
Citation: Hassan, M.M.; AlRakhami,

M.S.; Alabrah, A.A.; AlQahtani, S.A.

An Intelligent Edge-as-a-Service

Framework to Combat COVID-19

Using Deep Learning Techniques.

Mathematics 2023, 11, 1216. https://

doi.org/10.3390/math11051216

Academic Editor: Jie Wen

Received: 19 December 2022

Revised: 24 February 2023

Accepted: 28 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Intelligent Edge-as-a-Service Framework to Combat
COVID-19 Using Deep Learning Techniques
Mohammad Mehedi Hassan 1,* , Mabrook S. AlRakhami 1 , Amerah A. Alabrah 1 and Salman A. AlQahtani 2

1 Information Systems Department, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia

2 Computer Engineering Department, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia

* Correspondence: mmhassan@ksu.edu.sa

Abstract: This study proposes and develops a secured edge-assisted deep learning (DL)-based
automatic COVID-19 detection framework that utilizes the cloud and edge computing assistance as a
service with a 5G network and blockchain technologies. The development of artificial intelligence
methods through services at the edge plays a significant role in serving many applications in different
domains. Recently, some DL approaches have been proposed to successfully detect COVID-19 by
analyzing chest X-ray (CXR) images in the cloud and edge computing environments. However, the
existing DL methods leverage only local and small training datasets. To overcome these limitations,
we employed the edges to perform three tasks. The first task was to collect data from different
hospitals and send them to a global cloud to train a DL model on massive datasets. The second
task was to integrate all the trained models on the cloud to detect COVID-19 cases automatically.
The third task was to retrain the trained model on specific COVID-19 data locally at hospitals to
improve and generalize the trained model. A feature-level fusion and reduction were adopted for
model performance enhancement. Experimental results on a public CXR dataset demonstrated an
improvement against recent related work, achieving the quality-of-service requirements.

Keywords: COVID-19; cloud and edge computing; 5G network; blockchain; deep learning; feature-level
fusion; chest X-ray images

MSC: 68T07

1. Introduction

The COVID-19 pandemic has resulted in over 1.1 million deaths in the US alone as of
January 2023 [1]. While lockdown measures have been put in place to control the spread of
COVID-19, early diagnoses and prognoses are still needed to reduce casualties [2]. Modern
technologies such as cloud/edge computing, 5G, artificial intelligence (AI), and blockchain
can play a crucial role in enhancing COVID-19 diagnoses and keeping patients’ data safe.
Integrating these technologies into healthcare facilities can lead to a secure and efficient
health data analysis and diagnosis system [3,4].

The utilization of 5G allows healthcare professionals to collect and access patient data
remotely with enhanced efficiency [5,6]. AI technology, such as deep learning (DL), enables
the extraction of higher-level features from raw input, such as CT or chest X-ray (CXR) scan
images, through a training dataset available at edge devices [7]. The training process of
DL can be distributed by combining the power of 5G with the unique DL architecture at
the edges. Finally, blockchain technology allows for the safe storage of information and
data from malicious or accidental theft, loss, or modification. Therefore, a combination
of 5G, DL, and blockchain can provide a secure and efficient health data analysis and
diagnosis system.

Mathematics 2023, 11, 1216. https://doi.org/10.3390/math11051216 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051216
https://doi.org/10.3390/math11051216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3479-3606
https://orcid.org/0000-0001-5343-8370
https://orcid.org/0000-0001-9750-3883
https://orcid.org/0000-0003-1233-1774
https://doi.org/10.3390/math11051216
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051216?type=check_update&version=2

Mathematics 2023, 11, 1216 2 of 22

Many researchers have proposed and developed automatic COVID-19 identification
using CT or CXR scan images, in contrast to the polymerase chain reaction (PCR) test,
which requires a laboratory with a PCR machine and analyzes the sample at a micro-array
level. Various studies have proposed DL for COVID-19 case identification, including
CNN [8], ResNet-50 [9], ImageNet [10], and transfer learning [11], with varying degrees
of success. Recent works have focused on combining 5G, edge computing, and DL to
monitor and combat COVID-19 [12–20]. For instance, Hossain et al. [12] presented a 5G
framework that utilizes the 5G network’s CXR or CT scan images to detect COVID-19.
Rahman et al. [13] presented Signature–Home, an automated IoT-based algorithm that
cost-effectively monitors and enforces home quarantine. Rahman et al. [14] proposed a new
B5G network architecture for COVID-19 diagnosis, leveraging high-bandwidth features
and low-latency 5G networks.

Additionally, an enhanced distributed DL paradigm was proposed, in which each edge
node uses and trains the models through its local DL datasets. Roy et al. [15] introduced an
IoT-based framework for monitoring and tracing the contact and infection of COVID-19
using device-to-device (D2D) communication links over 5G/4G wireless. Ranaweera
et al. [16] presented a mobile edge computing (MEC)-based edge computing approach for
treating COVID-19 patients within a medical facility. Although these studies have proposed
recent technologies such as 5G networks, IoT, and DL, most have focused on optimizing
DL performance while overlooking many equally relevant issues related to a large number
of patients, their geographical distribution, and the security of their data.

This paper proposes a secure framework that utilizes cloud and edge computing as a
service with a 5G network, DL, and blockchain technology. The 5G network facilitates fast
data transmission between edges and the cloud, while DL is locally deployed at each edge
to detect COVID-19 cases using CXR images. Blockchain is used to secure the collected data
at each edge. The overall framework follows the concept of edge computing as a service.

In summary, this research investigates the core challenge of using edge-based DL
as a service due to a lack of big data as a training set for analyzing infectious diseases.
We present solutions demonstrating the feasibility of building an efficient and reliable 5G
network-based COVID-19 detection application powered by collecting massive CXR images
at distributed locations and deploying local deep learning models at edges and cloud com-
puting environments. Thus, a major contribution of this research is exploiting the service
of edge DL assistance, 5G network, blockchain, and cloud computing technologies, as well
as a deep feature-level fusion approach to detect and control the impact of the COVID-19
pandemic. The following are the contributions of this study to the development of an
intelligent edge-as-a-service framework to detect COVID-19 cases at different locations:

• First, we propose a secured edge DL-assisted framework that benefits from the power
of cloud computing and the service assistance of the edge and 5G network, in addition
to the security advantage of blockchains to collect and detect COVID-19 cases.

• Second, we propose a fusion-based DL approach to improve the accuracy of COVID-19
diagnosis and detection.

• Third, our proposed approach adopts appropriate DL models, namely VGG-16 and
InceptionV3. Functionally, VGG-16 uses a fixed kernel size to reduce the number of
trainable variables, speed up the training time, and increase the robustness of the
overfitting problem. The Inception model also uses a variable kernel size to extract
global and local features, providing good results in detecting area-specific features.
However, the global and local features contain some redundant features, leading
to a dimensionality problem. We applied principal component analysis (PCA) to
reduce the high dimensionality of features extracted by the InceptionV3 model while
maintaining the essential features.

• Lastly, we conducted a set of experiments to evaluate the DL model accuracy and the
efficiency of the network and blockchain.

The remainder of this article proceeds as follows. In Section 2, we describe the details
of the proposed framework. Section 3 reports the feature-level fusion-based deep learning

Mathematics 2023, 11, 1216 3 of 22

approach. Experiments are described in Section 4, with a discussion of the approach’s
performance compared to the current related work. Section 5 concludes the article and
outlines future research directions.

2. Overview of the Proposed Framework

Our proposed framework utilizes 5G technology to connect edges and facilitate effi-
cient data communication, combined with blockchain technology to secure data transfer, to
combat the spread of COVID-19. Figure 1 illustrates our concept for universal sharing of
COVID-19 data and detection models, with the goal of enabling cross-validation and im-
proving the reliability of new insights. The proposed framework addresses the challenging
issue of COVID-19 data accessibility and sharing during epidemics.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 22

The remainder of this article proceeds as follows. In Section 2, we describe the details
of the proposed framework. Section 3 reports the feature-level fusion-based deep learning
approach. Experiments are described in Section 4, with a discussion of the approach’s
performance compared to the current related work. Section 5 concludes the article and
outlines future research directions.

2. Overview of the Proposed Framework
Our proposed framework utilizes 5G technology to connect edges and facilitate effi-

cient data communication, combined with blockchain technology to secure data transfer,
to combat the spread of COVID-19. Figure 1 illustrates our concept for universal sharing
of COVID-19 data and detection models, with the goal of enabling cross-validation and
improving the reliability of new insights. The proposed framework addresses the chal-
lenging issue of COVID-19 data accessibility and sharing during epidemics.

Figure 1. A conceptual design of the proposed framework.

The main idea is to gather data from edge computing in hospitals and healthcare
centers to identify new COVID-19 cases using a locally trained deep learning model.
When not in use, the data are sent to the cloud to improve the global training model. Then,
the updated model is transferred back to the edge computing environment for better test-
ing. Overall, the collected data and models will enhance COVID-19 detection and diagno-
sis worldwide using blockchain and 5G networks.

Figure 2 depicts the three-layer architecture of our proposed framework, consisting
of the end-user equipment and application layer, edge computing with a 5G network

Figure 1. A conceptual design of the proposed framework.

The main idea is to gather data from edge computing in hospitals and healthcare
centers to identify new COVID-19 cases using a locally trained deep learning model. When
not in use, the data are sent to the cloud to improve the global training model. Then, the
updated model is transferred back to the edge computing environment for better testing.
Overall, the collected data and models will enhance COVID-19 detection and diagnosis
worldwide using blockchain and 5G networks.

