
Citation: Du, C.; Cui, Z.; Guo, Y.; Xu,

G.; Wang, Z. MemConFuzz: Memory

Consumption Guided Fuzzing with

Data Flow Analysis. Mathematics

2023, 11, 1222. https://doi.org/

10.3390/math11051222

Academic Editor: Ivan Lorencin

Received: 30 January 2023

Revised: 23 February 2023

Accepted: 27 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

MemConFuzz: Memory Consumption Guided Fuzzing with
Data Flow Analysis
Chunlai Du 1, Zhijian Cui 1, Yanhui Guo 2,* , Guizhi Xu 1 and Zhongru Wang 1,3

1 School of Information Science and Technology, North China University of Technology, Beijing 100144, China
2 Department of Computer Science, University of Illinois Springfield, Springfield, IL 62703, USA
3 Chinese Academy of Cyberspace Studies, Beijing 100048, China
* Correspondence: yguo56@uis.edu

Abstract: Uncontrolled heap memory consumption, a kind of critical software vulnerability, is utilized
by attackers to consume a large amount of heap memory and consequently trigger crashes. There
have been few works on the vulnerability fuzzing of heap consumption. Most of them, such as
MemLock and PerfFuzz, have failed to consider the influence of data flow. We proposed a heap
memory consumption guided fuzzing model named MemConFuzz. It extracts the locations of
heap operations and data-dependent functions through static data flow analysis. Based on the data
dependency, we proposed a seed selection algorithm in fuzzing to assign more energy to the samples
with higher priority scores. The experiment results showed that the MemConFuzz has advantages
over AFL, MemLock, and PerfFuzz with more quantity and less time consumption in exploiting the
vulnerability of heap memory consumption.

Keywords: fuzzing; memory consumption; data flow; taint analysis

MSC: 90C70

1. Introduction

Fuzzing is a kind of random testing technique and is widely used to discover vulner-
abilities in computer programs. Blind samples mutation fuzzing models and coverage-
guided fuzzing models fail to select interesting seeds and waste testing time. Many fuzzing
models are currently guided by exploring ways to improve path coverage. It is believed
that the more code blocks that can be covered, the more likely potential vulnerability
will be triggered. Many state-of-the-art fuzzing models typically use information from
the programs’ control flow graph by the program under test (PUT) to determine which
samples would be selected as seeds for further mutation. Although there has been a lot
of research work on memory overflow vulnerability, most of these methods have mainly
exploited memory corruption vulnerabilities, such as stack buffer overflow, use-after-free
(UAF), out-of-bounds reading, and out-of-bounds writing, etc. Memory corruption occurs
when the contents of memory are overwritten due to malicious instructions or normal
instructions with unexpected data beyond the program’s original intention. For example, a
buffer overflow occurs when a program tries to copy data into a variable whose required
memory length is larger than the target. When corrupted memory contents are later used,
the program triggers a crash or turns into a shellcode. Most fuzzing models of memory
corruption vulnerability depend on the control flow, and seldom on the data semantics.

Memory consumption is a different kind of memory vulnerability in contrast to
memory corruption, which is more like a logical vulnerability potentially existing in the
action sequence of memory allocation and deallocation. With one goal of making more
efficient use of the memory, different code segments in general are stored in different
memory areas, among which the stack area and heap area are the two most important types
of memory areas. In the process of a program running, the stack area grows up or down

Mathematics 2023, 11, 1222. https://doi.org/10.3390/math11051222 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051222
https://doi.org/10.3390/math11051222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1814-9682
https://doi.org/10.3390/math11051222
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051222?type=check_update&version=1

Mathematics 2023, 11, 1222 2 of 19

by calling subfunctions. It contains local variables, stack register ebp of parent function,
return address, and parameters from the parent function. Generally, the heap areas are a
series of memory blocks allocated and freed by the programs, which can be used by the
pointer of heap blocks. Memory consumption occurs in the process of heap allocation and
release. When a program triggers instructions for heap memory allocation enough times
without deallocating unused memory in time, it would likely lead to a crash. Uncontrolled
heap memory consumption is therefore a critical issue of software security, and can also
become an important vulnerability when attackers control execution flow to consume large
amounts of memory, and thus, launch denial-of-service attacks.

To solve the problems in vulnerability fuzzing of heap consumption, we propose a
heap memory consumption-guided fuzzing model named MemConFuzz in considering
the data flow analysis. This paper makes the following contributions:

(1) A novel algorithm is proposed to obtain locations of heap memory operations by taint
analysis based on data dependency. The relation of data dependency is deduced from
CPG (Code Property Graph). The location serves as an important indicator for seed
selection.

(2) A new algorithm for prioritizing seed selection is proposed based on data dependency
for discovering memory consumption vulnerability. Input samples covering more
heap operations and data-dependent functions will be assigned high scores, and they
are chosen as seeds and assigned more energy in the fuzzing loop.

(3) A novel memory consumption guided fuzzing model, MemConFuzz, is proposed.
Compared with AFL [1], MemLock [2], and PerfFuzz [3], MemConFuzz has a sig-
nificant improvement in discovering memory consumption vulnerability with more
quantity and lower time cost.

The rest of the paper is organized as follows. Section 2 introduces related work.
Section 3 presents the algorithm for extracting locations of heap operations through taint
analysis based on data dependency. In Section 4, the proposed MemConFuzz model is
described. In Section 5, the experimental process and the results are discussed. Finally, we
conclude the paper in Section 6.

2. Related Work

Methods of discovering vulnerability are divided into static techniques and dynamic
techniques. Static methods are used to make classification between the target program and
known CVE (Common Vulnerabilities and Exposures) code based on structural similarity
or statistical similarity by artificial intelligence technology. Dynamic methods include
generation fuzzing, coverage-guided fuzzing, and symbolic execution.

Generation fuzzing adopts a generator to create required samples by mapping out all
possible fields of the target program. The generator then separately mutates each of these
fields to potentially cause crashes. In the generating process, those methods may result in a
large number of invalid samples being rejected by the program as they do not follow the
correct format. Coverage-guided fuzzing models integrate instrumentation into the target
program before tracing the running information. To discover the special target areas in the
program, a directed greybox fuzzing is proposed. Symbolic execution analyzes the target
program to determine what inputs cause each part of this program to execute. Through
symbolic execution, the required samples that execute the constraint code path to reach the
target basic block are solved by an SMT (Satisfiability Modulo Theories) solver.

2.1. Static Techniques Based on Artificial Intelligence

During the research of discovering the vulnerability, the bottlenecks are related to
how to generate good samples, how to improve path coverage, and how to provide more
knowledge support for dynamic methods. Artificial intelligence has been used in the field
of vulnerability discovery in recent years.

Machine learning is the most important technology of artificial intelligence, which
attains knowledge about features obtained by analyzing an existing vulnerability-related

Mathematics 2023, 11, 1222 3 of 19

dataset. This knowledge can be used to analyze new objects and thus predict potentially vul-
nerable locations in static mode. Machine learning methods can be divided into traditional
machine learning, deep learning, and reinforcement learning.

Rajpal [4] used neural networks to learn patterns in past samples to highlight useful
locations for future mutations, and then improved the AFL approach. Samplefuzz [5]
combined learn and fuzz algorithms to leverage learned samples’ probability distribution
to make the generation of grammar suitable samples by using past samples and a neural
network-based statistical machine learning. NEUZZ [6] leveraged neural networks to
model the branching behavior of programs, generating interesting seeds by strategically
modifying certain bytes of existing samples to trigger edges that had not yet been executed.
Angora [7] modeled the target behavior, treated the mutation problem as a search problem,
and applied the search algorithm in machine learning, which used a discrete function
to represent the path from the beginning of the program to a specific branch under path
constraints, and thus used the gradient descent search algorithm to find a set of inputs that
satisfied the constraint and make the program go through that particular branch. Cheng [8]
used RNNs to predict new paths of the program and then fed these paths into a Seq2Seq
model, increasing the coverage of samples in PDF, PNG, and TFF formats. SySeVR [9]
proposed a systematic framework for using deep learning to discover vulnerabilities.
Based on Syntax, Semantics, and Vector Representations, SySeVR focuses on obtaining
program representations that can accommodate syntax and semantic information pertinent
to vulnerabilities. VulDeePecker [10] is a deep learning-based vulnerability detection
system, which has presented some preliminary principles for guiding the practice of
applying deep learning to vulnerability detection. µVulDeePecker [11] proposed a deep
learning-based system for multiclass vulnerability detection. It introduced the concept
called code attention to learn local features and pinpoint types of vulnerabilities.

However, most of these works are computationally intensive. The cost is very high
because deep learning requires a large amount of data and computing power. The quality
and quantity of the training data set have a direct impact on the accuracy of the training
model, and there is also a key challenge to accurately locate the instructions where the
vulnerability occurs.

2.2. Dynamic Execution Fuzzing Technique

Fuzzing has gained popularity as a useful and scalable approach for discovering
software vulnerabilities. In the process of dynamic execution, that is, the fuzzing loop,
the fuzzer generally uses the seed selection algorithm to select favorable seeds based on
the feedback information of PUT execution, and then performs seed mutation according
to a series of strategies to generate new samples and explore paths of the target program.
Fuzzing is widely used to test application software, libraries, kernel codes, protocols, etc.
Furthermore, symbolic execution is another important approach that can create a sample
corresponding to a specific constraint path by the SMT solver. The following mainly
introduces several popular dynamic technologies and methods in fuzzing.

A. Coverage-guide fuzzing
Coverage-guide greybox fuzzing (CGF) is one of the most effective techniques to

discover vulnerabilities. CGF usually uses path coverage information to guide path explo-
ration. In order to improve the coverage of fuzzers, researchers have focused on optimizing
the coverage guide engine, which is the main component of fuzzers.

