 0.08
p7 B 0 0 0.83 0.13 0.04
p8 B 0 0 0.85 0.13 0.02
p9 B 0 0 0.83 0.14 0.03
p10 E 0 0.17 0.63 0.13 0.07

5. Conclusions

In the present work, an RFPT-based proof-of-concept controller was introduced. The
theory of the method was presented in conjunction with the design of the controller. The
scheme was augmented with an SMD, providing higher-order derivatives essential for
the controller’s operation outside the in silico domain. The controller was simulated with
a fixed CH intake protocol, and the results were analyzed using both CVGA and TIR
metrics. Results showed that the controller could not provide satisfactory tracking at the
beginning of its operation, but the effect of disturbances was significantly lowered after an
adaptation period.

In order to create a reliable controller, several modifications must be implemented
in future research. First, the convergence speed must be accelerated by either finding a
better estimation for the initial condition of the iteration or using time-varying control
parameters. Another possibility is to use alternative deform functions, which is also the
scope of future design. In terms of validation, the number of virtual patients should be
increased, and a number of different, realistic CH profiles should be used during simulation
studies. Moreover, the model on which the controller is validated should be changed to a
different, more elaborate one.
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Abbreviations
The following abbreviations are used in this manuscript:

DM Diabetes Mellitus
MPC Model Predictive Control
CH Carbohydrate
T1DM Type 1 Diabetes Mellitus
T2DM Type 2 Diabetes Mellitus
AP Artificial Pancreas
BG Blood Glucose
CGMS Continuous Glucose Monitoring Sensor
RFPT Robust Fixed-Point Transformations
IO Input–Output
Sliding Mode Differentiator SMD
IVP Identifiable Virtual Patient
TIR Time-in-Range
CVGA Control Variability Grid Analysis
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