Figure 2 depicts the three-layer architecture of our proposed framework, consisting of
the end-user equipment and application layer, edge computing with a 5G network layer,
and cloud computing layer. The bottom layer is the end-user equipment and application
layer, where data are collected and utilized. Hospitals store local CXR or CT scan images

Mathematics 2023, 11, 1216 4 of 22

for COVID-19 cases, which can be diagnosed and detected using DL models. However, DL
requires massive data to achieve high accuracy, the acquisition of which is not feasible for
a single hospital. Our proposed work aims to gather extensive data from multiple health
institutions and use edge and cloud computing with a 5G network to feed it into a global
deep learning model. The application in the end-user layer allows healthcare practitioners
to diagnose COVID-19 cases using the trained DL model and generate various reports.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 22

layer, and cloud computing layer. The bottom layer is the end-user equipment and appli-
cation layer, where data are collected and utilized. Hospitals store local CXR or CT scan
images for COVID-19 cases, which can be diagnosed and detected using DL models. How-
ever, DL requires massive data to achieve high accuracy, the acquisition of which is not
feasible for a single hospital. Our proposed work aims to gather extensive data from mul-
tiple health institutions and use edge and cloud computing with a 5G network to feed it
into a global deep learning model. The application in the end-user layer allows healthcare
practitioners to diagnose COVID-19 cases using the trained DL model and generate vari-
ous reports.

Figure 2. The three-layer architecture of the proposed framework.

The middle layer of the system is composed of edge computing and 5G network tech-
nologies. This layer has two main functions: first, it locally tests the data collected from
medical equipment used by end-users and provides immediate diagnosis and detection.
Second, it connects to the cloud computing layer via a 5G network to ensure fast and reli-
able data transfer. Blockchain technology is used in this layer to secure the transmission
of data and models to protect sensitive health data. Specifically, blockchain verifies the
identities of connected nodes and monitors access requests to training models and data in
a tamper-proof manner through continuous execution and checking of smart contracts.

The top layer is the cloud computing layer. It collects and trains data from various
healthcare sectors globally. The cloud layer processes and trains pre-trained deep CNN
models based on the collected data from the edge layer. The edge data help refine the pre-
trained deep CNN models globally. Once completed, the global trained model is trans-
ferred and loaded to the edge layer server to test new cases. The cloud layer uses block-
chain and 5G network technologies, such as the middle layer, to ensure security and low-
latency service.

Figure 2. The three-layer architecture of the proposed framework.

The middle layer of the system is composed of edge computing and 5G network
technologies. This layer has two main functions: first, it locally tests the data collected from
medical equipment used by end-users and provides immediate diagnosis and detection.
Second, it connects to the cloud computing layer via a 5G network to ensure fast and
reliable data transfer. Blockchain technology is used in this layer to secure the transmission
of data and models to protect sensitive health data. Specifically, blockchain verifies the
identities of connected nodes and monitors access requests to training models and data in
a tamper-proof manner through continuous execution and checking of smart contracts.

The top layer is the cloud computing layer. It collects and trains data from various
healthcare sectors globally. The cloud layer processes and trains pre-trained deep CNN
models based on the collected data from the edge layer. The edge data help refine the
pre-trained deep CNN models globally. Once completed, the global trained model is
transferred and loaded to the edge layer server to test new cases. The cloud layer uses
blockchain and 5G network technologies, such as the middle layer, to ensure security and
low-latency service.

3. Feature-Level Fusion Deep Learning Approach

One of the major components of the framework is to detect COVID-19, given the CXR
image data. The feature-level fusion DL approach is responsible for detecting COVID-19
from CXR images. It contains a set of core steps, which are described here in detail:

Mathematics 2023, 11, 1216 5 of 22

3.1. Feature Extraction

In this step, important information is taken from the CXR image to improve classifica-
tion accuracy. Extracting features from image data is a difficult task, but using convolutional
neural networks (CNNs), invented in 2012 by Alex, has made it easier. CNNs are built
using a deep-learning neural network structure where multiple layers of neurons are con-
nected through connection weights. The weight value between two neurons shows the
importance of the corresponding feature. We will describe what type of CNN we will use
in our framework after explaining how CNNs extract features from an image.

Let us consider two neurons, ‘i’ and ‘j’, from two consecutive layers, ‘m’ and ‘n’. In
this case, the output of jth neuron is computed as follows:

On
j =

k

∑
i=1

wijOm
i (1)

Here, wij is the connection weight from ith neuron to jth neuron and Om
i is the feature

value that is propagated from ith neuron to jth neuron. From Equation (1), it is obvious
that the value of wij will help the ith neuron about how much proportion of the feature
value will be propagated from ith neuron to the jth neuron. For example, if the value of wij
is zero, the feature value represented by the ith neuron will not be propagated to the jth
neuron. Hence, we can consider the respective feature has less significance in modeling the
system/problem. In CNN, the connection weights between neurons of two consecutive
layers form a matrix that can form a 2D image. Mathematically, we can represent the
relationship of Equation (1) as follows:

On = W ∗Om (2)

Here, On represents a feature vector (if the DL is considered a traditional deep-learning
neural network) of size k (considering there are total k neurons in layer n) from layer n
that is propagated to the next layer m. However, in CNN the On represents a 2D matrix
of size

√
k× √k in place of a feature vector of size k; because CNN can deal with images

(i.e., matrix). In CNN, W represents a matrix of size r× r where r < k and the operation
‘∗’ represents a convolutional operation. Note that in the traditional DL approach, the
mathematical operation between weight values and feature values is multiplication, while
in CNN, this operation is considered matrix convolution. Matrix convolution is a popular
technique in image processing for the extraction of features that represent significant edges
in the image.

In the past, researchers used a matrix to convolute an input image’s pixels and identify
significant edges, known as convolution matrices. However, CNNs use multiple convo-
lutional matrices (called kernels) to connect neurons from one layer to another, with the
kernels adapting to detect an image using backpropagation. Pooling and dropping are
also used in CNNs. Pooling downsamples the feature image On to a smaller size, while
dropping randomly removes some connections between neurons based on probability. In
our case, this helps determine whether a CXR image shows COVID-19 or not.

It is evident that CNN is effective in extracting important features from an image to
classify or detect an object. However, it requires a large amount of input and output data
for the kernels to adapt. In the case of COVID-19, there is a lack of representative data. To
address this, one can use pre-trained CNNs to extract features from CXR images. These
models have kernels determined by many images for object detection/classification. Popu-
lar pre-trained CNNs such as visual geometry group (VGG16) and InceptionV3 can extract
important features from any image, including CXR images for COVID-19 classification.

The VGG16 is a DL network structure with 16 layers of neurons that have been trained
using a large number of different images. In our proposed framework, we use the VGG16
model to extract important feature sets from each CXR image. There are many pre-trained
DL structures available that have varying numbers of layers and architectures. One such

Mathematics 2023, 11, 1216 6 of 22

popular pre-trained model is the InceptionV3, which has 12 layers of neurons embedded to
extract features from an image. In our proposed framework, we use the InceptionV3 model
in parallel with VGG16 to extract another feature set from a CXR image.

Thus, we achieve two different feature sets for the same CXR image, one using VGG16
and the other using Inception V3. We apply a principal component analysis (PCA) approach
to the selected features to deselect some features that would not impact the classification
performance. PCA is a popular method for identifying significant features from a dataset
and is mainly used to reduce the dimensionality of a dataset without losing any meaningful
implicit information. In PCA, we compute the first covariance values for each pair of
features in the dataset, and a covariance matrix is achieved. After following a series
of mathematical equations, we compute the eigenvalue for each of the features. These
eigenvalues quantify the significance level of the respective features, where a higher
eigenvalue represents a better feature compared to those with a lower eigenvalue. By
applying the PCA approach, we remove comparatively less significant features from the
preselected feature sets, which reduces the dimensionality of the dataset and does not
impact classification performance. PCA is a linear algebra technique that can perform as a
dimensionality reduction tool using the following computational steps:

1. Computing the sample mean and the sample covariance matrix by

µx =
1
n ∑n

i=1 xi (3)

Covx =
1

n− 1 ∑n
i=1(xi − µx)(xi − µx)

T (4)

2. Computing the eigenvalues and eigenvectors of Covx;
3. Defining the transformation matrix T = [w1, w2, . . . , wd] with the d eigenvectors

associated to the d largest eigenvalues;
4. Projecting the data X = (x1, x2, . . . , xn) into the PCA subspace Y = (y1, y2, . . . , yn)

as follows:
yi = Txi , f or i = 1, 2, . . . , n (5)

3.2. Feature Fusion

In this step, the selected features from the previous approaches are combined/fused
to be input into the classifier. As previously mentioned, VGG16 produces a feature size of
512, while InceptionV3 produces a feature size of 2408 due to extracting a larger number
of features. However, we believe that reducing the number of features extracted by Incep-
tionV3 would further improve COVID-19 detection from CXR images. Therefore, we used
the widely used PCA approach to reduce the extracted InceptionV3 features. No feature
selection mechanism was applied to the VGG16 features since their size is already small.
Specifically, Figure 3 displays how the selected features from VGG16 and InceptionV3 with
PCA were combined to form a single dataset for a CXR image.

3.3. Classification Using a Deep Neural Network (DNN) Model

In this step, a deep neural network (DNN) classifier is utilized to classify COVID-19
positives from non-COVID cases automatically. The DNN consists of several fully con-
nected dense hidden layers, including an input layer and an output layer. Each hidden
layer is followed by a dropout layer to prevent over-fitting. The DNN classifier uses various
activation functions based on the nature of the input data. One of the activation functions
used in the DNN’s hidden layers is the rectified linear unit (ReLU), a linear function that
outputs the input if positive and is zero otherwise. This function facilitates easy training
and better performance. The softmax function is the second activation function used in
the output layer of the DNN model. It predicts the probability distribution of each output
class value and transforms the model’s outputs into a vector of probabilities over the input

Mathematics 2023, 11, 1216 7 of 22

classes. The output of the DNN model is a binary classification label that indicates whether
the input CXR image is COVID-19 positive or non-COVID-19.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 22

Figure 3. Flowchart of the feature-level fusion deep learning approach.