LibFuzzer [12] provided samples into the library through a specific fuzzing entry
point, used LLVM’s SanitizerCoverage tool to obtain code coverage, and then performed
mutations on the sample to maximize coverage. Honggfuzz [13] proposed a genetic algo-
rithm to efficiently mutate seeds. AFL [1] is a coverage-based fuzzing tool that captures
basic block transitions by instrumentation and records the path coverage, thereby adjusting
the samples to improve the coverage and increase the probability of finding vulnerabilities.
OSS-FUZZ [14] was a common platform built by Google to support fuzzing engines in
combination with Sanitizers for fuzzing open source programs. GRIMOIRE [15], Supe-

Mathematics 2023, 11, 1222 4 of 19

rion [16], and Zest [17] leveraged the knowledge in highly structured files to generate
well-formed samples and traced the coverage of the program to reach deeper levels of code.
Therefore, branch coverage was increased. CollAFL [18] proposed a coverage-sensitive
fuzzing scheme to reduce path conflicts and thus improve program branch coverage. Ten-
sorFuzz [19] used the activation function as the coverage indicator and leveraged the
algorithm of fast-approximate nearest neighbor to check whether the coverage increases
to accordingly adjust the neural network. PerfFuzz [3] generated input samples by us-
ing multi-dimensional feedback and independently maximizing execution counts for all
program locations. Fw-fuzz [20] obtained the code coverage of firmware programs of
MIPS, ARM, PPC, and other architectures through dynamic instrumentation of physical
devices, and finally implemented a coverage-oriented firmware protocol fuzzing method.
T-fuzz [21] used coverage to guide the generation of input, and when the new path could
not be accessed, the sanity check was removed to ensure that the fuzzer could continue to
discover new paths and vulnerabilities.

Most coverage-based fuzzers treat all codes of a program as equals. However, some
vulnerabilities hide in the corners of the code. As a result, the efficiency of CGF suffers and
efforts are wasted on bug-free areas of the code.

B. Symbolic execution
Symbolic execution is a technique to systematically explore the paths of a program,

which executes programs with symbolic inputs. When used in the field of discovering
vulnerabilities, symbolic execution can generate new input samples that have a path
reaching target codes from the initial code by solving path constraints with the SMT solver.
It can also be said to deduce input from results under constraints.

Driller [22] leveraged fuzzing and selective concolic execution in a complementary
manner. Angr [23], which is based on the model popularized and refined by S2E [24]
and Mayhem [25], was used by Driller to be a dynamic symbolic execution engine for
the concolic execution test. Driller uses selective concolic execution to only explore the
paths deemed interesting by the fuzzer and to generate inputs for conditions that the
fuzzer cannot satisfy. SAGE [26] is equipped with whitebox fuzzing instead of blackbox
fuzzing, with symbolic execution to record path information and constraint solvers to
explore different paths. QSYM [27] adopted a symbol execution engine for a greybox
fuzzing approach to reach deeper code levels of the program. SAFL [28] augmented the
AFL fuzzing approach by additionally leveraging KLEE as the symbolic execution engine.

However, the disadvantage of symbolic execution is that the increased analysis process
leads to the program running overhead. In addition, as the depth of the path increases,
the path conditions will become more and more complex, which will also pose a great
challenge to the constraint solver.

C. Directed greybox fuzzing
Directed Greybox Fuzzing (DGF) is a fuzzing approach based on the target location

or the specific program behavior obtained from the characteristics of a vulnerable code.
Unlike CGF, which blindly increases path coverage, DGF aims to reach a predetermined
set of places in the code (potentially vulnerable parts) and spends most of the time budget
getting there, without wasting resources emphasizing irrelevant parts.

AFLgo [29] and Hawkeye [30] used distance metrics in their programs to perform
user-specified target sites. A disadvantage of the distance-based approach is that it only
focuses on the shortest distance, so when there are multiple paths to the same goal, longer
paths may be ignored, resulting in lower efficiency. MemFuzz [31] focused on code regions
related to memory access, and further guided the fuzzer by memory access information
executed by the target program. UAFuzz [32] and UAFL [33] focused on UAF vulnerability-
related code regions, leveraging target sequences to find use-after-free vulnerabilities,
where memory operations must be performed in a specific order (e.g., allocate, free then
store/write). Memlock [2] mainly focused on memory consumption vulnerabilities, took
memory usage as the fitness goal, and searched for uncontrolled memory consumption
vulnerabilities, but did not consider the influence of data flow. AFL-HR [34] triggered

Mathematics 2023, 11, 1222 5 of 19

hard-to-show buffer overflow and integer overflow vulnerabilities through coevolution.
IOTFUZZER [35] used a lightweight mechanism based on IoT mobile device APP, and
proposed a black-box fuzzing model without protocol specifications to discover memory
corruption vulnerabilities of IoT devices.

However, these works focus more on specific measurement strategies. When looking
for the optimal path, it is easy to get stuck in local blocks of the program and ignore other
paths that may lead to vulnerabilities, thus making the fuzzing results inaccurate.

D. Data flow guided fuzzing
Data flow analysis increases the knowledge set of the fuzzer and semantic information

of the PUT by adding data flow information, and thus essentially makes the code charac-
teristics and program behavior clear. Data flow analysis methods, such as taint analysis,
can reflect the impact of the mutation on samples that could help optimize seed mutation
strategy, input generation, and the seed selection process.

SemFuzz [36] tracked kernel function parameters on which key variables depend
through reverse data flow analysis. SeededFuzz [37] proposed a dynamic taint analysis
(DTA) approach to identify seed bytes that influence the values of security-sensitive pro-
gram sites. TIFF [38] proposed a mutation strategy to infer input types through in-memory
data structure identification and DTA, which increased the probability of triggering mem-
ory corruption vulnerabilities. However, data flow analysis, especially DTA, often increases
runtime overhead and slows down the program while obtaining accurate data information
of PUT. Fairfuzz [39] and Profuzzer [40] all adopted lightweight taint analysis to find the
guiding mutation solution and obtain the variable taint attributes. GREYONE [41] equipped
fuzzing with lightweight Fuzzing-Based Taint Inference (FTI) to carry out taint calibration
for the branch jump variables of the program control flow. In the process of fuzzing, they
mutate the specific bytes of samples and observe the changes of tainted variables to obtain
the data dependency relationship between seed bytes and tainted variables.

However, it is impossible to understand the semantics of control flow by simply using
data flow for vulnerability discovery, and detailed data flow analysis will increase overhead
and reduce fuzzing efficiency. Usually, it can only be used as an important supplementary
method of vulnerability discovery based on control flow analysis.

In summary, data flow analysis has become a future research trend, as more addi-
tional information of PUT can be obtained for better guidance of fuzzers. Therefore, the
performance of the fuzzer can be better played for different vulnerabilities.

3. Enhanced Heap Operation Location Based on Data Semantics

In order to focus on discovering heap vulnerability, we first analyze the program
in static mode to identify the locations of heap operation. We not only try to obtain the
subsequence of heap operation, but also deduct the relations of heap operation based
on data semantics. To achieve this goal, we build CPG including CFG and DDG (Data
Dependency Graph). CFG is used to describe the sequence of operations, while DDG is used
to point out the relationship between heap pointers. Based on data dependency deduced
from CPG, we propose an algorithm to extract the locations of suspected dangerous heap
operation code areas.

3.1. Examples of Memory Consumption Vulnerability

If an attacker can control the allocation of limited software resources and use a large
number of system resources, the attacker may consume all available resources and then
trigger a denial of service attack, which belongs to the category of resource consumption
vulnerability CWE-400. This kind of vulnerability may prevent authorized users from
accessing the software and have harmful effects on the surrounding memory environment.
For example, a memory exhaustion attack could render software or even the operating
system unusable. Therefore, we focus on the heap memory consumption vulnerability of
code blocks, which is divided into two types named uncontrolled memory allocation and
memory leaks.

Mathematics 2023, 11, 1222 6 of 19

Definition 1. Memory consumption is defined as a vulnerability occupying process memory
resources by triggering data storage instructions several times, which affects the normal running of
the process and leads to a denial-of-service attack.

Definition 2. Uncontrolled memory allocation is defined as a vulnerability related to heap
memory allocation and release, which allocates memory based on untrusted size values, but does not
validate or incorrectly validate the size, and allows any amount of memory to be allocated. Its CWE
number is CWE-789.

Definition 3. Memory leak is defined as a vulnerability also related to heap memory allocation
and release, in which the program does not adequately track and free the allocated memory after
allocation, and thus slowly consumes the remaining memory. Its CWE number is CWE-401.

Compared with non-memory consuming vulnerabilities, uncontrolled memory allo-
cation vulnerability and memory leak vulnerability are more difficult to discover because
their conditions of triggering crashes are stricter.

CVE-2019-6988 is a public CVE, and this vulnerability occurs in the opj_calloc function.
This vulnerability is formed because the program code lacks the detection of the allocated
amount and the security mechanism for specially crafted files. In Figure 1, the code snippet
related to an uncontrolled memory allocation vulnerability (CVE-2019-6988) exists in the
executable program OpenJPEG version 2.3.0. In the source code project, the function
opj_tcd_init_tile in file tcd.c is called when the OpenJPEG is running to decompress the
“specially-crafted” images. This vulnerability allows a remote attacker to attempt too
much memory allocation by function opj_calloc in the file opj_malloc.c, which calls the
system function calloc to allocate a large amount of heap memory and ultimately results in
a denial-of-service attack due to a lack of enough free heap memory.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 21

Figure 1. Code snippet from tcd.c/tgt.c in OpenJPEG v2.3.0.