3.3. Classification Using a Deep Neural Network (DNN) Model
In this step, a deep neural network (DNN) classifier is utilized to classify COVID-19

positives from non-COVID cases automatically. The DNN consists of several fully con-
nected dense hidden layers, including an input layer and an output layer. Each hidden
layer is followed by a dropout layer to prevent over-fitting. The DNN classifier uses var-
ious activation functions based on the nature of the input data. One of the activation func-
tions used in the DNN’s hidden layers is the rectified linear unit (ReLU), a linear function
that outputs the input if positive and is zero otherwise. This function facilitates easy train-
ing and better performance. The softmax function is the second activation function used
in the output layer of the DNN model. It predicts the probability distribution of each out-
put class value and transforms the model’s outputs into a vector of probabilities over the
input classes. The output of the DNN model is a binary classification label that indicates
whether the input CXR image is COVID-19 positive or non-COVID-19.

4. Experiments and Discussion
In this section, we present a series of experiments and their results related to deep

learning performance and network efficiency. Specifically, we introduce the dataset used
and the technique used to select and initialize the models’ hyperparameters. We then dis-
cuss the initial results based on evaluation metrics such as accuracy, F1-score, precision,
and recall. The accuracy metric measures the number of correctly classified cases for all
instances in the testing samples. Precision computes the number of true positives that
were correctly classified out of the total number of false positives and true positives. Recall
measures the number of true positives that were correctly classified out of the total num-
ber of false positives and true negatives in the testing samples. Lastly, the F1-score repre-
sents the weighted average of precision and recall. The following equations show how
these metrics are computed: Accuracy = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (6)

Precision = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (7)

Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (8)

Figure 3. Flowchart of the feature-level fusion deep learning approach.

4. Experiments and Discussion

In this section, we present a series of experiments and their results related to deep
learning performance and network efficiency. Specifically, we introduce the dataset used
and the technique used to select and initialize the models’ hyperparameters. We then
discuss the initial results based on evaluation metrics such as accuracy, F1-score, precision,
and recall. The accuracy metric measures the number of correctly classified cases for all
instances in the testing samples. Precision computes the number of true positives that
were correctly classified out of the total number of false positives and true positives. Recall
measures the number of true positives that were correctly classified out of the total number
of false positives and true negatives in the testing samples. Lastly, the F1-score represents
the weighted average of precision and recall. The following equations show how these
metrics are computed:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score = 2× (Precision× Recall)
(Precision + Recall)

(9)

For obtaining the performance on imbalanced data samples, the weighted average of
precision, recall, and F1-score metrics are used and calculated by taking the mean of all
per-class precision, recall, and F1-score values weighted by the number of examples of each
class’s support.

4.1. Deep-Learning Performance Results

The proposed framework’s deep learning method was evaluated using an extensive
dataset of CXR images. The dataset comprised CXR and CT images for COVID-19 and

Mathematics 2023, 11, 1216 8 of 22

non-COVID-19 cases collected from multiple sources by El-Shafai and Abd El-Samie [21].
Various augmentation techniques were used to generate approximately 17,099 CXR and
CT images to increase the dataset size. The main folder of the dataset had two sub-folders.
The first sub-folder contained CT images, which were further divided into two separate
sub-folders. The first sub-folder had 5427 COVID-19 images, and the second sub-folder
had 2628 non-COVID-19 images. The second sub-folder was for CXR images, which also
included two sub-folders. One sub-folder contained 4,044 COVID-19 images, and the other
had 5500 non-COVID-19 images. Experiments were conducted on a dataset of CXR images
to validate the DL model, which had 9544 images. All images in the dataset were resized to
224 × 224 pixels to be appropriate for pre-trained CNN models. Additionally, the dataset
was divided into a training set (70% randomly selected), a validation set (10%), and a test
set (20%).

4.1.1. Hyper-Parameter Tuning of the DNN Model

A grid search technique was used to tune the hyper-parameters of the DNN model.
Initially, the model was built with random values for the main hyper-parameters, including
the number of hidden layers, number of neurons, dropout ratio, learning rate, batch size,
and number of epochs. The model was then evaluated on a validation set, and the process
was repeated by searching for new hyper-parameter values until desirable evaluation
results were achieved. Once the hyper-parameters were tuned, specific values were set
for the learning rate (0.0001), number of epochs (100), batch size (64), dropout ratio (0.2),
number of hidden layers (3), and the number of neurons in each hidden layer (256, 128,
and 64).

4.1.2. Experimental Results

After training the DNN model on fused extracted features from the training and
validation sets, it was then evaluated using a test set. The accuracy and loss results of the
training and validation sets at different epoch numbers, as well as the confusion matrix of
the test set, are shown in Figure 4.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 22

Figure 4. Loss and accuracy results of training and validation over 100 epochs.

The confusion matrix of the test set is a table that includes the number of true posi-
tives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Figure 5 pre-
sents the confusion matrix for the test set instances during the testing process of the DNN
model.

Figure 5. Confusion matrix of DNN model on test set.

The DNN model’s training and validation accuracies were stable after 50 epochs,
with saturation points of 98.4% and 96.6%, respectively, as seen in Figure 4. This guided
us to stop training at epoch 40. The confusion matrix in Figure 5 shows that the DNN
model classified 754 COVID-19 cases out of 804 and 1052 non-COVID-19 cases out of 1105,
achieving an overall accuracy of 94.6% on the test dataset. Table 1 lists the model’s preci-
sion, recall, and F1-score, which all had a weighted average of 94.6%. These results

Figure 4. Loss and accuracy results of training and validation over 100 epochs.

Mathematics 2023, 11, 1216 9 of 22

The confusion matrix of the test set is a table that includes the number of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). Figure 5 presents
the confusion matrix for the test set instances during the testing process of the DNN model.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 22

Figure 4. Loss and accuracy results of training and validation over 100 epochs.

The confusion matrix of the test set is a table that includes the number of true posi-
tives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Figure 5 pre-
sents the confusion matrix for the test set instances during the testing process of the DNN
model.

Figure 5. Confusion matrix of DNN model on test set.

The DNN model’s training and validation accuracies were stable after 50 epochs,
with saturation points of 98.4% and 96.6%, respectively, as seen in Figure 4. This guided
us to stop training at epoch 40. The confusion matrix in Figure 5 shows that the DNN
model classified 754 COVID-19 cases out of 804 and 1052 non-COVID-19 cases out of 1105,
achieving an overall accuracy of 94.6% on the test dataset. Table 1 lists the model’s preci-
sion, recall, and F1-score, which all had a weighted average of 94.6%. These results

Figure 5. Confusion matrix of DNN model on test set.

The DNN model’s training and validation accuracies were stable after 50 epochs,
with saturation points of 98.4% and 96.6%, respectively, as seen in Figure 4. This guided
us to stop training at epoch 40. The confusion matrix in Figure 5 shows that the DNN
model classified 754 COVID-19 cases out of 804 and 1052 non-COVID-19 cases out of
1105, achieving an overall accuracy of 94.6% on the test dataset. Table 1 lists the model’s
precision, recall, and F1-score, which all had a weighted average of 94.6%. These results
demonstrate the impressive performance of our framework and its potential to be used by
medical professionals.

Table 1. Experimental results of evaluation metrics.

Class Name Precision Recall F1-Score

COVID-19 0.934 0.938 0.936
Non-COVID-19 0.955 0.952 0.953
Weighted avg. 0.946 0.946 0.946

To identify the advantage of feature-level fusion, we applied PCA to many features
extracted using well-known DL methods, namely Inception V3, VGG16, and fusion of
the features obtained from a combination of Inception V3 and VGG16, as described in
Section 3. Figure 6 exhibits the accuracy results of the feature method used and the number
of reduced features using PCA. It is evident that the feature-level fusion of VGG16 with
reducing features of InceptionV3 to 12 components reached the highest accuracy score
(95% approx.).

Mathematics 2023, 11, 1216 10 of 22

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 22

demonstrate the impressive performance of our framework and its potential to be used
by medical professionals.

Table 1. Experimental results of evaluation metrics.

Class Name Precision Recall F1-Score
COVID-19 0.934 0.938 0.936

Non-COVID-19 0.955 0.952 0.953
Weighted avg. 0.946 0.946 0.946

To identify the advantage of feature-level fusion, we applied PCA to many features
extracted using well-known DL methods, namely Inception V3, VGG16, and fusion of the
features obtained from a combination of Inception V3 and VGG16, as described in Section
3. Figure 6 exhibits the accuracy results of the feature method used and the number of
reduced features using PCA. It is evident that the feature-level fusion of VGG16 with re-
ducing features of InceptionV3 to 12 components reached the highest accuracy score (95%
approx.).

In a study by Abhishek [15], COVID-19 detection accuracies using ResNet50 (a vari-
ant of the DL method that is a pre-trained model) through analysis of CXR images
achieved 96.68%, 90.62%, and 87.23% for the training, validation, and test datasets, respec-
tively. Obviously, our proposed method achieved at least 11.7% accuracy, higher than that
of the ResNet50 test classification. This signifies that the feature-level fusion of the pro-
posed framework outperforms the available work for detecting COVID-19 from CXR im-
ages of the same dataset.

Figure 6. Accuracy results of the feature method used and the number of reduced features using PCA.

To compare and validate the results of different models against the proposed model
shown in Figure 6, a non-parametric Mann–Whitney U test was performed on a total of
120 runs for four models in the statistical analysis. Specifically, the proposed fused model
with feature reduction was compared to both single models and a fused model without
feature reduction. This involved running each model 30 times in order to draw statistically
significant conclusions. In each run, a different random seed was used for the test split.

86

87

88

89

90

91

92

93

94

95

96

A
cc

ur
ac

y
(%

)

Feature method used (No. of reduced features by PCA)

InceptionV3 VGG16 InceptionV3+VGG16

VGG16+InceptionV3(256) VGG16+InceptionV3(192) VGG16+InceptionV3(48)

VGG16+InceptionV3(12)

Figure 6. Accuracy results of the feature method used and the number of reduced features using PCA.

In a study by Abhishek [15], COVID-19 detection accuracies using ResNet50 (a variant
of the DL method that is a pre-trained model) through analysis of CXR images achieved
96.68%, 90.62%, and 87.23% for the training, validation, and test datasets, respectively.
Obviously, our proposed method achieved at least 11.7% accuracy, higher than that of the
ResNet50 test classification. This signifies that the feature-level fusion of the proposed
framework outperforms the available work for detecting COVID-19 from CXR images of
the same dataset.