As shown in Figure 2, the code snippet concerning memory leaks vulnerability ex-
ists in a program case of Samate Juliet Test Suite. This case is a memory leak vulnerability
caused by allocating heap memory without release. Specifically, the case uses the func-
tion malloc on line 5 to allocate memory and checks whether the allocation is successful or
not on line 7. However, at the end of the function, the allocated memory data is not ef-
fectively released, eventually resulting in a heap memory leak.

Figure 2. Code snippet from Samate Juliet Test Suite.

3.2. Location of Heap Operation Code Based on Data Semantic
In order to directionally discover heap-memory-consumed vulnerabilities, how to

obtain the locations of suspected heap operations is the first essential goal. Once the lo-
cations are identified, they will be used as a guided factor to optimize the guidance
strategy of vulnerability fuzzing, which is our second essential goal.

We first construct CPG based on the static analysis tool Joern. Then, a scheme is
proposed to deduce the explicit and implicit semantic relations between heap pointers
based on data flows from CPG. In addition, based on the semantic relations between
heap pointers, we analyze the abnormal sequence of heap memory operation concerning
allocation and release, and thus demarcate the heap operation code areas with suspected
heap consumption. These locations will serve as an important indicator for selecting
seeds from input samples during the fuzzing procedure.

Figure 1. Code snippet from tcd.c/tgt.c in OpenJPEG v2.3.0.

As shown in Figure 2, the code snippet concerning memory leaks vulnerability exists
in a program case of Samate Juliet Test Suite. This case is a memory leak vulnerability
caused by allocating heap memory without release. Specifically, the case uses the function
malloc on line 5 to allocate memory and checks whether the allocation is successful or not

Mathematics 2023, 11, 1222 7 of 19

on line 7. However, at the end of the function, the allocated memory data is not effectively
released, eventually resulting in a heap memory leak.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 21

Figure 1. Code snippet from tcd.c/tgt.c in OpenJPEG v2.3.0.

As shown in Figure 2, the code snippet concerning memory leaks vulnerability ex-
ists in a program case of Samate Juliet Test Suite. This case is a memory leak vulnerability
caused by allocating heap memory without release. Specifically, the case uses the func-
tion malloc on line 5 to allocate memory and checks whether the allocation is successful or
not on line 7. However, at the end of the function, the allocated memory data is not ef-
fectively released, eventually resulting in a heap memory leak.

Figure 2. Code snippet from Samate Juliet Test Suite.

3.2. Location of Heap Operation Code Based on Data Semantic
In order to directionally discover heap-memory-consumed vulnerabilities, how to

obtain the locations of suspected heap operations is the first essential goal. Once the lo-
cations are identified, they will be used as a guided factor to optimize the guidance
strategy of vulnerability fuzzing, which is our second essential goal.

We first construct CPG based on the static analysis tool Joern. Then, a scheme is
proposed to deduce the explicit and implicit semantic relations between heap pointers
based on data flows from CPG. In addition, based on the semantic relations between
heap pointers, we analyze the abnormal sequence of heap memory operation concerning
allocation and release, and thus demarcate the heap operation code areas with suspected
heap consumption. These locations will serve as an important indicator for selecting
seeds from input samples during the fuzzing procedure.

Figure 2. Code snippet from Samate Juliet Test Suite.

3.2. Location of Heap Operation Code Based on Data Semantic

In order to directionally discover heap-memory-consumed vulnerabilities, how to
obtain the locations of suspected heap operations is the first essential goal. Once the
locations are identified, they will be used as a guided factor to optimize the guidance
strategy of vulnerability fuzzing, which is our second essential goal.

We first construct CPG based on the static analysis tool Joern. Then, a scheme is
proposed to deduce the explicit and implicit semantic relations between heap pointers
based on data flows from CPG. In addition, based on the semantic relations between
heap pointers, we analyze the abnormal sequence of heap memory operation concerning
allocation and release, and thus demarcate the heap operation code areas with suspected
heap consumption. These locations will serve as an important indicator for selecting seeds
from input samples during the fuzzing procedure.

3.2.1. Construct CPG

CPG is a graph combining multi-level code information where the information at
each level can be related to each other. CPG can be obtained by combining AST (Abstract
Syntax Trees), CFG, DDG, and CDG (Control Dependency Graph). Compared with other
structures, CPG contains much richer data and relational information, which enables more
complex and detailed static analysis of the program source code.

The CPG is composed of nodes and edges. Nodes represent the components of
PUT, including functions, variables, etc. Each node has a type, such as a type METHOD
representing a method, PARAM representing a parameter, and LOCAL representing a local
variable. The directed edges represent the relationship between nodes, and the label is the
description of the relationship, such as a label DDG from node A to node B represents B’s
data dependency on A.

The program files can be parsed using the source code analysis tool Joern to obtain
the CPG. In order to show what useful data can be obtained from CPG for data relation-
ship derivation, we analyze OpenJPEG v2.3.0 containing CVE-2019-6988 introduced in
Section 3.1. Due to the huge number of codes, we only show the partial CPG shown in
Figure 3. Figure 3a is the full CPG of the opj_calloc function, in which the calloc method
is the partial zoom shown as Figure 3b. From Figure 3b, we can find the calloc method is
dependent on the parament t_nmemb and t_size. We also find the parament t_nmemb
and t_size are dependent on the return method. Combined with CFG, we can derive the
potential dependent relationship between the calloc function and the calloc function and the
return function.

Mathematics 2023, 11, 1222 8 of 19

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 21

3.2.1. Construct CPG
CPG is a graph combining multi-level code information where the information at

each level can be related to each other. CPG can be obtained by combining AST (Abstract
Syntax Trees), CFG, DDG, and CDG (Control Dependency Graph). Compared with other
structures, CPG contains much richer data and relational information, which enables
more complex and detailed static analysis of the program source code.

The CPG is composed of nodes and edges. Nodes represent the components of PUT,
including functions, variables, etc. Each node has a type, such as a type METHOD rep-
resenting a method, PARAM representing a parameter, and LOCAL representing a local
variable. The directed edges represent the relationship between nodes, and the label is
the description of the relationship, such as a label DDG from node A to node B represents
B’s data dependency on A.

The program files can be parsed using the source code analysis tool Joern to obtain
the CPG. In order to show what useful data can be obtained from CPG for data rela-
tionship derivation, we analyze OpenJPEG v2.3.0 containing CVE-2019-6988 introduced
in Section 3.1. Due to the huge number of codes, we only show the partial CPG shown in
Figure 3. Figure 3a is the full CPG of the opj_calloc function, in which the calloc method is
the partial zoom shown as Figure 3b. From Figure 3b, we can find the calloc method is
dependent on the parament t_nmemb and t_size. We also find the parament t_nmemb
and t_size are dependent on the return method. Combined with CFG, we can derive the
potential dependent relationship between the calloc function and the calloc function and
the return function.

(a) CPG of opj_calloc method.

(b) CPG of calloc method.

Figure 3. CPG of OpenJPEG v2.3.0 opj_calloc and calloc methods.

Therefore, after constructing the CPG of the program, we analyze data dependencies
using taint analysis on CPG and determine the location of heap operations.

3.2.2. Location Extraction Based on Data Dependency
Current research faces the challenge of finding accurate locations for code areas re-

lated to heap operations. In this section, we introduce how to obtain the data dependency
by taint analysis. Taint analysis is an effective technology for data flow analysis. In our
research work, we use a lightweight static taint analysis method to locate potentially
vulnerable code areas.

Because CFG can reflect the jump of code and show all branches, most
state-of-the-art fuzzers use CFG as an analysis object. Meanwhile, the data flow can re-
flect the direct relationship between variables and the function parameters, so some

Figure 3. CPG of OpenJPEG v2.3.0 opj_calloc and calloc methods.

Therefore, after constructing the CPG of the program, we analyze data dependencies
using taint analysis on CPG and determine the location of heap operations.

3.2.2. Location Extraction Based on Data Dependency

Current research faces the challenge of finding accurate locations for code areas related
to heap operations. In this section, we introduce how to obtain the data dependency by taint
analysis. Taint analysis is an effective technology for data flow analysis. In our research
work, we use a lightweight static taint analysis method to locate potentially vulnerable
code areas.

Because CFG can reflect the jump of code and show all branches, most state-of-
the-art fuzzers use CFG as an analysis object. Meanwhile, the data flow can reflect the
direct relationship between variables and the function parameters, so some fuzzers also
consider data flow as the analysis object. The data flow and the dependence on data
semantics can provide positive help for understanding the real behavior of CFG, so we
use these advantages to better serve the seed selection for discovering our required types
of vulnerabilities. Using CPG for program analysis has many advantages. After using
Joern to parse the source code into CPG, it does not need to be further compiled. CPG will
be loaded into memory, and we can perform traversal queries, evaluate function leakage
problems, perform data flow analysis, etc.

Dynamic taint analysis usually increases program runtime overhead. To this end, we
use a lightweight static data flow analysis method to obtain the suspected locations in
the target program, thereby reducing the impact on the program runtime overhead. We
mainly focus on data dependencies in CPG during static taint analysis. We analyze the CPG
to obtain relevant function points that have data dependencies between program input
and memory allocation, that is, taint attributes information, and record them. Specifically,
we use a static taint analysis approach to obtain the location of functions including heap
operation.

Algorithm 1 is proposed to extract location by taint analysis based on data dependency.
The static taint analysis is used to track the data flow of heap operation functions such as
malloc, calloc, realloc, free, new, delete, and their deformation functions. The source set of the
algorithm is the parameter of all the program methods and all the called functions of the
program, and the sink set is the function arguments. In the process of data flow analysis, all
relevant nodes from source to sink are traversed, and we use Joern’s built-in functions, such

Mathematics 2023, 11, 1222 9 of 19

as reachableBy and reachablebyFlows, to query the paths from all sources to the sink points in
its CPG. Finally, matched functions are obtained, and duplicated ones are removed.