To compare and validate the results of different models against the proposed model
shown in Figure 6, a non-parametric Mann–Whitney U test was performed on a total of
120 runs for four models in the statistical analysis. Specifically, the proposed fused model
with feature reduction was compared to both single models and a fused model without
feature reduction. This involved running each model 30 times in order to draw statistically
significant conclusions. In each run, a different random seed was used for the test split.
The Mann–Whitney U test involves taking all observations from the two groups being
compared and ranking them in order of size. The ranks for each group are then summed,
and the statistic test is calculated using the following formula:

U = S1 −
k1(k1 − 1)

2
+ S2 −

k2(k2 − 1)
2

(10)

Here, k1 and k2 represent the size of sample 1 and sample 2 while S1, and S2 are the
sum of the ranks in sample 1 and sample 2. By using the sum of ranks and the mean rank,
the best group has a mean rank of one, and the second-best has a mean rank of two.

According to Siegel and Castellan [22], a sample size of at least 15 or more is required
to achieve statistical power for common non-parametric tests. However, to ensure robust
results, we conducted 30 runs to obtain 30 data samples of accuracies for each model, as
shown in Figure 7.

Mathematics 2023, 11, 1216 11 of 22

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 22

The Mann–Whitney U test involves taking all observations from the two groups being
compared and ranking them in order of size. The ranks for each group are then summed,
and the statistic test is calculated using the following formula: U = 𝑆ଵ − 𝑘ଵ(𝑘ଵ − 1)2 + 𝑆ଶ − 𝑘ଶ(𝑘ଶ − 1)2 (10)

Here, 𝑘ଵ and 𝑘ଶ represent the size of sample 1 and sample 2 while 𝑆ଵ, and 𝑆ଶ are
the sum of the ranks in sample 1 and sample 2. By using the sum of ranks and the mean
rank, the best group has a mean rank of one, and the second-best has a mean rank of two.

According to Siegel and Castellan [22], a sample size of at least 15 or more is required
to achieve statistical power for common non-parametric tests. However, to ensure robust
results, we conducted 30 runs to obtain 30 data samples of accuracies for each model, as
shown in Figure 7.

Figure 7. The thirty data samples of accuracies for each model in the statistical analysis.

The test question for this statistical analysis was, “Are there statistically significant
differences in accuracies attained by the proposed model and other models?” The hypoth-
eses to address this question were as follows:

Null Hypothesis: There are no statistically significant differences between the accuracies of the
two models to classify the COVID-19 and Non-COVID-19 classes.

Alternate Hypothesis: There are statistically significant differences between the accuracies of the
two models to classify the COVID-19 and Non-COVID-19 classes.

We used the SPSS statistical tool to implement the statistical test. Table 2 illustrate
the ranks and test statistics of the two models regarding the accuracies of COVID-19 and
Non-COVID-19 classification.

Figure 7. The thirty data samples of accuracies for each model in the statistical analysis.

The test question for this statistical analysis was, “Are there statistically significant dif-
ferences in accuracies attained by the proposed model and other models?” The hypotheses
to address this question were as follows:

Null Hypothesis: There are no statistically significant differences between the accuracies of the
two models to classify the COVID-19 and Non-COVID-19 classes.

Alternate Hypothesis: There are statistically significant differences between the accuracies of the
two models to classify the COVID-19 and Non-COVID-19 classes.

We used the SPSS statistical tool to implement the statistical test. Table 2 illustrate
the ranks and test statistics of the two models regarding the accuracies of COVID-19 and
Non-COVID-19 classification.

Table 2. Ranks and statistics of proposed model and other models for comparing COVID-19 and
Non-COVID-19 classification.

Test Variable Model N Mean Rank Sum of Ranks

Accuracy

Others (InceptionV3,
VGG16, VGG16+

InceptionV3)
90 45.50 4095.00

Our Model 30 105.50 3165.00
Total 120 26.00 210.00

Statistics
Wilcoxon W 4095.00

Z −8.183125
Asymp. Sig. (2-tailed)

(p-value) 0.0000000000000003

Mathematics 2023, 11, 1216 12 of 22

From Table 2, we can see that the proposed model has the highest mean rank and
sum of ranks, making it the best group in this statistical test. In Table 2, we can also see
that the two-tailed p-value is less than 0.05, indicating that the null hypothesis can be
rejected and the alternate hypothesis accepted. This confirms that there are statistically
significant differences between the accuracies of the two models to classify the COVID-19
and Non-COVID-19 classes, proving the superiority of the proposed fused model with
feature reduction over the other models.

4.2. Network Efficiency Results

In addition to evaluating the proposed algorithm’s accuracy, we also wanted to model
the hospital system and test its networking performance using the design parameters listed
in Table 3. The three-layer architecture of the proposed framework arrangement is shown
in Figure 2, and it consists of an edge–cloud model design based on a 5G network, multiple
edge devices, and a cloud computing component.

Table 3. System design parameters.

Parameter Value/Range

Cloud Bandwidth 10–500 Gbps
Core Cluster 0–5 K servers

Edge Clusters 0–5 K servers
Latency Requirements 50–100 ms

Our proposed model organizes the network and computational components hierarchi-
cally, with edge and core cloud computing serving similar functions but having different
resource availability. Cloud computing offers a large pool of shared resources, while edge
computing, situated near the hospital, has limited resources. In the analysis that follows,
we consider computing, latency, and application modeling. Table 4 summarizes the system
parameters used in the simulation.

Table 4. Simulation parameters.

Parameter Value

Area 5.18 km2

Number of hospitals 10 K
Distribution of hospitals Random

Bandwidth (Uplink) 27, 150, and 300 Mbps
Bandwidth (downlink) 54, 300, and 600 Mbps

Packet Size 1500 Bytes
Edge Resources (baseline) 5 Machines/hospital

Our research proposes a three-tuple <D; G; T> to represent the detection model
as follows:

• D represents the time of detection per unit, ranging from 1 to n. The tasks must be
completed within a defined latency threshold, or the system’s performance will suffer.

• G indicates the geolocation of the edge devices. We subdivide the area into square
Gis, and any city is regarded as a compilation of Gi blocks (cells of a network), where
i ∈ [1; N], and N signifies the total number of blocks. We evaluate the necessity of
enhancing the cloud–edge system’s capacity in any of the blocks by examining the
number of hospitals served by them.

• T represents the detection model’s maximum bearable latency.

To model the delays caused by computing, we used a multi-server queuing model.
Different queue models are defined using the Kendall Notation [23], which has five param-
eters (A/B/c/K/Z) to describe the queue characteristics needed for queuing analysis. A
queue is described by the following parameters:

Mathematics 2023, 11, 1216 13 of 22

• A: the distribution of time between arrivals. M is for Markovian (i.e., exponential),
D is for deterministic (constant), and G is for general distribution (i.e., an unknown
distribution). There are other values for less common distributions.

• B: the service time distribution, which can generally have the same values as the
inter-arrival distribution.

• c: the number of servers taking parts of the queue.
• K: the capacity of the system, i.e., the maximum length of the queue plus the number

of servers. For this reason, it is sometimes written as K + c. If the value is omitted, the
queue is infinite.

• Z: the service discipline, e.g., First-In, First-Out (FIFO), The Last-In, First-Out (LIFO)
priority. When this is left blank, the discipline is assumed to be FIFO.

The M/M/1 queue is the simplest queue type and the one discussed in this section,
which has Markovian arrival and service durations, a single server for processing parts, and
a queue with no maximum length. An M/M/1 queue can be written more completely as
M/M/1/∞/FIFO. On the other hand, an M/M/c queue is defined as a shorthand notation
for the Markovian arrival rate and Markovian service rate, and c represents the number of
resources [24].

In our scenario, every cloud (central or edge) processes numerous requests on a work-
conserving FCFS queue principle (first-come, first-served) with supposed infinite buffers.
The total latency depends on the rates of arrival and service, as well as the number of
servers c. It is worth noting that since the computing performance is consistent, an increase
in the edge’s capacity automatically causes a decrease in the same resources in the center,
where queues and delays will start growing instantly as a result. With the increasing load
and arrival rate within the system, the overall latency of computing per task increases.

The simulated network model in our experiment was built to mimic a realistic network
that consists of 10,000 hospitals in a random distribution approach. Our sample for each
hospital consists of five machines to represent the baseline of edge resources. Therefore,
our framework considered 10,000 hospitals. The system load represents the percentage of
hospitals using the detection model at the same time. When the load = 10%, this means
that 10% of the hospitals are operating the detection model. Load = 100% indicates that all
10,000 hospitals are using the detection model (i.e., the fusion of features along with PCA
followed by a DNN) at any given moment. The expected time consumed by a task within
the server consists of transmission, queuing, and processing delays.

There are different approaches to edge selection for a load of transactions in a cloud–
edge system, depending on whether the control is distributed or centralized. With the
M/M/c queuing system, it is possible to estimate the service time required for each request,
accounting for common networking delays. However, routing toward the nearest cloud–
edge scheme may not be enough when hospitals are unevenly distributed geographically.
In this case, a distribution strategy is preferable, where routers maintain availability states
of resources in neighboring cloud–edge schemes. Requests are first directed to the closest
cloud–edge system, which decides to serve it, re-route it to a nearby edge with free resources,
or re-route it to the core cloud based on the traffic load and application requirements. In
a detection model, the nearest available edge is selected using a decision metric. Our
simulation showed that this distributed strategy improved response time by only 10%
compared to a cloud-only approach.

4.2.1. Network Experimental Results

In this section, we evaluate the capacity of different cloud–edge arrangements, consid-
ering the distribution of resources and traffic load. We consider three scenarios: (i) only
core cloud, (ii) only cloud–edge system, and (iii) both core and cloud–edge schemes, with
the same number of resources in each scenario. As shown in Table 4, the system parameters
used in the simulation are selected based on previous experiments that evaluated the
scalability and performance of edge cloud systems [25].