Algorithm 1: Taint analysis approach for locating potentially vulnerable functions

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 21

fuzzers also consider data flow as the analysis object. The data flow and the dependence
on data semantics can provide positive help for understanding the real behavior of CFG,
so we use these advantages to better serve the seed selection for discovering our required
types of vulnerabilities. Using CPG for program analysis has many advantages. After
using Joern to parse the source code into CPG, it does not need to be further compiled.
CPG will be loaded into memory, and we can perform traversal queries, evaluate func-
tion leakage problems, perform data flow analysis, etc.

Dynamic taint analysis usually increases program runtime overhead. To this end,
we use a lightweight static data flow analysis method to obtain the suspected locations in
the target program, thereby reducing the impact on the program runtime overhead. We
mainly focus on data dependencies in CPG during static taint analysis. We analyze the
CPG to obtain relevant function points that have data dependencies between program
input and memory allocation, that is, taint attributes information, and record them. Spe-
cifically, we use a static taint analysis approach to obtain the location of functions in-
cluding heap operation.

Algorithm 1 is proposed to extract location by taint analysis based on data de-
pendency. The static taint analysis is used to track the data flow of heap operation func-
tions such as malloc, calloc, realloc, free, new, delete, and their deformation functions. The
source set of the algorithm is the parameter of all the program methods and all the called
functions of the program, and the sink set is the function arguments. In the process of
data flow analysis, all relevant nodes from source to sink are traversed, and we use
Joern’s built-in functions, such as reachableBy and reachablebyFlows, to query the paths
from all sources to the sink points in its CPG. Finally, matched functions are obtained,
and duplicated ones are removed.

 Algorithm 1: Taint analysis approach for locating potentially vulnerable functions
Input: CPG of program under test P
Output: Set of dataflow functions Setfuncs

1 Setfuncs = ∅;
2 Target heap functions funcs ← {malloc, calloc, free...};
3 for f in funcs do
4 Source = called functions, methods’ params of P in CPG;
5 Sink = args of f in CPG;
6 if Sink dataFlowReachable by Source then
7 Nodesrelated = ∅; //nodes which are data related;
8 Nodesrelated ← Nodesrelated∪Traverse(CPG of P);
9 paths = Query(Nodesrelated, CPG); //dataflow paths of heap opreations;

10 for p in paths do
11 (statements, line num, funcsp, source locations) ← regularMatch(p);
12 if funcsp not ∅ then
13 Remove duplicate items in funcsp;
14 Setfuncs ← Setfuncs∪funcsp;

15 return Setfuncs;

Figure 4 shows the partial data flow of the heap memory allocation function ob-
tained through static taint analysis in OpenJPEG v2.3.0, which is a data flow path to the
parameter value of the standard library function malloc. Each path contains four aspects

Figure 4 shows the partial data flow of the heap memory allocation function obtained
through static taint analysis in OpenJPEG v2.3.0, which is a data flow path to the parameter
value of the standard library function malloc. Each path contains four aspects of informa-
tion. Among them, the tracked column contains the statements in the queried nodes, the
lineNumber column contains the line number in the source code file, the method column
displays the method names where the statements are located, and the file column displays
the locations of the source code file. To construct the source set, we mark the parameters
of all methods and call all functions in the CPG into the source set. We find all call-sites
for all methods in the graph with the name malloc and mark their arguments into the sink
set. After identification, we obtain a data flow path to malloc in our query of OpenJPEG’s
CPG. Eventually, we collect dataflow-related functions jpip_to_jp2, fread_jpip, and opj_malloc,
which were obtained in the dataflow path after the static taint analysis.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 21

of information. Among them, the tracked column contains the statements in the queried
nodes, the lineNumber column contains the line number in the source code file, the
method column displays the method names where the statements are located, and the file
column displays the locations of the source code file. To construct the source set, we mark
the parameters of all methods and call all functions in the CPG into the source set. We
find all call-sites for all methods in the graph with the name malloc and mark their ar-
guments into the sink set. After identification, we obtain a data flow path to malloc in our
query of OpenJPEG’s CPG. Eventually, we collect dataflow-related functions jpip_to_jp2,
fread_jpip, and opj_malloc, which were obtained in the dataflow path after the static taint
analysis.

Figure 4. OpenJPEG v2.3.0 partial data flow path.

In summary, the proposed algorithm 1 analyzes the data flow related to heap
memory allocation and release in the program, and obtains the locations, variables, and
parameters related to heap operation, which guide seed selection in the following fuzz-
ing process.

4. MemConFuzz Model
After analyzing the CPG in the static analysis stage, we obtain the function locations

related to the data flow of the heap memory allocation and release functions and quan-
titatively record the sizes of the memory block allocated and released by the heap opera-
tions. We feed these back to the fuzzer to prioritize the detection of relevant vulnerable
code areas in the fuzzing loop.

The prioritizing discovery of consumption-type vulnerabilities is a novel contribu-
tion to this paper. Through the calibration of suspected heap memory-consuming in-
structions, the priority discovering of them is realized. Through investigating the existing
vulnerability discovery models, we found that there are few studies on the discovery of
heap memory consumption vulnerabilities. At the same time, the existing methods for
discovering such vulnerabilities have many deficiencies, such as the lack of the important
data flow analysis related to heap operations. Therefore, we propose our model, which
has benefits for our purpose of focusing on heap consumption vulnerabilities discovery,
while taking into account the discovery of other vulnerabilities.

4.1. Overview
To address problems mentioned in the previous sections, we propose a memory

consumption-guided fuzzing model, MemConFuzz, as shown in Figure 5. The main
components of MemConFuzz contain a static analyzer, an executor, fuzz loop feedback, a
seed selector, and a seed mutator. In MemConFuzz, the static analyzer marks the data-
flow-related edges and records the trigger value for each edge by scanning the source
code and then inserts code fragments to update the value in the running program. The
executor executes the instrumented program. Fuzz loop feedback is used to record and
update related information to guide the seed selector after the program execution. The
seed selector adopts a priority strategy to select seeds according to the different scores of

Figure 4. OpenJPEG v2.3.0 partial data flow path.

In summary, the proposed algorithm 1 analyzes the data flow related to heap memory
allocation and release in the program, and obtains the locations, variables, and parameters
related to heap operation, which guide seed selection in the following fuzzing process.

Mathematics 2023, 11, 1222 10 of 19

4. MemConFuzz Model

After analyzing the CPG in the static analysis stage, we obtain the function locations
related to the data flow of the heap memory allocation and release functions and quantita-
tively record the sizes of the memory block allocated and released by the heap operations.
We feed these back to the fuzzer to prioritize the detection of relevant vulnerable code areas
in the fuzzing loop.

The prioritizing discovery of consumption-type vulnerabilities is a novel contribution
to this paper. Through the calibration of suspected heap memory-consuming instructions,
the priority discovering of them is realized. Through investigating the existing vulnerability
discovery models, we found that there are few studies on the discovery of heap memory
consumption vulnerabilities. At the same time, the existing methods for discovering such
vulnerabilities have many deficiencies, such as the lack of the important data flow analysis
related to heap operations. Therefore, we propose our model, which has benefits for our
purpose of focusing on heap consumption vulnerabilities discovery, while taking into
account the discovery of other vulnerabilities.

4.1. Overview

To address problems mentioned in the previous sections, we propose a memory
consumption-guided fuzzing model, MemConFuzz, as shown in Figure 5. The main
components of MemConFuzz contain a static analyzer, an executor, fuzz loop feedback, a
seed selector, and a seed mutator. In MemConFuzz, the static analyzer marks the dataflow-
related edges and records the trigger value for each edge by scanning the source code and
then inserts code fragments to update the value in the running program. The executor
executes the instrumented program. Fuzz loop feedback is used to record and update
related information to guide the seed selector after the program execution. The seed selector
adopts a priority strategy to select seeds according to the different scores of the seed bank.
The seed mutator mutates the selected seed to test the program in the fuzzing loop.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 21

the seed bank. The seed mutator mutates the selected seed to test the program in the
fuzzing loop.

MemConFuzz contains two main stages: the static analysis stage and the fuzzing
loop stage. Dark colors indicate optimized changes to the original AFL approach. Static
analysis performs taint position identification and memory function identification for
instrumentation. We use lightweight instrumentation to capture basic block transitions,
heap memory function locations, and data-flow-dependent function locations at com-
pile-time, while gaining coverage information, heap memory size, and da-
ta-flow-dependent information during runtime.

Figure 5. MemConFuzz model.

In the static analysis stage, we instrument all the captured target locations and then
recompile to obtain an instrumented file. In the main fuzzing loop, the seed is selected for
mutation and delivered to the instrumented file for execution. The model continuously
tracks the state of the target program and records the cases that cause the program to
crash. At the same time, the recorded feedback information is continuously submitted to
the seed selector for priority selection, which helps to discover more heap memory con-
sumption vulnerabilities.

4.2. Code Instrumentation at Locations of Suspected Heap Operation
In order to record the execution information in the fuzzing process, the bitmap of

AFL records the number of branch executions, and the perf_bits of Memlock records the
size of the heap allocation. The MemConFuzz also adopts a shared memory and incre-
mentally adds dataflow_shm to store the numbers of the data-dependent functions trig-
gered.

The MemConFuzz is derived from AFL. MemConFuzz adds two shared memory
areas in AFL and mainly expands the afl-llvm-rt.o.c and afl-llvm-pass.so.cc files for in-
strumentation. The instrumented contents include branch coverage information, heap
memory allocation functions, and data-dependent functions.