Mathematics 2023, 11, 1216 14 of 22

4.2.2. Impact of Network Bandwidth Parameters

Figure 8 depicts the typical response times for edge-only and cloud-only systems with
different loads and no limits on edge–cloud bandwidths. No restrictions on bandwidth
caused the predominance of queuing delays. When the system loaded for edge-only
arrangement achieved 60%, the response time passed the 50-ms threshold. Our simulation
showed that if the core cloud has unlimited capacity, the latency of the network influences
the overall response time of the application.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22

cloud–edge system, which decides to serve it, re-route it to a nearby edge with free re-
sources, or re-route it to the core cloud based on the traffic load and application require-
ments. In a detection model, the nearest available edge is selected using a decision metric.
Our simulation showed that this distributed strategy improved response time by only
10% compared to a cloud-only approach.

4.2.1. Network Experimental Results
In this section, we evaluate the capacity of different cloud–edge arrangements, con-

sidering the distribution of resources and traffic load. We consider three scenarios: (i) only
core cloud, (ii) only cloud–edge system, and (iii) both core and cloud–edge schemes, with
the same number of resources in each scenario. As shown in Table 4, the system parame-
ters used in the simulation are selected based on previous experiments that evaluated the
scalability and performance of edge cloud systems [25].

4.2.2. Impact of Network Bandwidth Parameters
Figure 8 depicts the typical response times for edge-only and cloud-only systems

with different loads and no limits on edge–cloud bandwidths. No restrictions on band-
width caused the predominance of queuing delays. When the system loaded for edge-
only arrangement achieved 60%, the response time passed the 50-ms threshold. Our sim-
ulation showed that if the core cloud has unlimited capacity, the latency of the network
influences the overall response time of the application.

Figure 9 shows the effect of limited bandwidth on the average time of response
within the cloud system. The overall restriction of the bandwidth lies between the central
cloud cluster and the edge. In the case of this scenario and a 500-Gbps cloud bandwidth,
the average response time was comparable to the response time of a scenario with unlim-
ited bandwidth. By contrast, for a 50-Gbps bandwidth, we observed an exponential rise
with increasing load.

Figure 8. Detection average response time for cloud-only and edge-only scenarios.

0

50

100

150

200

250

300

0 % 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

AV
ER

AG
E

RE
SP

ON
SE

 T
IM

E
(M

S)

SYSTEM LOAD

Edge-only Cloud-only

Figure 8. Detection average response time for cloud-only and edge-only scenarios.

Figure 9 shows the effect of limited bandwidth on the average time of response within
the cloud system. The overall restriction of the bandwidth lies between the central cloud
cluster and the edge. In the case of this scenario and a 500-Gbps cloud bandwidth, the
average response time was comparable to the response time of a scenario with unlimited
bandwidth. By contrast, for a 50-Gbps bandwidth, we observed an exponential rise with
increasing load.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 22

Figure 9. Detection average response time with a variant uplink bandwidth.

In lower bandwidths (10–25 Gbps), the system fails to manage higher system loads.
Since cloud systems with limited bandwidth could not beat the edge-only arrangement
for the effectiveness of their response time, we further evaluated an unconstrained band-
width cloud scenario in our framework.

Figure 10 outlines the average time of response for the central cloud and edge-only
schemes with various edge bandwidths. While the 100 Gbps front-haul bandwidth can be
compared to the unlimited bandwidth edge-only system, which means that each of the
resources on the edge is employed, once the system is considerably full (load = 70%), the
core-only system starts outperforming the edge-only arrangement with 1 Gbps of edge
bandwidth.

Figure 10. Cloud–edge schemes with 20% computing resources are available in the cloud.

0

50

100

150

200

250

300

350

400

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

AV
ER

AG
E

RE
SP

ON
SE

 T
IM

E
(M

S)

SYSTEM LOAD

Cloud-only Cloud-only 10Gbps Cloud-only 25Gbps

Cloud-only 50Gpbs Cloud-only 100Gpbs Cloud-only 500Gbps

0

20

40

60

80

100

120

140

160

180

200

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

AV
ER

AG
E

RE
SP

ON
SE

 T
IM

E
(M

S)

SYSTEM LOAD

Cloud-only 1Gbps 10Gbps 50Gbps 100Gbps

Figure 9. Detection average response time with a variant uplink bandwidth.

Mathematics 2023, 11, 1216 15 of 22

In lower bandwidths (10–25 Gbps), the system fails to manage higher system loads.
Since cloud systems with limited bandwidth could not beat the edge-only arrangement for
the effectiveness of their response time, we further evaluated an unconstrained bandwidth
cloud scenario in our framework.

Figure 10 outlines the average time of response for the central cloud and edge-only
schemes with various edge bandwidths. While the 100 Gbps front-haul bandwidth can
be compared to the unlimited bandwidth edge-only system, which means that each of
the resources on the edge is employed, once the system is considerably full (load = 70%),
the core-only system starts outperforming the edge-only arrangement with 1 Gbps of
edge bandwidth.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 22

Figure 9. Detection average response time with a variant uplink bandwidth.

In lower bandwidths (10–25 Gbps), the system fails to manage higher system loads.
Since cloud systems with limited bandwidth could not beat the edge-only arrangement
for the effectiveness of their response time, we further evaluated an unconstrained band-
width cloud scenario in our framework.

Figure 10 outlines the average time of response for the central cloud and edge-only
schemes with various edge bandwidths. While the 100 Gbps front-haul bandwidth can be
compared to the unlimited bandwidth edge-only system, which means that each of the
resources on the edge is employed, once the system is considerably full (load = 70%), the
core-only system starts outperforming the edge-only arrangement with 1 Gbps of edge
bandwidth.

Figure 10. Cloud–edge schemes with 20% computing resources are available in the cloud.

0

50

100

150

200

250

300

350

400

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

AV
ER

AG
E

RE
SP

ON
SE

 T
IM

E
(M

S)

SYSTEM LOAD

Cloud-only Cloud-only 10Gbps Cloud-only 25Gbps

Cloud-only 50Gpbs Cloud-only 100Gpbs Cloud-only 500Gbps

0

20

40

60

80

100

120

140

160

180

200

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

AV
ER

AG
E

RE
SP

ON
SE

 T
IM

E
(M

S)

SYSTEM LOAD

Cloud-only 1Gbps 10Gbps 50Gbps 100Gbps

Figure 10. Cloud–edge schemes with 20% computing resources are available in the cloud.

This occurs because in the baseline approach, once the capacity of the edge was full,
all incoming requests were routed toward the nearby edges using the edge bandwidth.
When the limited bandwidth was divided between several application streams, the delays
(propagation and queuing) started to rise, which automatically increased the response time
for high loads.

According to the baseline scenario, the edge determines whether it will forward the
request to some of the neighboring edges or pass it on to the core cloud. When considering
1 Gbps edge bandwidth, the response time averages for the load = 10% remained only
30 ms, whereas if the load = 100%, it rose to 170 ms since the bandwidth became exhausted
and queuing delays started to grow.

Most detection models consider any delay above 100 ms inappropriate. With a doubled
bandwidth in the load = 100% situations, the response time grew to ≈ 120 ms on average.
When the bandwidth increased, the standard time of response for a fully loaded scheme
was reduced. Nevertheless, at any point past 10 Gbps, we did not observe any practical
benefit of the baseline approach since queuing delays remained prominent for a loaded
edge either at the current detection model or the neighboring detection model.

Once the load point was reached, we observed any significant decrease in average re-
sponse time regardless of the edge front haul connectivity’s quality. This scenario included
a crossover of load = 70%, which is why, in Figure 11, we compared the CDF of edge-only
and center-only systems with the 1 Gbps outline. In a static load outline, it was possible to
observe a linearly rising response time. This implies that an edge bandwidth of 1 Gbps is
unsuitable for operating a massively loaded system.

Mathematics 2023, 11, 1216 16 of 22

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22

This occurs because in the baseline approach, once the capacity of the edge was full,
all incoming requests were routed toward the nearby edges using the edge bandwidth.
When the limited bandwidth was divided between several application streams, the delays
(propagation and queuing) started to rise, which automatically increased the response
time for high loads.

According to the baseline scenario, the edge determines whether it will forward the
request to some of the neighboring edges or pass it on to the core cloud. When considering
1 Gbps edge bandwidth, the response time averages for the load = 10% remained only 30
ms, whereas if the load = 100%, it rose to 170 ms since the bandwidth became exhausted
and queuing delays started to grow.

Most detection models consider any delay above 100 ms inappropriate. With a dou-
bled bandwidth in the load = 100% situations, the response time grew to ≈ 120ms on aver-
age. When the bandwidth increased, the standard time of response for a fully loaded
scheme was reduced. Nevertheless, at any point past 10 Gbps, we did not observe any
practical benefit of the baseline approach since queuing delays remained prominent for a
loaded edge either at the current detection model or the neighboring detection model.

Once the load point was reached, we observed any significant decrease in average
response time regardless of the edge front haul connectivity’s quality. This scenario in-
cluded a crossover of load = 70%, which is why, in Figure 11, we compared the CDF of
edge-only and center-only systems with the 1 Gbps outline. In a static load outline, it was
possible to observe a linearly rising response time. This implies that an edge bandwidth
of 1 Gbps is unsuitable for operating a massively loaded system.

Figure 11. Cloud–edge schemes with 80% computing resources are available in the cloud.

4.2.3. Impact of Resource Distribution
In the following section, we focus mainly on the effect that the distribution of the com-

putational resources between the edge and the core clouds has on the average time of re-
sponse. In total, there are 5500 processors, with each of them having a speed of 3.33 GIPS,
ready to serve as computing resources. They represent an equivalent of 1100 full-edge racks.
Figure 12 indicates the baseline performance of latency for the edge-only, core-only, and
cloud–edge schemes, considering various simulation specifications (listed in Table 4).

0

50

100

150

200

250

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 % 1 0 0 %

Cloud-only 1Gbps 10Gbps 50Gbps 100Gbps

Figure 11. Cloud–edge schemes with 80% computing resources are available in the cloud.

4.2.3. Impact of Resource Distribution

In the following section, we focus mainly on the effect that the distribution of the
computational resources between the edge and the core clouds has on the average time of
response. In total, there are 5500 processors, with each of them having a speed of 3.33 GIPS,
ready to serve as computing resources. They represent an equivalent of 1100 full-edge
racks. Figure 12 indicates the baseline performance of latency for the edge-only, core-only,
and cloud–edge schemes, considering various simulation specifications (listed in Table 4).

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 12. Response time CDF for different resource distributions.

Cloud–edge schemes that possess 80% of the computational resources are readily
available directly in the cloud, whereas 20% of cloud–edge schemes are located at the edge
beside the detection models. This scenario assumes that the edge bandwidth is unre-
stricted. It was no surprise that the edge-only scheme surpassed the other system, regard-
less of the system load. When resources were moved from the core to the edge, the re-
sponse time became comparable to the edge-only scheme. If resources are not available at
the edge, the cloud–edge scheme will forward the request to the core. In all scenarios,
except the edge-only scheme, some requests may have similar response times to the core
cloud-only outline. Increasing edge resources led to a decrease in response time, assuming
unlimited bandwidth.

4.2.4. Detection Model Traffic Parameters and Their Impact
Figure 13 confirms the importance of edge bandwidth in our framework. The re-

sponse time of the cloud–edge scheme with 28% computing resources, a cloud–edge re-
source distribution of 20%–80%, and a 1 Gbps edge bandwidth increased faster compared
to the scenario with 82% compute resources. This is because, in the baseline scenario
(cloud–edge scheme with 28% resources), finding the closest available neighbor may not
be enough if the connectivity is weak. If edge resources are low or missing, the system
will automatically choose the core cloud, which outperforms the cloud–edge system. This
is observed in the scenario with a load of 80% crossover points.

To sum up, our framework and model provided several key observations based on
the baseline approach:
• With unlimited computing resources, the cloud–edge scheme outperforms the core

due to lower latency in proximity to hospitals.
• Increasing core bandwidth beyond the load point will not reduce overall application

latency as computational latency takes over.
• Higher loads result in increased propagation and queuing delays as limited band-

width is shared among multiple application streams.
• Continuous increases in front haul edge connectivity cannot improve response time

beyond the load level.
• Distributing additional resources only at the edge worsens application performance

with lower bandwidth.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

CD
F

Response Time (ms)

Edge-only Cloud(80%)-edge(20%) Cloud(60%)-edge(40%)

Cloud(40%)-edge(60%) Cloud(20%)-edge(80%) Cloud-only

Figure 12. Response time CDF for different resource distributions.

Cloud–edge schemes that possess 80% of the computational resources are readily
available directly in the cloud, whereas 20% of cloud–edge schemes are located at the
edge beside the detection models. This scenario assumes that the edge bandwidth is
unrestricted. It was no surprise that the edge-only scheme surpassed the other system,
regardless of the system load. When resources were moved from the core to the edge, the
response time became comparable to the edge-only scheme. If resources are not available
at the edge, the cloud–edge scheme will forward the request to the core. In all scenarios,

Mathematics 2023, 11, 1216 17 of 22

except the edge-only scheme, some requests may have similar response times to the core
cloud-only outline. Increasing edge resources led to a decrease in response time, assuming
unlimited bandwidth.

4.2.4. Detection Model Traffic Parameters and Their Impact

Figure 13 confirms the importance of edge bandwidth in our framework. The response
time of the cloud–edge scheme with 28% computing resources, a cloud–edge resource
distribution of 20–80%, and a 1 Gbps edge bandwidth increased faster compared to the
scenario with 82% compute resources. This is because, in the baseline scenario (cloud–edge
scheme with 28% resources), finding the closest available neighbor may not be enough if
the connectivity is weak. If edge resources are low or missing, the system will automatically
choose the core cloud, which outperforms the cloud–edge system. This is observed in the
scenario with a load of 80% crossover points.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22

Figure 13. Average response time for a cloud–edge system with different load and resource distri-
bution.

4.3. Blockchain Experimental Results
In this paper, we chose to implement and evaluate our proposed framework using

Ethereum for several reasons. Ethereum has a large global community of developers and
supports a variety of use cases, such as decentralized applications and smart contracts, on
top of its blockchain [26]. The Ethereum blockchain is designed to be flexible and adapta-
ble with Turing complete scripting, which has led to a significant body of the literature on
benchmarking and scalability analysis [27–29]. Rather than evaluating the Ethereum plat-
form itself, our focus was on analyzing the impact of introducing new entities, such as IoT
devices and edge nodes, to the framework. Specifically, we studied the effects of adding
local edge pools to the blockchain structure on efficiency and scalability, considering the
large number of transactions made by IoT devices in the network.

4.3.1. Testbed Configurations
The proposed framework was implemented using Go-Ethereum [30] on a testbed

consisting of ten virtual machines. One machine served as the global blockchain using
Proof-of-Work (PoW) consensus protocol, while the other nine machines emulated edge
layer pools using the Proof-of-Authority (PoA) protocol. PoA was chosen due to its suit-
ability for managing large amounts of IoT data and the complexity of the edge layer. The
PoA system has two types of nodes: sealers and signers [31]. Signers are added after a
certain number of sealers have been added and require positive voting for block mining.
During the experiment, each local edge-mining pool was configured with a single node
as a sealer and had 10 IoT devices per hospital, sending synchronous transactions. Node.js
[32] was used for interactions between the blockchain platform and hospitals, while the
web3.js [33] library was accessed through JSONRPC call APIs for simulating transactions
[34]. The efficiency of the proposed framework was evaluated by analyzing sealing time,
performance, average efficiency, ledger storage, and latency. The experiment was con-
ducted 10 times, and an average reading was computed for each setting. A comparison
was then made between the proposed framework and a conventional Ethereum-based
blockchain using the PoA consensus mechanism.

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

AV
ER

AG
E

RE
SP

ON
SE

 T
IM

E
(M

S)

SYSTEM LOAD

Cloud-only Cloud-edge 20% (1Gbps) Cloud-edge 40% (1Gbps) Cloud-edge 60% (1Gbps) Cloud-edge 80% (1Gbps)

Figure 13. Average response time for a cloud–edge system with different load and resource distribution.

To sum up, our framework and model provided several key observations based on
the baseline approach:

• With unlimited computing resources, the cloud–edge scheme outperforms the core
due to lower latency in proximity to hospitals.

• Increasing core bandwidth beyond the load point will not reduce overall application
latency as computational latency takes over.

• Higher loads result in increased propagation and queuing delays as limited bandwidth
is shared among multiple application streams.

• Continuous increases in front haul edge connectivity cannot improve response time
beyond the load level.

• Distributing additional resources only at the edge worsens application performance
with lower bandwidth.

4.3. Blockchain Experimental Results

In this paper, we chose to implement and evaluate our proposed framework using
Ethereum for several reasons. Ethereum has a large global community of developers and

Mathematics 2023, 11, 1216 18 of 22

supports a variety of use cases, such as decentralized applications and smart contracts, on
top of its blockchain [26]. The Ethereum blockchain is designed to be flexible and adaptable
with Turing complete scripting, which has led to a significant body of the literature on
benchmarking and scalability analysis [27–29]. Rather than evaluating the Ethereum
platform itself, our focus was on analyzing the impact of introducing new entities, such as
IoT devices and edge nodes, to the framework. Specifically, we studied the effects of adding
local edge pools to the blockchain structure on efficiency and scalability, considering the
large number of transactions made by IoT devices in the network.

4.3.1. Testbed Configurations

The proposed framework was implemented using Go-Ethereum [30] on a testbed
consisting of ten virtual machines. One machine served as the global blockchain using
Proof-of-Work (PoW) consensus protocol, while the other nine machines emulated edge
layer pools using the Proof-of-Authority (PoA) protocol. PoA was chosen due to its suitabil-
ity for managing large amounts of IoT data and the complexity of the edge layer. The PoA
system has two types of nodes: sealers and signers [31]. Signers are added after a certain
number of sealers have been added and require positive voting for block mining. During
the experiment, each local edge-mining pool was configured with a single node as a sealer
and had 10 IoT devices per hospital, sending synchronous transactions. Node.js [32] was
used for interactions between the blockchain platform and hospitals, while the web3.js [33]
library was accessed through JSONRPC call APIs for simulating transactions [34]. The effi-
ciency of the proposed framework was evaluated by analyzing sealing time, performance,
average efficiency, ledger storage, and latency. The experiment was conducted 10 times,
and an average reading was computed for each setting. A comparison was then made
between the proposed framework and a conventional Ethereum-based blockchain using
the PoA consensus mechanism.

4.3.2. Execution Time

The time it takes for sealers to group and validate non-verified transactions from the
transaction pool to create a new block is known as execution time. We examined how
execution time changes with the number of transactions during two processes: device
registration and IoT data update. As shown in Figure 13, an increase in the number
of simultaneous transactions leads to an increase in execution time for updating data.
Similarly, Figure 14 illustrates that the device registration process takes twice as long as the
data update process.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

4.3.2. Execution Time
The time it takes for sealers to group and validate non-verified transactions from the

transaction pool to create a new block is known as execution time. We examined how
execution time changes with the number of transactions during two processes: device reg-
istration and IoT data update. As shown in Figure 13, an increase in the number of simul-
taneous transactions leads to an increase in execution time for updating data. Similarly,
Figure 14 illustrates that the device registration process takes twice as long as the data
update process.

Figure 14. Execution time of main processes in the proposed framework.

Figure 15 compares the execution time of the proposed framework and PoA. In a
hospital setting, ten IoT devices generate ten simultaneous transactions, and ten nodes
send 100 transactions concurrently to the network. Our framework had an execution time
of 227 ms for 100 transactions in ten hospitals with ten IoT devices and 533 ms for 200
transactions in twenty hospitals. When the number of transactions was doubled to 1000
transactions made by four hundred hospitals, the execution time only increased slightly
to 3090 ms. Notably, this was almost 50% faster than PoA.