The first shared memory perf_bits records the size of the memory allocation and re-
lease during runtime. In the static analysis stage, we use LLVM [42] to obtain the function
Call Graph (CG) and CFG of the program. Through traversing CG and CFG, we search
the locations of basic blocks related to heap memory allocation and release functions, in-
cluding malloc, calloc, realloc, free, new, delete, and their variant functions, and locate the
call-sites of heap functions for instrumentation. During the fuzzing loop, perf_bits records
the amount of consumed heap memory.

Figure 5. MemConFuzz model.

MemConFuzz contains two main stages: the static analysis stage and the fuzzing
loop stage. Dark colors indicate optimized changes to the original AFL approach. Static
analysis performs taint position identification and memory function identification for
instrumentation. We use lightweight instrumentation to capture basic block transitions,
heap memory function locations, and data-flow-dependent function locations at compile-
time, while gaining coverage information, heap memory size, and data-flow-dependent
information during runtime.

Mathematics 2023, 11, 1222 11 of 19

In the static analysis stage, we instrument all the captured target locations and then
recompile to obtain an instrumented file. In the main fuzzing loop, the seed is selected for
mutation and delivered to the instrumented file for execution. The model continuously
tracks the state of the target program and records the cases that cause the program to crash.
At the same time, the recorded feedback information is continuously submitted to the seed
selector for priority selection, which helps to discover more heap memory consumption
vulnerabilities.

4.2. Code Instrumentation at Locations of Suspected Heap Operation

In order to record the execution information in the fuzzing process, the bitmap of AFL
records the number of branch executions, and the perf_bits of Memlock records the size of
the heap allocation. The MemConFuzz also adopts a shared memory and incrementally
adds dataflow_shm to store the numbers of the data-dependent functions triggered.

The MemConFuzz is derived from AFL. MemConFuzz adds two shared memory areas
in AFL and mainly expands the afl-llvm-rt.o.c and afl-llvm-pass.so.cc files for instrumen-
tation. The instrumented contents include branch coverage information, heap memory
allocation functions, and data-dependent functions.

The first shared memory perf_bits records the size of the memory allocation and release
during runtime. In the static analysis stage, we use LLVM [42] to obtain the function Call
Graph (CG) and CFG of the program. Through traversing CG and CFG, we search the
locations of basic blocks related to heap memory allocation and release functions, including
malloc, calloc, realloc, free, new, delete, and their variant functions, and locate the call-sites of
heap functions for instrumentation. During the fuzzing loop, perf_bits records the amount
of consumed heap memory.

As shown in Figure 6 below, there are four basic blocks A, B, C and D representing
nodes in the CFG of the program. The program will first go to B or C according to a branch
condition. Once the branch condition for block C is met, the variable size is initialized, and
then the memory allocation operation is performed in the block D. We traverse branches
of the basic block described by IR language from the beginning of the program. Once we
find a match among all our target heap functions, we locate the potential block D and
instrument it.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 21

As shown in Figure 6 below, there are four basic blocks A, B, C and D representing
nodes in the CFG of the program. The program will first go to B or C according to a
branch condition. Once the branch condition for block C is met, the variable size is ini-
tialized, and then the memory allocation operation is performed in the block D. We
traverse branches of the basic block described by IR language from the beginning of the
program. Once we find a match among all our target heap functions, we locate the po-
tential block D and instrument it.

Figure 6. An example of basic block transition.

Meanwhile, we add the second shared memory dataflow_shm to record the numbers
of data-dependent functions. We traverse the basic blocks of the program to search the
locations that belong to Setfuncs, and then complete instrumentation. Specifically, after
using these locations to analyze the program, we instrument the code of increasing count
in dataflow_shm. In the fuzzing loop stage, MemConFuzz can increase the count value in
dataflow_shm corresponding to triggered data-dependent functions when the target pro-
gram executes an input sample. Thus, we can get the coverage information of heap op-
eration when the execution of an input sample is completed.

In the instrumentation pass file, we declare a pointer variable, DataflowPtr, pointing
to the shared memory area dataflow_shm. Then, the values of dataflow_shm are changed
based on the number of data-dependent functions triggered. We inject instrumentation
codes into the program during compilation. The approximate formulas for instrumenta-
tion are shown below, where Formula (1) marks the ID of the current block with a ran-
dom number cur_location, Formula (2) shows that by applying the XOR operation on two
IDs of the current block and previous block as the key, the corresponding value in data-
flow_shm is updated by adding dataflowfunc_cnt to self-value, where the shared_mem[] ar-
ray is our dataflow_shm, the size of which is 64 Kb, and dataflowfunc_cnt is the count of
data-dependent functions triggered on this branch, and, in Formula (3), in order to dis-
tinguish the paths in different directions between two blocks, the cur_location is moved to
the right by one bit as the prev_location to complete the marking of these two blocks.

cur_location = <COMPILE_TIME_RANDOM> (1)

shared_mem[cur_location ^ prev_location] + = dataflowfunc_cnt (2)

prev_location = cur_location >> 1 (3)

We instrument the program based on static analysis to get the instrumented pro-
gram. Therefore, we prioritize guidance to the suspected heap operation areas in the
fuzzing loop stage to realize our directed fuzzing on the heap consumption vulnerability.

4.3. Strategy of Seed Priority Selection

Figure 6. An example of basic block transition.

Meanwhile, we add the second shared memory dataflow_shm to record the numbers
of data-dependent functions. We traverse the basic blocks of the program to search the
locations that belong to Setfuncs, and then complete instrumentation. Specifically, after
using these locations to analyze the program, we instrument the code of increasing count
in dataflow_shm. In the fuzzing loop stage, MemConFuzz can increase the count value
in dataflow_shm corresponding to triggered data-dependent functions when the target
program executes an input sample. Thus, we can get the coverage information of heap
operation when the execution of an input sample is completed.

Mathematics 2023, 11, 1222 12 of 19

In the instrumentation pass file, we declare a pointer variable, DataflowPtr, pointing
to the shared memory area dataflow_shm. Then, the values of dataflow_shm are changed
based on the number of data-dependent functions triggered. We inject instrumentation
codes into the program during compilation. The approximate formulas for instrumentation
are shown below, where Formula (1) marks the ID of the current block with a random
number cur_location, Formula (2) shows that by applying the XOR operation on two IDs of
the current block and previous block as the key, the corresponding value in dataflow_shm
is updated by adding dataflowfunc_cnt to self-value, where the shared_mem[] array is our
dataflow_shm, the size of which is 64 Kb, and dataflowfunc_cnt is the count of data-dependent
functions triggered on this branch, and, in Formula (3), in order to distinguish the paths in
different directions between two blocks, the cur_location is moved to the right by one bit as
the prev_location to complete the marking of these two blocks.

cur_location = <COMPILE_TIME_RANDOM> (1)

shared_mem[cur_location ˆ prev_location] + = dataflowfunc_cnt (2)

prev_location = cur_location >> 1 (3)

We instrument the program based on static analysis to get the instrumented program.
Therefore, we prioritize guidance to the suspected heap operation areas in the fuzzing loop
stage to realize our directed fuzzing on the heap consumption vulnerability.

4.3. Strategy of Seed Priority Selection

This model proposes a fine-grained seed priority strategy for discovering heap memory
consumption vulnerabilities. Seeds are mainly scored by the following indicators:

(1) We use dataflow_funcs as the metric, which is instrumented during the static analysis
stage to record the number of data-dependent functions triggered during execution.
The more related functions that are triggered, the higher the seed priority.

(2) Like Memlock, we record the size of the allocated heap memory; the larger the heap
memory that is allocated, the more power this input sample gets. The input samples
with more power at the top of the queue are selected as seeds. We use new_max_size
as a flag which represents the maximum memory newly consumed on the heap in
history. When the flag is triggered, we increase the score of this seed and enlarge its
mutation time.

(3) In addition, when no data-dependent function has triggered and the new maximum al-
located memory has not been reached, MemConFuzz still retains AFL’s path-coverage-
based seed prioritization strategy to cover as many program branches as possible.

The first two strategies will help the fuzzer trigger more potential heap memory
consumption vulnerabilities.

Principle 1. During execution, the more data dependent functions that are recorded, the greater the
coefficient increase. In the end, the seed score increases and the energy obtained increases.

Principle 2. The original scoring strategy of AFL should also be taken into account. The final score
of the seed should not be too large, because the execution process may be trapped in local code blocks
of the program.

According to the above two seed selection formula design principles, and in order
to evaluate the excellence degree of each input sample, a scoring formula is proposed,
in which the more data-dependent functions are recorded, the larger the coefficients are
increased, and the higher scores are achieved. In addition, we set the parameters 1.2 and
1/5 according to the design principle, making sure to set the multiplier factor of the increase
to the maximum value of 1.2, so that the evaluating strategy does not have too much impact

Mathematics 2023, 11, 1222 13 of 19

to avoid missing out on other good samples, which are not used for discovering memory
consumption vulnerability, but can be used for non-memory consumption vulnerability.

Priority_score(samplei) =

Pa f l(samplei)·

(
1.2 − 1

5 e−data f low_ f uncs
)

, data f low_ f uncs
∣∣∣∣∣∣ new_max_size

Pa f l(samplei) , otherwise

(4)

Equation (4) shows the seed priority strategy adopted by MemConFuzz. Specifically,
for each samplei in the sample queue, when the data-dependent function is triggered or the
new maximum memory is reached, we multiply the original AFL score value Pafl(samplei)
by our formula and then obtain different seed scores under different numbers of data-
dependent functions. The dataflow_funcs is the total number of data-dependent functions
triggered by the sample during the fuzzing loop. Otherwise, we adopt the original AFL
strategy, which is to perform sample scoring according to the execution speed and length
of the samples. At last, we choose some samples with high Priority_score values from the
sample queue as seeds.