Figure 15. Average execution time of the proposed framework compared with PoA.

0

500

1000

1500

2000

2500

3000

0 100 200 400 800 1000

EX
EC

UT
IO

N
TI

M
E

(M
S)

COUNT OF TRANSACTIONS

Devices Registration Data Update

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 400 800 1000

EX
EC

UT
IO

N
TI

M
E

(M
S)

COUNT OF TRANSACTIONS

Proposed Framework PoA

Figure 14. Execution time of main processes in the proposed framework.

Mathematics 2023, 11, 1216 19 of 22

Figure 15 compares the execution time of the proposed framework and PoA. In a
hospital setting, ten IoT devices generate ten simultaneous transactions, and ten nodes
send 100 transactions concurrently to the network. Our framework had an execution
time of 227 ms for 100 transactions in ten hospitals with ten IoT devices and 533 ms
for 200 transactions in twenty hospitals. When the number of transactions was doubled
to 1000 transactions made by four hundred hospitals, the execution time only increased
slightly to 3090 ms. Notably, this was almost 50% faster than PoA.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

4.3.2. Execution Time
The time it takes for sealers to group and validate non-verified transactions from the

transaction pool to create a new block is known as execution time. We examined how
execution time changes with the number of transactions during two processes: device reg-
istration and IoT data update. As shown in Figure 13, an increase in the number of simul-
taneous transactions leads to an increase in execution time for updating data. Similarly,
Figure 14 illustrates that the device registration process takes twice as long as the data
update process.

Figure 14. Execution time of main processes in the proposed framework.

Figure 15 compares the execution time of the proposed framework and PoA. In a
hospital setting, ten IoT devices generate ten simultaneous transactions, and ten nodes
send 100 transactions concurrently to the network. Our framework had an execution time
of 227 ms for 100 transactions in ten hospitals with ten IoT devices and 533 ms for 200
transactions in twenty hospitals. When the number of transactions was doubled to 1000
transactions made by four hundred hospitals, the execution time only increased slightly
to 3090 ms. Notably, this was almost 50% faster than PoA.

Figure 15. Average execution time of the proposed framework compared with PoA.

0

500

1000

1500

2000

2500

3000

0 100 200 400 800 1000

EX
EC

UT
IO

N
TI

M
E

(M
S)

COUNT OF TRANSACTIONS

Devices Registration Data Update

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 400 800 1000

EX
EC

UT
IO

N
TI

M
E

(M
S)

COUNT OF TRANSACTIONS

Proposed Framework PoA

Figure 15. Average execution time of the proposed framework compared with PoA.

The time between a block’s validation and chaining is known as sealing time. Figure 16
compares the sealing time of the proposed framework with PoA as the number of hospitals
increases. Our framework recorded a sealing time of 32 ms for 100 transactions in four
hospitals and only 413 ms for 1000 transactions. In contrast, PoA recorded a sealing time of
almost 810 ms, indicating that our framework reduced the sealing time by almost 51%.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 22

The time between a block’s validation and chaining is known as sealing time. Figure
16 compares the sealing time of the proposed framework with PoA as the number of hos-
pitals increases. Our framework recorded a sealing time of 32 ms for 100 transactions in
four hospitals and only 413 ms for 1000 transactions. In contrast, PoA recorded a sealing
time of almost 810 ms, indicating that our framework reduced the sealing time by almost 51%.

Figure 16. Average sealing time of proposed framework compared with PoA.

4.3.3. Throughput
We evaluated the efficiency of the system by determining the number of successful

transactions, starting from the first transaction and checking all transactions until the last
chained one. We conducted 10 experiments with varying loads and plotted the average
efficiencies (Figure 17). Our framework was found to be more efficient than PoA, with the
maximum average efficiency recorded at 200 transactions. This value was around 60%
higher than the lowest efficiency recorded with 1000 transactions, which was 3.4 transac-
tions per ms. We observed a greater variation in the average efficiency of our framework
with varying transaction loads while PoA had already reached its maximum efficiency
point. In contrast, our proposed framework demonstrated greater efficiencies before a re-
duction in efficiency occurred with an increase in the number of transactions.

Figure 17. Average throughput of proposed framework compared with PoA.

0

100

200

300

400

500

600

700

800

900

0 100 200 400 800 1000

SE
AL

IN
G

TI
M

E
(M

S)

COUNT OF TRANSACTIONS

Proposed Framework PoA

0
1
2
3
4
5
6

0 100 200 400 800 1000

TH
RO

UG
HP

UT

COUNT OF TRANSACTIONS

Proposed Framework PoA

Figure 16. Average sealing time of proposed framework compared with PoA.

Mathematics 2023, 11, 1216 20 of 22

4.3.3. Throughput

We evaluated the efficiency of the system by determining the number of success-
ful transactions, starting from the first transaction and checking all transactions until
the last chained one. We conducted 10 experiments with varying loads and plotted the
average efficiencies (Figure 17). Our framework was found to be more efficient than
PoA, with the maximum average efficiency recorded at 200 transactions. This value was
around 60% higher than the lowest efficiency recorded with 1000 transactions, which was
3.4 transactions per ms. We observed a greater variation in the average efficiency of our
framework with varying transaction loads while PoA had already reached its maximum
efficiency point. In contrast, our proposed framework demonstrated greater efficiencies
before a reduction in efficiency occurred with an increase in the number of transactions.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 22

The time between a block’s validation and chaining is known as sealing time. Figure
16 compares the sealing time of the proposed framework with PoA as the number of hos-
pitals increases. Our framework recorded a sealing time of 32 ms for 100 transactions in
four hospitals and only 413 ms for 1000 transactions. In contrast, PoA recorded a sealing
time of almost 810 ms, indicating that our framework reduced the sealing time by almost 51%.

Figure 16. Average sealing time of proposed framework compared with PoA.

4.3.3. Throughput
We evaluated the efficiency of the system by determining the number of successful

transactions, starting from the first transaction and checking all transactions until the last
chained one. We conducted 10 experiments with varying loads and plotted the average
efficiencies (Figure 17). Our framework was found to be more efficient than PoA, with the
maximum average efficiency recorded at 200 transactions. This value was around 60%
higher than the lowest efficiency recorded with 1000 transactions, which was 3.4 transac-
tions per ms. We observed a greater variation in the average efficiency of our framework
with varying transaction loads while PoA had already reached its maximum efficiency
point. In contrast, our proposed framework demonstrated greater efficiencies before a re-
duction in efficiency occurred with an increase in the number of transactions.

Figure 17. Average throughput of proposed framework compared with PoA.

0

100

200

300

400

500

600

700

800

900

0 100 200 400 800 1000

SE
AL

IN
G

TI
M

E
(M

S)

COUNT OF TRANSACTIONS

Proposed Framework PoA

0
1
2
3
4
5
6

0 100 200 400 800 1000

TH
RO

UG
HP

UT

COUNT OF TRANSACTIONS

Proposed Framework PoA

Figure 17. Average throughput of proposed framework compared with PoA.

5. Conclusions

At the onset of a disease pandemic, such as COVID-19, local data may be insufficient
for analysis and control. DL methods are powerful tools for disease analysis, but they
require big data to enhance their accuracy and performance. To address this, we proposed
a secure healthcare framework that integrates DL models with cloud and edge computing
environments through blockchain and 5G networks. Cloud computing enables the col-
lection of massive data from hospitals and care facilities to build and train DL models as
pre-trained models. The edge-based DL algorithms leverage the high bandwidth and low
latency provided by 5G networks to enable healthcare tools and applications to work as
one system and fight the COVID-19 spread.

The proposed framework employs a feature-level fusion deep learning approach that
uses the VGG-16 and InceptionV3 pre-trained models to extract two different sets of features
from CXR images of COVID-19 patients. PCA is used to reduce the high dimensionality
of InceptionV3 features while maintaining essential features. The feature sets are fused
into a new feature vector and subsequently used for classification with a DNN model.
Experimental results on the public dataset of COVID-19 CXR images demonstrated that the
proposed DL approach can effectively exploit the fusion of multiple features and improve
recent related work.

One limitation of the developed detection system is the need for testing the system
during the deployment process in terms of accuracy, reliability, privacy, and task implemen-
tation. Another limitation is evaluating the system model on different large-scale datasets
for generalization.

In future work, we plan to implement all parts of the proposed framework and
deploy the edge deep learning approach on local hospitals to perform online detection of
COVID-19 cases. We will test and analyze the security trust part of the proposed framework
against attacks on healthcare data and DL models. Additionally, we aim to evaluate the

Mathematics 2023, 11, 1216 21 of 22

system model on different large-scale datasets for generalization and test the 5G network’s
efficiency in latency and bandwidth utilization.