In summary, every time the program executes, we detect code coverage, memory usage,
and data-dependent functions triggered. For the impact of heap operations, we adopt two
equations for different cases. The samples that trigger more data-related functions, allocate
larger heap memory sizes, and have higher program path coverage are preferentially given
higher power. Furthermore, we set up a maximum time in the havoc mutation phase to
prevent wasting too much test time.

4.4. Proposed Model

We implement a directed fuzzing model MemConFuzz to discover heap memory con-
sumption vulnerabilities. Unlike AFL, our model first performs a static analysis approach
to analyze program data flow, and then uses the data flow information as a guide in discov-
ering heap memory consumption vulnerabilities. Algorithm 2 describes the workflow of
MemConFuzz.

The current vulnerability discovery models are faced with the challenge of not being
able to prioritize the discovery of heap memory consumption vulnerabilities, and there is a
problem of inaccurate static analysis caused by a lack of data flow information. Algorithm 2
is the pseudo code of our proposed fuzzing model, which is improved based on AFL, and
we have optimized and improved the seed selection.

In the seed queue Queue, we select a seed q based on our seed priority strategy and
then assign energy to the mutation. Meanwhile, we record the hashes, memory size, and
data-dependent functions in each running process. If the q’ causes the program to crash,
add it to the crash set. Otherwise, we select those seeds that can trigger a new path, more
heap memory allocation, or trigger more data-dependent functions, set them as interesting
samples, and add them to the seed queue for the mutation of the next loop. Finally, the
collection set of seeds that trigger heap memory consumption vulnerabilities and cause
crashes is obtained.

Mathematics 2023, 11, 1222 14 of 19

Algorithm 2: Memory Consumption Fuzzing

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 21

4.4. Proposed Model
We implement a directed fuzzing model MemConFuzz to discover heap memory

consumption vulnerabilities. Unlike AFL, our model first performs a static analysis ap-
proach to analyze program data flow, and then uses the data flow information as a guide
in discovering heap memory consumption vulnerabilities. Algorithm 2 describes the
workflow of MemConFuzz.

The current vulnerability discovery models are faced with the challenge of not being
able to prioritize the discovery of heap memory consumption vulnerabilities, and there is
a problem of inaccurate static analysis caused by a lack of data flow information. Algo-
rithm 2 is the pseudo code of our proposed fuzzing model, which is improved based on
AFL, and we have optimized and improved the seed selection.

 Algorithm 2: Memory Consumption Fuzzing
Input: Instrumented program P, Initial seed input S
Output: Set of crash outputs Setcrash

1 Setcrash = ∅;
2 Queue ← S;
3 while time and resource budget do not expire do
4 if Queue not ∅ then
5 q = ChooseNext(Queue); // Our Modifications;
6 e = AssignEnergy(q);
7 if i from 1 to e then
8 q’ = Mutate(q);
9 (tracebitsi, memoryi, dataflowfuncsi) ← Run(q’, P);
10 hashi = Hash(tracebitsi);

11 if q’ triggers crash then
12 Setcrash ← Setcrash ∪ q’;
13 else
14 if NewCoverage(q’) then

15 Queue ← Queue ∪ q’;
16 if NewMaxSize(q’) then

17 Queue ← Update(q’, memoryi[hashi]);
18 if DataflowFuncs(q’) then

19 Queue ← Add and Prioritize(q’, dataflowfuncsi);

20 return Setcrash;

In the seed queue Queue, we select a seed q based on our seed priority strategy and

then assign energy to the mutation. Meanwhile, we record the hashes, memory size, and
data-dependent functions in each running process. If the q’ causes the program to crash,
add it to the crash set. Otherwise, we select those seeds that can trigger a new path, more
heap memory allocation, or trigger more data-dependent functions, set them as inter-
esting samples, and add them to the seed queue for the mutation of the next loop. Finally,
the collection set of seeds that trigger heap memory consumption vulnerabilities and
cause crashes is obtained.

5. Experimental Results and Discussions

5. Experimental Results and Discussions

We implement the MemConFuzz based on the AFL-2.52b framework. We mainly write
additional codes for LLVM-mode (based on LLVM v6.0.0) to realize our program static
analysis approach related to memory consumption based on data flow and modify afl-fuzz.c
to support our interaction module with instrumentation information and the fine-grained
seed priority selection strategy.

We chose popular open source programs OpenJPEG v2.3.0, jasper v2.0.14, and readelf
v2.28 with heap memory consumption vulnerabilities as test datasets, and compared them
against AFL, MemLock, and PerfFuzz. Our experiments were performed on Ubuntu
LTS 18.04 with a Linux kernel v4.15.0, Intel(R) Xeon(R) CPU E7-4820 processor, and 4GB
RAM. The experiment results show that MemConFuzz outperforms the state-of-the-art
fuzzing techniques, including AFL, MemLock, and PerfFuzz, in discovering heap memory
consumption vulnerabilities. MemConFuzz can discover heap memory consumption CVEs
faster and trigger a higher number of heap memory consumption crashes.

5.1. Evaluation Scheme

During the experiment, since the fuzzer heavily relies on random mutations, there
may be performance fluctuations between different experiments on our machine, resulting
in different experimental results each time. We have taken effective measures to configure
experimental parameters and have taken two measures to mitigate the randomness caused
by the properties of the fuzzing technology. First, we conduct a uniform long-term test of
the experimental process of each PUT performed by each fuzzer until the fuzzer reaches
a relatively stable state. Specifically, our stable results are obtained after a uniform 24-h
period during every fuzzing execution. Second, we add the -d option to all fuzzers in the
experiment to skip the deterministic mutation stage, so that more mutation strategies can

Mathematics 2023, 11, 1222 15 of 19

be performed in the havoc and splicing stages to discover heap memory consumption
vulnerabilities.

Due to factors such as different computer performance and randomness of mutation,
the results of each experiment will be different. For the experiments in the comparison
model, such as Memlock, we reproduced them on the same machine in order to ensure that
each model is based on the same initial experimental conditions. We give the definition of
“relatively stable state”.

Definition 4. Relatively Stable State is defined as a state in which test data smoothly changes.
On the same machine, after a certain period of time, the results of multiple experiments are relatively
stable compared to the growth rate in the initial stage, and then the test results reach a “relatively
stable state”.

Figure 7 below is an experimental record of fuzzing readelf; the ordinate shows the
number, and the abscissa shows the time. We mainly focus on the changes in the number of
unique crashes. It shows that the growth rate is the fastest in the first 2 h, and the growth
rate slows down after about 22 h, which fully meets the definition of a “relatively stable
state”. The other tests also meet the definition of a “relatively stable state” around 24 h.
We consulted a large number of vulnerability discovery studies and methods, and many
studies also selected 24 h as the test standard. In addition, MemConFuzz, Memlock, and
PerfFuzz are all improved based on AFL, so if the time is too long, when almost no heap
consumption vulnerabilities can be found in the end, it will gradually degenerate into
AFL’s general vulnerability discovering, and the discovery efficiency for heap consumption
vulnerability cannot be demonstrated at this time. In order to comprehensively ensure
accuracy and efficiency, we uniformly select 24 h as our test standard, which can reflect the
ability of vulnerability discovering and also reduce unnecessary time overhead.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 21

Figure 7. Experimental record of fuzzing readelf.

We enable ASAN [43] compilation of the source program file, and set the alloca-
tor_may_return_null option so that the program will crash when the heap memory allo-
cation fails due to the allocation of too much memory, which is convenient for us to ob-
serve and analyze. In addition, we used LeakSanitizer to detect memory leak vulnerabil-
ities and conduct subsequent analyses.

5.2. Experimental Results and Discussions
We perform fuzzing on the selected real-world program datasets and record the

experimental data according to the evaluation metrics.
To demonstrate our work, we compare against some fuzzing techniques, recording

the number of triggering heap memory consumption vulnerabilities and the time of
triggering real-world CVEs. We select large-scale programs with tens of thousands of
lines, which are continuously maintained in the open source community and have high
popularity. These programs are from the comparison model. The name and version of the
test software are mentioned by Memlock and some other fuzz testing tools. They contain
heap consumption vulnerabilities and other types of vulnerabilities as interference items
to comprehensively evaluate the models. Because we use the analysis method of source
code and semantic heap operation code, other corresponding open-source source codes
are difficult to find. There are very few fuzzing research works related to this type of
vulnerability. In order to better evaluate the horizontal performance of the model, we
choose these programs and ensure that these softwares are publicly available for down-
load. The download link has been added. Additionally, the source code of MemConFuzz
will be available for request.

Table 1 shows the crashes related to memory consumption vulnerabilities obtained
by fuzzing the programs jasper, readelf, and openjpeg. UA stands for uncon-
trolled-memory-allocation vulnerabilities, ML stands for memory leak vulnerabilities,
and SLoC stands for Source Lines of Code. For each 24-h fuzzing experiment, we use
Python to analyze the obtained crashes and automatically reproduce them. We classify
the crashes according to the obtained Address Sanitizer function call chain and its output
summary information of vulnerability types, and then obtain the memory consump-
tion-related vulnerabilities we need, that is, the number of UA and ML. Among them,
most of the crashes triggered by jasper are ML, while the crashes triggered by other
programs are UA. The results show that MemConFuzz has an improvement of 43.4%,
13.3%, and 561.2% in the discovery of heap memory consumption vulnerabilities com-
pared with the advanced fuzzing techniques AFL, MemLock, and PerfFuzz, respectively.

Table 1. Number of heap memory consumption vulnerabilities.