Author Contributions: Conceptualization, M.M.H., M.S.A., A.A.A. and S.A.A.; methodology, M.M.H.
and M.S.A.; software, M.S.A.; validation, M.M.H., M.S.A., A.A.A. and S.A.A.; formal analysis, M.M.H.
and M.S.A.; investigation, M.M.H. and M.S.A.; resources, M.S.A.; data curation, M.M.H. and M.S.A.;
writing—original draft preparation, M.M.H., M.S.A., A.A.A. and S.A.A.; writing—review and editing,
M.M.H., M.S.A., A.A.A. and S.A.A.; supervision, M.M.H. and S.A.A.; project administration, M.M.H.,
M.S.A., A.A.A. and S.A.A.; funding acquisition, M.M.H. and S.A.A. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship for Research Innovation, Ministry of
Education in Saudi Arabia, for funding this research work through project number IFKSUDR_H122.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. News.Google.Com. Before You Continue. Available online: https://news.google.com/covid19/map?hl=en-US&gl=US&ceid=

US%3Aen (accessed on 27 January 2023).
2. Akay, M.; Subramaniam, S.; Brennan, C.; Bonato, P.; Waits, C.; Wheeler, B.; Fotiadis, D. Healthcare innovations to address the

challenges of the COVID-19 pandemic. IEEE J. Biomed. Health Inform. 2022, 26, 3294–3302. [CrossRef] [PubMed]
3. Qayyum, A.; Ahmad, K.; Ahsan, M.; Al-Fuqaha, A.; Qadir, J. Collaborative federated learning for healthcare: Multi-modal

covid-19 diagnosis at the edge. IEEE Open J. Comput. Soc. 2022, 3, 172–184. [CrossRef]
4. Hassan, M.; Ismail, W.; Chowdhury, A.; Hossain, S.; Huda, S.; Hassan, M. A framework of genetic algorithm-based CNN on

multi-access edge computing for automated detection of COVID-19. J. Supercomput. 2022, 78, 10250–10274. [CrossRef] [PubMed]
5. Li, B.; He, Q.; Cui, G.; Xia, X.; Chen, F.; Jin, H.; Yang, Y. READ: Robustness-oriented edge application deployment in edge

computing environment. IEEE Trans. Serv. Comput. 2020, 15, 1746–1759. [CrossRef]
6. Hao, P.; Hu, L.; Jiang, J.; Hu, J.; Che, X. Mobile edge provision with flexible deployment. IEEE Trans. Serv. Comput. 2018, 12,

750–761. [CrossRef]
7. Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Yunsheng, M.; Chen, S.; Hou, P. A new deep learning-based food recognition

system for dietary assessment on an edge computing service infrastructure. IEEE Trans. Serv. Comput. 2017, 11, 249–261.
[CrossRef]

8. Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Cai, M.; Yang, J.; Li, Y.; Meng, X. A deep learning algorithm using CT images
to screen for Corona Virus Disease (COVID-19). Eur. Radiol. 2020, 31, 6096–6104. [CrossRef]

9. Song, Y.; Zheng, S.; Li, L.; Zhang, X.; Zhang, X.; Huang, Z.; Chen, J.; Zhao, H.; Jie, Y.; Wang, R. Deep learning enables accurate
diagnosis of novel coronavirus (COVID-19) with CT images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 2775–2780.
[CrossRef]

10. Sethy, P.K.; Behera, S.K. Detection of coronavirus disease (COVID-19) based on deep features. Preprints 2020, 2020030300, 2020.
11. Wang, L.; Lin, Z.Q.; Wong, A. COVID-net: A tailored deep convolutional neural network design for detection of COVID-19 cases

from chest x-ray images. Sci. Rep. 2020, 10, 19549. [CrossRef]
12. Hossain, M.S.; Muhammad, G.; Guizani, N. Explainable AI and mass surveillance system-based healthcare framework to combat

COVID-I9 like pandemics. IEEE Netw. 2020, 34, 126–132. [CrossRef]
13. Rahman, M.A.; Hossain, M.S.; Alrajeh, N.A.; Guizani, N. B5G and explainable deep learning assisted healthcare vertical at the

edge: COVID-I9 perspective. IEEE Netw. 2020, 34, 98–105. [CrossRef]
14. Rahman, M.A.; Hossain, M.S.; Islam, M.S.; Alrajeh, N.A.; Muhammad, G. Secure and Provenance Enhanced Internet of Health

Things Framework: A Blockchain Managed Federated Learning Approach. IEEE Access 2020, 8, 205071–205087. [CrossRef]
[PubMed]

15. ARoy; Kumbhar, F.H.; Dhillon, H.S.; Saxena, N.; Shin, S.Y.; Singh, S. Efficient Monitoring and Contact Tracing for COVID-19: A
Smart IoT-Based Framework. IEEE Internet Things Mag. 2020, 3, 17–23.

16. Ranaweera, P.S.; Liyanage, M.; Jurcut, A.D. Novel MEC based Approaches for Smart Hospitals to Combat COVID-19 Pandemic.
IEEE Consum. Electron. Mag. 2020, 10, 80–91. [CrossRef]

17. Alanazi, S.A.; Kamruzzaman, M.; Alruwaili, M.; Alshammari, N.; Alqahtani, S.A.; Karime, A. Measuring and preventing
COVID-19 using the SIR model and machine learning in smart health care. J. Healthc. Eng. 2020, 2020, 1–12. [CrossRef] [PubMed]

18. Jamshidi, M.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.;
Dehghani, M. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access 2020, 8,
109581–109595. [CrossRef]

19. Hussain, A.A.; Bouachir, O.; Al-Turjman, F.; Aloqaily, M. AI techniques for COVID-19. IEEE Access 2020, 8, 128776–128795.
[CrossRef]

https://news.google.com/covid19/map?hl=en-US&gl=US&ceid=US%3Aen
https://news.google.com/covid19/map?hl=en-US&gl=US&ceid=US%3Aen
http://doi.org/10.1109/JBHI.2022.3144941
http://www.ncbi.nlm.nih.gov/pubmed/35077374
http://doi.org/10.1109/OJCS.2022.3206407
http://doi.org/10.1007/s11227-021-04222-4
http://www.ncbi.nlm.nih.gov/pubmed/35079199
http://doi.org/10.1109/TSC.2020.3015316
http://doi.org/10.1109/TSC.2018.2842227
http://doi.org/10.1109/TSC.2017.2662008
http://doi.org/10.1007/s00330-021-07715-1
http://doi.org/10.1109/TCBB.2021.3065361
http://doi.org/10.1038/s41598-020-76550-z
http://doi.org/10.1109/MNET.011.2000458
http://doi.org/10.1109/MNET.011.2000353
http://doi.org/10.1109/ACCESS.2020.3037474
http://www.ncbi.nlm.nih.gov/pubmed/34192116
http://doi.org/10.1109/MCE.2020.3031261
http://doi.org/10.1155/2020/8857346
http://www.ncbi.nlm.nih.gov/pubmed/33204404
http://doi.org/10.1109/ACCESS.2020.3001973
http://doi.org/10.1109/ACCESS.2020.3007939

Mathematics 2023, 11, 1216 22 of 22

20. Aloi, G.; Fortino, G.; Gravina, R.; Pace, P.; Savaglio, C. Simulation-driven platform for Edge-based AAL systems. IEEE J. Sel. Areas
Commun. 2020, 39, 446–462. [CrossRef]

21. El-Shafai, W.; El-Samie, F.A. Extensive COVID-19 X-Ray and CT Chest Images Dataset. Mendeley Data 2020, V3. [CrossRef]
22. Siegal, S.; Castellan, N.J. Nonparametric Statistics for the Behavioral Sciences; McGraw-Hill: New York, NY, USA, 1988.
23. Gelenbe, E.; Pujolle, G.; Gelenbe, E.; Pujolle, G. Introduction to Queueing Networks; Wiley: New York, NY, USA, 1998.
24. Lee, H.L.; Cohen, M.A. A note on the convexity of performance measures of M/M/c queueing systems. J. Appl. Probab. 1983, 20,

920–923. [CrossRef]
25. Maheshwari, S.; Raychaudhuri, D.; Seskar, I.; Bronzino, F. Scalability and performance evaluation of edge cloud systems for

latency constrained applications. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA,
USA, 25–27 October 2018; pp. 286–299.

26. Chen, H.; Pendleton, M.; Njilla, L.; Xu, S. A survey on ethereum systems security: Vulnerabilities, attacks, and defenses. ACM
Comput. Surv. 2020, 53, 1–43. [CrossRef]

27. Li, M.; Qin, Y.; Liu, B.; Chu, X. Enhancing the efficiency and scalability of blockchain through probabilistic verification and
clustering. Inf. Process. Manag. 2021, 58, 102650. [CrossRef]

28. Yang, D.; Long, C.; Xu, H.; Peng, S. A review on scalability of blockchain. In Proceedings of the 2020 the 2nd International
Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; pp. 1–6.

29. Khan, D.; Jung, L.T.; Hashmani, M.A. Systematic literature review of challenges in blockchain scalability. Appl. Sci. 2021, 11, 9372.
[CrossRef]

30. Christyono, B.B.A.; Widjaja, M.; Wicaksana, A. Go-Ethereum for electronic voting system using clique as proof-of-authority.
TELKOMNIKA (Telecommun. Comput. Electron. Control) 2021, 19, 1565–1572. [CrossRef]

31. Ivanov, N.; Yan, Q. System-Wide Security for Offline Payment Terminals. In Proceedings of the Security and Privacy in
Communication Networks: 17th EAI International Conference, SecureComm 2021, Virtual Event, 6–9 September 2021; pp. 99–119.

32. Tilkov, S.; Vinoski, S. Node. js: Using JavaScript to build high-performance network programs. IEEE Internet Comput. 2010, 14,
80–83. [CrossRef]

33. Lee, W.-M. Using the web3. js APIs. Beginning Ethereum Smart Contracts Programming; Apress: Berkeley, CA, USA, 2019; pp. 169–198.
34. Samsel, C.; Gökay, S.; Heiniz, P.; Krempels, K.-H. Web Service to JSON-RPC Transformation. In Proceedings of the 8th International

Joint Conference on Software Technologies (ICSOFT), Reykjavík, Iceland, 29–31 July 2023; pp. 214–219.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JSAC.2020.3021544
http://doi.org/10.17632/8h65ywd2jr.3
http://doi.org/10.2307/3213606
http://doi.org/10.1145/3391195
http://doi.org/10.1016/j.ipm.2021.102650
http://doi.org/10.3390/app11209372
http://doi.org/10.12928/telkomnika.v19i5.20415
http://doi.org/10.1109/MIC.2010.145

	Introduction
	Overview of the Proposed Framework
	Feature-Level Fusion Deep Learning Approach
	Feature Extraction
	Feature Fusion
	Classification Using a Deep Neural Network (DNN) Model

	Experiments and Discussion
	Deep-Learning Performance Results
	Hyper-Parameter Tuning of the DNN Model
	Experimental Results

	Network Efficiency Results
	Network Experimental Results
	Impact of Network Bandwidth Parameters
	Impact of Resource Distribution
	Detection Model Traffic Parameters and Their Impact

	Blockchain Experimental Results
	Testbed Configurations
	Execution Time
	Throughput

	Conclusions
	References