Program Version SLoC Type MemConFuzz AFL MemLock PerfFuzz

jasper 2.0.14 44k
UA 5 1 2 0
ML 208 212 190 28

readelf 2.28 1844k UA 219 86 182 39
openjpeg 2.3.0 243k UA 11 10 17 0

Total Unique Crashes (Improve-
ment) 443 309

(+43.4%)
391

(+13.3%)
67

(+561.2%)

Figure 7. Experimental record of fuzzing readelf.

We enable ASAN [43] compilation of the source program file, and set the alloca-
tor_may_return_null option so that the program will crash when the heap memory allocation
fails due to the allocation of too much memory, which is convenient for us to observe and
analyze. In addition, we used LeakSanitizer to detect memory leak vulnerabilities and
conduct subsequent analyses.

5.2. Experimental Results and Discussions

We perform fuzzing on the selected real-world program datasets and record the
experimental data according to the evaluation metrics.

To demonstrate our work, we compare against some fuzzing techniques, recording the
number of triggering heap memory consumption vulnerabilities and the time of triggering
real-world CVEs. We select large-scale programs with tens of thousands of lines, which are
continuously maintained in the open source community and have high popularity. These
programs are from the comparison model. The name and version of the test software are
mentioned by Memlock and some other fuzz testing tools. They contain heap consumption
vulnerabilities and other types of vulnerabilities as interference items to comprehensively
evaluate the models. Because we use the analysis method of source code and semantic
heap operation code, other corresponding open-source source codes are difficult to find.
There are very few fuzzing research works related to this type of vulnerability. In order to
better evaluate the horizontal performance of the model, we choose these programs and

Mathematics 2023, 11, 1222 16 of 19

ensure that these softwares are publicly available for download. The download link has
been added. Additionally, the source code of MemConFuzz will be available for request.

Table 1 shows the crashes related to memory consumption vulnerabilities obtained by
fuzzing the programs jasper, readelf, and openjpeg. UA stands for uncontrolled-memory-
allocation vulnerabilities, ML stands for memory leak vulnerabilities, and SLoC stands for
Source Lines of Code. For each 24-h fuzzing experiment, we use Python to analyze the
obtained crashes and automatically reproduce them. We classify the crashes according to
the obtained Address Sanitizer function call chain and its output summary information of
vulnerability types, and then obtain the memory consumption-related vulnerabilities we
need, that is, the number of UA and ML. Among them, most of the crashes triggered by
jasper are ML, while the crashes triggered by other programs are UA. The results show that
MemConFuzz has an improvement of 43.4%, 13.3%, and 561.2% in the discovery of heap
memory consumption vulnerabilities compared with the advanced fuzzing techniques
AFL, MemLock, and PerfFuzz, respectively.

Table 1. Number of heap memory consumption vulnerabilities.

Program Version SLoC Type MemConFuzz AFL MemLock PerfFuzz

jasper 2.0.14 44k
UA 5 1 2 0
ML 208 212 190 28

readelf 2.28 1844k UA 219 86 182 39
openjpeg 2.3.0 243k UA 11 10 17 0

Total Unique Crashes (Improvement) 443 309
(+43.4%)

391
(+13.3%)

67
(+561.2%)

The test programs [44–46] selected are all historical versions. After our automated
crash analysis, the discovered vulnerabilities are all historically reported vulnerabilities.
Our experimental comparison mainly focuses on the number and speed of discovering
heap memory consumption vulnerabilities. We may consider discovering and analyzing
additional new vulnerabilities in future research.

The AFL framework shows that vulnerabilities with the same crash point belong to the
same vulnerability. Vulnerabilities are divided into many types. Since we are targeting heap
consumption vulnerabilities, the only thing we need to confirm is whether the discovered
vulnerabilities belong to heap consumption vulnerabilities. We wrote automated crash
analysis scripts and compared the crash function stacks reported by ASAN. Through the
ASAN report, the function call relationship, and the location of the crashed code, we spent
a lot of time confirming that the vulnerability mentioned in this experiment belonged to
the heap consumption vulnerability.

Furthermore, we also recorded the time of triggering real-world CVEs. In order to
facilitate experimental comparison, we conducted a 24-h test for each test, and T/O stands
for a timeout during the 24-h test. Table 2 shows the time of real-world CVEs triggered after
we fuzzed on our dataset. Likewise, we used ASAN to reproduce crashes to detect memory
error information. We did not use Valgrind because it slows the program down too much,
while ASAN only slows the program down about 2×. We use Python to automatically
analyze crashes and search the crash points, and compare the obtained Address Sanitizer
function the call chain and crash point with the function location described by the real-world
CVE information, therefore gaining the time of the first matching crash. Our experimental
results show that MemConFuzz has significant time reduction compared to the state-of-
the-art fuzzing techniques AFL, MemLock, and PerfFuzz, respectively. Among them,
CVE-2017-12982 has more obvious advantages, which can make the program allocate
large heap memory faster and trigger the vulnerability faster. The reason is that the
proposed model focuses on the location of functions that are data-dependent on memory
consumption, and pays attention to the size of allocated memory, which is more targeted
for memory consumption vulnerabilities than other fuzzing models.

Mathematics 2023, 11, 1222 17 of 19

Table 2. Trigger time of real-world vulnerability.

Program Vulnerability Type
MemConFuzz AFL MemLock PerfFuzz

Time (h) Time (h) Time (h) Time (h)

jasper CVE-2016-8886 UA 2.6 10.2 1.5 T/O
readelf CVE-2017-9039 UA 0.1 0.1 0.1 0.1

openjpeg CVE-2017-12982 UA 2.2 12.8 5.5 T/O
CVE-2019-6988 UA 12.5 T/O 14.8 T/O

Average Time Usage (Improvement) 4.35 11.78
(2.71×)

5.48
(1.26×)

18.03
(4.14×)

6. Conclusions and Future Work

In this paper, we propose a directed fuzzing approach MemConFuzz model based on
data flow analysis of heap operations to discover heap memory consumption vulnerabilities.
The MemConFuzz uses the coverage information, memory consumption information, and
data dependency information to guide the fuzzing process. The coverage information
guides the fuzzer to explore different program paths, the memory consumption information
guides the fuzzer to search for program paths that show increasing memory consumption,
and the data information guides the fuzzer to explore paths with increasing dependencies
on heap memory data flow. Experimental results show that the MemConFuzz outperforms
the state-of-the-art fuzzing technologies, AFL, MemLock, and PerfFuzz, in both the number
of heap memory vulnerabilities and the time to discovery.

In the future, we plan to enhance the heap memory consumption vulnerability dis-
covery capabilities and vulnerability coverage of our approach with more efficient and
more complete data flow analysis. Furthermore, we will add support for binaries to our
proposed vulnerability discovery methodology. We will disassemble the binary code to
obtain the instruction code set, complete the analysis of the control flow and the data flow,
and discover the heap memory consumption vulnerabilities of the binary program more
effectively.

Author Contributions: Conceptualization, C.D. and Y.G.; methodology, C.D. and Y.G.; software, Z.C.
and G.X.; validation, C.D. and Y.G.; investigation, Z.C. and Z.W.; writing—original draft preparation,
Z.C. and Y.G; writing—review and editing, C.D. and Y.G.; visualization, Z.C.; project administration,
C.D.; funding acquisition, Z.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 62172006 and the National Key Research and Development Plan of China grant number
2019YFA0706404.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The test results data presented in this study are available on request.
The data set can be found in public web sites.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AFL America Fuzzy Lop
PUT Program Under Test
UAF Use-After-Free
CPG Code Property Graph
CVE Common Vulnerabilities and Exposures
SMT Satisfiability Modulo Theories

Mathematics 2023, 11, 1222 18 of 19

CGF Coverage-guide Greybox Fuzzing
DGF Directed Greybox Fuzzing
DTA Dynamic Taint Analysis
FTI Fuzzing-Based Taint Inference
DDG Data Dependency Graph
AST Abstract Syntax Trees
CDG Control Dependency Graph
CG Call Graph
CFG Control Flow Graph

References
1. Zalewski, M. American Fuzzing Lop. Available online: https://lcamtuf.coredump.cx/afl/ (accessed on 31 October 2022).
2. Wen, C.; Wang, H.; Li, Y.; Qin, S.; Liu, Y.; Xu, Z.; Chen, H.; Xie, X.; Pu, G.; Liu, T. Memlock: Memory usage guided fuzzing.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June
2020–19 July 2020; pp. 765–777. [CrossRef]

3. Lemieux, C.; Padhye, R.; Sen, K.; Song, D. Perffuzz: Automatically generating pathological inputs. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis, Amsterdam, The Netherlands, 16–21 July 2018;
pp. 254–265.

4. Rajpal, M.; Blum, W.; Singh, R. Not all bytes are equal: Neural byte sieve for fuzzing. arXiv 2017, arXiv:1711.04596.
5. Godefroid, P.; Peleg, H.; Singh, R. Learn&fuzz: Machine learning for input fuzzing. In Proceedings of the 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE), Urbana, IL, USA, 30 October–3 November 2017; pp. 50–59.
6. She, D.; Pei, K.; Epstein, D.; Yang, J.; Ray, B.; Jana, S. Neuzz: Efficient fuzzing with neural program smoothing. In Proceedings of

the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 803–817.
7. Chen, P.; Chen, H. Angora: Efficient fuzzing by principled search. In Proceedings of the 2018 IEEE Symposium on Security and

Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 711–725.
8. Cheng, L.; Zhang, Y.; Zhang, Y.; Wu, C.; Li, Z.; Fu, Y.; Li, H. Optimizing seed inputs in fuzzing with machine learning. In

Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), Montreal, QC, Canada, 25–31 May 2019; pp. 244–245.

9. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities.
IEEE Trans. Dependable Secur. Comput. 2022, 19, 2244–2258. [CrossRef]

10. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A deep learning-based system for vulnerability
detection. arXiv 2018, arXiv:1801.01681.

11. Zou, D.; Wang, S.; Xu, S.; Li, Z.; Jin, H. µVulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection.
IEEE Trans. Dependable Secur. Comput. 2021, 18, 2224–2236. [CrossRef]

12. LibFuzzer—A Library for Coverage-Guided Fuzz Testing. Available online: http://llvm.org/docs/LibFuzzer.html (accessed on
31 October 2022).

13. Honggfuzz. Available online: http://honggfuzz.com/ (accessed on 31 October 2022).
14. Serebryany, K. OSS-Fuzz-Google’s Continuous Fuzzing Service for Open Source Software. In Proceedings of the USENIX Security

symposium, Vancouver, BC, Canada, 16–18 August 2017.
15. Blazytko, T.; Bishop, M.; Aschermann, C.; Cappos, J.; Schlögel, M.; Korshun, N.; Abbasi, A.; Schweighauser, M.; Schinzel, S.;

Schumilo, S. GRIMOIRE: Synthesizing structure while fuzzing. In Proceedings of the 28th USENIX Security Symposium (USENIX
Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 1985–2002.

16. Wang, J.; Chen, B.; Wei, L.; Liu, Y. Superion: Grammar-aware greybox fuzzing. In Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May 2019; pp. 724–735.

17. Padhye, R.; Lemieux, C.; Sen, K.; Papadakis, M.; Le Traon, Y. Semantic fuzzing with zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Beijing, China, 15–19 July 2019; pp. 329–340.

18. Gan, S.; Zhang, C.; Qin, X.; Tu, X.; Li, K.; Pei, Z.; Chen, Z. Collafl: Path sensitive fuzzing. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–23 May 2018; pp. 679–696.

19. Odena, A.; Olsson, C.; Andersen, D.; Goodfellow, I. Tensorfuzz: Debugging neural networks with coverage-guided fuzzing. In
Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 July 2019; pp. 4901–4911.

20. Gao, Z.; Dong, W.; Chang, R.; Wang, Y.J.C.; Practice, C. Experience. Fw-fuzz: A code coverage-guided fuzzing framework for
network protocols on firmware. Concurr. Comput. Pract. Exp. 2022, 34, e5756. [CrossRef]

21. Peng, H.; Shoshitaishvili, Y.; Payer, M. T-Fuzz: Fuzzing by program transformation. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 697–710. [CrossRef]

22. Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Driller: Augmenting
fuzzing through selective symbolic execution. In Proceedings of the NDSS, San Diego, CA, USA, 21–24 February 2016; pp. 1–16.

23. Shoshitaishvili, Y.; Wang, R.; Hauser, C.; Kruegel, C.; Vigna, G. Firmalice-automatic detection of authentication bypass vulnerabil-
ities in binary firmware. In Proceedings of the NDSS, San Diego, CA, USA, 7 February 2015; pp. 1.1–8.1.

https://lcamtuf.coredump.cx/afl/
http://doi.org/10.1145/3377811.3380396
http://doi.org/10.1109/TDSC.2021.3051525
http://doi.org/10.1109/TDSC.2019.2942930
http://llvm.org/docs/LibFuzzer.html
http://honggfuzz.com/
http://doi.org/10.1002/cpe.5756
http://doi.org/10.1109/SP.2018.00056

Mathematics 2023, 11, 1222 19 of 19

24. Chipounov, V.; Kuznetsov, V.; Candea, G. S2E: A platform for in-vivo multi-path analysis of software systems. Acm Sigplan Not.
2011, 46, 265–278. [CrossRef]

25. Cha, S.K.; Avgerinos, T.; Rebert, A.; Brumley, D. Unleashing mayhem on binary code. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 380–394.

26. Godefroid, P.; Levin, M.Y.; Molnar, D. SAGE: Whitebox fuzzing for security testing. Commun. ACM 2012, 55, 40–44. [CrossRef]
27. Yun, I.; Lee, S.; Xu, M.; Jang, Y.; Kim, T. QSYM: A practical concolic execution engine tailored for hybrid fuzzing. In Proceedings

of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 745–761.
28. Wang, M.; Liang, J.; Chen, Y.; Jiang, Y.; Jiao, X.; Liu, H.; Zhao, X.; Sun, J. SAFL: Increasing and accelerating testing coverage

with symbolic execution and guided fuzzing. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, Gothenburg, Sweden, 27 May 2018—-3 June 2018; pp. 61–64.

29. Böhme, M.; Pham, V.-T.; Nguyen, M.-D.; Roychoudhury, A. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, 30 October 30–3 November 2017; pp. 2329–2344.

30. Chen, H.; Xue, Y.; Li, Y.; Chen, B.; Xie, X.; Wu, X.; Liu, Y. Hawkeye: Towards a desired directed grey-box fuzzer. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp.
2095–2108.

31. Coppik, N.; Schwahn, O.; Suri, N. Memfuzz: Using memory accesses to guide fuzzing. In Proceedings of the 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST), Xi’an, China, 22–27 April 2019; pp. 48–58. [CrossRef]

32. Nguyen, M.-D.; Bardin, S.; Bonichon, R.; Groz, R.; Lemerre, M. Binary-level Directed Fuzzing for Use-After-Free Vulnerabilities.
In Proceedings of the RAID, San Sebastian, Spain, 14–15 October 2020; pp. 47–62.

33. Wang, H.; Xie, X.; Li, Y.; Wen, C.; Li, Y.; Liu, Y.; Qin, S.; Chen, H.; Sui, Y. Typestate-guided fuzzer for discovering use-after-free
vulnerabilities. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of
Korea, 27 June 202–19 July 2020; pp. 999–1010.

34. Medicherla, R.K.; Komondoor, R.; Roychoudhury, A. Fitness guided vulnerability detection with greybox fuzzing. In Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, Seoul, Republic of Korea, 27 June 202–19
July 2020; pp. 513–520.

35. Chen, J.; Diao, W.; Zhao, Q.; Zuo, C.; Lin, Z.; Wang, X.; Lau, W.C.; Sun, M.; Yang, R.; Zhang, K. IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing. In Proceedings of the NDSS, San Diego, CA, USA, 18–21 February 2018.

36. You, W.; Zong, P.; Chen, K.; Wang, X.; Liao, X.; Bian, P.; Liang, B. Semfuzz: Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Abu Dhabi,
United Arab Emirates, 2–6 April 2017; pp. 2139–2154.

37. Wang, W.; Sun, H.; Zeng, Q. Seededfuzz: Selecting and generating seeds for directed fuzzing. In Proceedings of the 2016 10th
International Symposium on Theoretical Aspects of Software Engineering (TASE), Shanghai, China, 17–19 July 2016; pp. 49–56.

38. Jain, V.; Rawat, S.; Giuffrida, C.; Bos, H. TIFF: Using input type inference to improve fuzzing. In Proceedings of the 34th Annual
Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018; pp. 505–517.

39. Lemieux, C.; Sen, K. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering, Virtual Event, 18–21 February 2018; pp. 475–485.

40. You, W.; Wang, X.; Ma, S.; Huang, J.; Zhang, X.; Wang, X.; Liang, B. Profuzzer: On-the-fly input type probing for better zero-day
vulnerability discovery. In Proceedings of the 2019 IEEE symposium on security and privacy (SP), San Francisco, CA, USA, 19–23
May 2019; pp. 769–786.

41. Gan, S.; Zhang, C.; Chen, P.; Zhao, B.; Qin, X.; Wu, D.; Chen, Z. GREYONE: Data Flow Sensitive Fuzzing. In Proceedings of the
USENIX Security Symposium, Boston, MA, USA, 12–14 August 2020; pp. 2577–2594.

42. Lattner, C.; Adve, V. LLVM: A compilation framework for lifelong program analysis & transformation. In Proceedings of the
International Symposium on Code Generation and Optimization, San Jose, CA, USA, 20–24 March 2004; pp. 75–86.

43. Serebryany, K.; Bruening, D.; Potapenko, A.; Vyukov, D. AddressSanitizer: A fast address sanity checker. In Proceedings of the
Usenix Conference on Technical Conference, Boston, MA, USA, 13–15 June 2012.

44. Openjpeg. An Open-Source JPEG 2000 Codec Written in C Language. Available online: https://github.com/uclouvain/openjpeg
(accessed on 19 February 2023).

45. Jasper. Image Processing/Coding Tool Kit. Available online: https://www.ece.uvic.ca/~frodo/jasper (accessed on 19 February
2023).

46. GNU Binutils. Acollection of Binary Tools. Available online: https://www.gnu.org/software/binutils/ (accessed on 19 February
2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/1961296.1950396
http://doi.org/10.1145/2093548.2093564
http://doi.org/10.1109/ICST.2019.00015
https://github.com/uclouvain/openjpeg
https://www.ece.uvic.ca/~frodo/jasper
https://www.gnu.org/software/binutils/

	Introduction
	Related Work
	Static Techniques Based on Artificial Intelligence
	Dynamic Execution Fuzzing Technique

	Enhanced Heap Operation Location Based on Data Semantics
	Examples of Memory Consumption Vulnerability
	Location of Heap Operation Code Based on Data Semantic
	Construct CPG
	Location Extraction Based on Data Dependency

	MemConFuzz Model
	Overview
	Code Instrumentation at Locations of Suspected Heap Operation
	Strategy of Seed Priority Selection
	Proposed Model

	Experimental Results and Discussions
	Evaluation Scheme
	Experimental Results and Discussions

	Conclusions and Future Work
	References

